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Abstract: COVID-19 escalated into a pandemic posing several humanitarian as well as scientific
challenges. We here investigated the geographical character of the early spread of the infection and
correlated it with several annual satellite and ground indexes of air quality in China, the United States,
Italy, Iran, France, Spain, Germany, and the United Kingdom. The time of the analysis corresponded
with the end of the first wave infection in China, namely June 2020. We found more viral infections in
those areas afflicted by high PM 2.5 and nitrogen dioxide values. Higher mortality was also correlated
with relatively poor air quality. In Italy, the correspondence between the Po Valley pollution and
SARS-CoV-2 infections and induced mortality was the starkest, originating right in the most polluted
European area. Spain and Germany did not present a noticeable gradient of pollution levels causing
non-significant correlations. Densely populated areas were often hotspots of lower air quality levels
but were not always correlated with a higher viral incidence. Air pollution has long been recognised
as a high risk factor for several respiratory-related diseases and conditions, and it now appears to be
a risk factor for COVID-19 as well. As such, air pollution should always be included as a factor for
the study of airborne epidemics and further included in public health policies.

Keywords: air pollution; COVID-19; coronavirus; virulence; risk factor; satellite air quality

1. Introduction

From the first detected outbreak of a new member of the coronavirus (CoV) fam-
ily [1] in Wuhan, Hubei Province, China [2–4], SARS-CoV-2 [5] has rapidly spread around
the world [6], with governments and institutions showing mixed results in its effective
containment [7,8]. Certain regions have been much more adversely impacted in terms of
infections and mortality rates than others, and the full reasons for this are not yet clear.
This paper shows compelling evidence of a correlation between air pollution and incidence
of COVID-19 in eight of the first countries known to have experienced an initial fast spread
of the virus.

Air pollution is notoriously known to cause health problems and, in particular, respira-
tory diseases to individuals exposed for longer than several days per year [9–14]. Moreover,
pollutants in the air that get absorbed systemically are significant underlying contributors to
the emergence of respiratory viral infections [15], including the previous SARS-CoV-1 [16].
Air pollution strongly associates with other respiratory infections [9,12,15,17–24], inducing
higher mortalities [10,11]. In particular, airborne particulate matter (PM 2.5 and PM 10)
has been linked to respiratory disease hospitalisations for pneumonia and chronic pul-
monary diseases [17–23]. The ACE2 receptors of bronchial, alveolar, interstitial, and other
pulmonary cells can be involved in chronic cellular inflammation due to air pollution and,
concurrently, SARS-CoV-2 [25]. Some further experimental evidence shows that emissions
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from diesel and coal affect the lungs, causing pathological immune response and inflam-
mations [26,27], voiding past disputes [28] that only high concentrations of these gasses
are needed to cause pathologies.

A number of airborne microorganisms can directly infect other people’s mucosae or
travel further into the air and onto surfaces, causing delayed infections. The particles of
several pollutants such as PMs and NO2 can act as a vector for the spread and extended
survival in the air of bioaerosols [29–34], including viruses [35–39] such as measles, the
avian flu H5N1, and the syncytial virus. A first hypothesis in this direction, not examined
here, has arisen for SARS-CoV-2 in northern Italy [40,41].

The strong containment measures adopted firstly by the Chinese government have
necessarily biased the natural virus spread [42,43], not allowing the virus to distribute
evenly across the country’s territory. Recent findings have shown that non-pharmaceutical
interventions such as lockdowns significantly decreased the transmission of the virus in
Europe [44]. What shall be noted, though, is that its appearance was recorded in a Chinese
area affected by some of the highest air pollutions in the world [45], and it showed a
relatively high virulence there [46]. In the case that, as in Italy [47,48], the onset of the
infection went undetected for weeks before the outbreaks became apparent, air pollution
might have played a more relevant role in exacerbating the virus impacts on human health.

Several risk factors have been implicated with the fast spread of SARS-CoV-2. We
enumerate the most relevant ones classified into three groups: (1) environmental risk
factors, (2) social factors, and (3) personal factors.

(1) The temperate-climate world latitudes have been identified as the probable areas to
be mostly affected by COVID-19 [49] due to limited exposure to UV light in winter. The
sole temperature [50,51] or humidity [52] appear to play less of a role [53]. Indeed, other
human coronaviruses (HCoV-229E, HCoV-HKU1, HCoV-NL63, and HCoV-OC43) appear
between December and April, and they are undetectable in summer months in temperate
regions, leading to winter seasonality behaviour. Nevertheless, sufficiently analysing
meteorological factors is very complex, although a little less so in conjunction with air
pollution and wind [54].

(2) A high population density boosts the virus spread, but taken alone, it should not
be a reliable predictor for higher virulence and higher mortality [55]. Another evident
predictor variable is transportation. The virus spread to different countries has been
attributed to air travellers [7,56–63]. The surrounding areas of transport hubs such as
airports and large train stations should witness the appearance of the virus earlier than
other less connected zones, increasing its transmission [43,64–67]. In cities, mass gatherings
at events can transform into super-spreading events [68,69].

(3) A number of personal risk factors have further been implicated with higher mor-
bidity and mortality rates of COVID-19, including age, male gender, and smoking status. In
particular, smoking has been associated with a higher morbidity and mortality of COVID-
19 in men than in women, given how airways receptors become hyperactivated from both
air pollution and smoking [70–72].

One environmental factor that needs further investigation, even though it was already
reviewed [73–75] and initially analysed [76–78], is the role of long-term exposure to air
pollution in the spread of COVID-19 and manifested higher morbidity and mortality rates.
The very first appearance of this virus cannot be directly correlated with pollution since,
similar to the other SARS coronaviruses, SARS-CoV-2 is alleged to have transferred the
host from the originating bats to humans [79]. However, it still appeared in a Chinese area
harshly affected by climate change and by some of the highest air pollutions in the world,
showing from its onset a high virulence.

Long-term or chronic exposure is defined as continuous or repeated contact with a
toxic substance over a long period of time (months or years) [80,81], and it can be expressed
by annual averaged data [82]. Therefore, we expand upon our very first study of this kind,
which we released in early April 2020, looking at this phenomenon in three countries [83].
By controlling for population size and density, here, we investigate whether there is a
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correlation between long-term exposure to air pollution and SARS-CoV-2, causing respi-
ratory diseases in second-order level administrations (United States counties equivalent)
of eight countries: China, the United States (US), Italy, Iran, France, Spain, Germany, and
the United Kingdom (UK). Our hypotheses were as follows: (1) Is there a higher incidence
of COVID-19 infections in each country’s areas chronically afflicted by poorer air quality?
(2) Is there a higher COVID-19 mortality rate in these highly polluted areas?

It must be noted that from the time that these hypotheses and related results were
presented to the public with a preprint dated early June 2020 [83,84], several studies
with similar hypotheses have been published. These studies investigated different regions
and used a variety of approaches. They are cited in the Introduction and Discussion to
complement and support our hypotheses.

2. Materials and Methods

As briefly introduced above, the present work was performed from March until June
2020, when the first wave of the global pandemic was considered under control in China.
We added analyses for seven other countries particularly affected by the virus at that partic-
ular time of the pandemic. Italy was the second country to know a rapid contagion spread,
especially in its highly industrialised northern region. The third country investigated was
the conterminous US, which had the highest number of infections worldwide, yet was
still behind in the pandemic curve due to its later arrival as compared to Asia and Europe.
Among the countries where the virus spread earlier, we included Iran, which heavily
suffers from severe air pollution due to the ubiquitous use of gas methane, refineries,
and heavy traffic. France and Spain were selected because of the high COVID-19 figures
but more minor air pollution issues than Italy. Lastly, Germany and the UK represented
suitable candidates to feed into the analysis because of the relatively reduced lockdown
measures adopted [85].

We evaluated the potential correlation between air quality metrics and infections
at the finest granularity available. Owing to the differences in the virus advancement
stage in each country and the different methodologies employed to record COVID-19
infections and deaths as well as testing policies, the data for each country were analysed
separately. We evaluated the potential correlation between air quality metrics and infections
at the finest granularity available, controlling both COVID-19 and air pollution variables
for potential relationships with population densities as well as the presence of bivariate
virus/pollution spatial clusters. Then, the results and differences in the pattern between
countries are discussed.

2.1. Data Collection and Processing

The COVID-19 datasets were compiled at the second-order administrative subdivision
level (US counties equivalent), using the last available information at the time of the
analysis (beginning of June); however, a few geographical and time adaptations were
required for some contentious administrations that do not make public all the data. In
particular, for Iran, we were able to find data of infections only, and at the first-order
administrative level only. The Chinese dataset includes the 17 April update with a 50%
increase in deaths in Wuhan city [86]. Deaths in Italy were available only at the regional
level; therefore, two different datasets were compiled. The autonomous communities of
Catalonia, Galicia, and Pais Vasco in Spain provided figures at the first administration level
only [87], so we considered them at the same level as provinces. For France, COVID-19
deaths were available only at the department level. Finally, in the UK, the data for Scotland
were organised following the National Health Service (NHS) subdivisions rather than the
second-order administration scale.

Both infections and deaths due to COVID-19 were collected and normalised by pop-
ulation size per administration unit (100,000 residents), and mortality rates (number of
deaths/number of infections × 100) were calculated. Population densities for each unit’s
area were extracted at 1 square km resolution.
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Air quality information was retrieved from long-term satellite observations and aver-
aged at the administrative unit level for each country. The first observations were global
annual PM 2.5 grids from MODIS, MISR, and SeaWiFS Aerosol Optical Depth (AOD)
with GWR, v1 (1998–2016), and they were obtained from NASA’s Socioeconomic Data
and Applications Center [88,89]. From the same repository, we retrieved a second dataset
consisting of the Global 3-Year Running Mean Ground-Level NO2 Grids from GOME,
SCIAMACHY, and GOME-2, v1 (1996–2012) [90,91]. For both products, the annual grids
were first reduced to an average multi-year image and, afterwards, the mean of all grid
cells covering every administrative unit was calculated.

Additionally, ground measures for the US, China, and Italy were collected from
various sources (Table 1). To every administrative unit, we assigned the air quality value
from its related station. If more than one point fell within a given unit, the mean was
calculated. No ground measures for the other countries were included in our study.

Combining all these measures poses compilation challenges [92]. Satellite data hold
several advantages over ground station data, such as regular and continuous data acqui-
sition, quasi-global coverage, and spatially consistent measurement methodologies [93].
On the other hand, ground stations offer actual measures of single pollutants instead of
deriving them from spectral information; however, they require more or less arbitrary
estimations (such as interpolation) to fill spatial gaps.

Table 1. Detailed information on the datasets used for the viral and pollution analyses.

Measuring
Unit

Time
Period Format Source

(Access Date Same As Time Period)

COVID-19

China Infections,
Deaths

Until
23 May 2020

Tabular
Prefecture level

DXY—DX Doctor:
http://ncov.dxy.cn/ncovh5/view/en_pneumonia

Chinese government health commission

Italy Infections,
Deaths

Until
22 May 2020

Tabular
Province and
region levels

Github repository:
https://github.com/pcm-dpc/COVID-19

Dipartimento della Protezione Civile:
http://www.protezionecivile.it/

US Infections,
Deaths

Until
21 May 2020

Tabular
County level

The New York Times Github repository:
https://github.com/nytimes/covid-19-data

Iran Infections Until
22 Mar 2020

Tabular
Province level

IRNA–The Islamic Republic News Agency:
https://en.irna.ir/photo/83723991/Iran-s-

coronavirus-toll-update-March-22-2020

France Deaths Until
22 May 2020

Tabular
Department level

Open Data Platform of the French Government:
https://www.data.gouv.fr/fr/datasets/chiffres-cles-

concernant-lepidemie-de-covid19-en-france/#_

Spain Infections,
Deaths

Until
2 May 2020

Tabular
Province level

Data from Spanish Ministry of Health. Github:
https:

//github.com/Secuoyas-Experience/covid-19-es

Germany Infections,
Deaths

Until
25 May 2020

Tabular
District level

Robert Koch Institut:
https:

//www.rki.de/EN/Home/homepage_node.html

UK Infections,
Deaths

Until ca.
1 June 2020
(infections)

24 May 2020
(deaths)

Tabular
LTLA/NHS level

Several government sources:
https://coronavirus.data.gov.uk/,

https://phw.nhs.wales/, https://www.ons.gov.uk/,
https://www.nrscotland.gov.uk/,
https://www.health-ni.gov.uk/

http://ncov.dxy.cn/ncovh5/view/en_pneumonia
https://github.com/pcm-dpc/COVID-19
http://www.protezionecivile.it/
https://github.com/nytimes/covid-19-data
https://en.irna.ir/photo/83723991/Iran-s-coronavirus-toll-update-March-22-2020
https://en.irna.ir/photo/83723991/Iran-s-coronavirus-toll-update-March-22-2020
https://www.data.gouv.fr/fr/datasets/chiffres-cles-concernant-lepidemie-de-covid19-en-france/#_
https://www.data.gouv.fr/fr/datasets/chiffres-cles-concernant-lepidemie-de-covid19-en-france/#_
https://github.com/Secuoyas-Experience/covid-19-es
https://github.com/Secuoyas-Experience/covid-19-es
https://www.rki.de/EN/Home/homepage_node.html
https://www.rki.de/EN/Home/homepage_node.html
https://coronavirus.data.gov.uk/
https://phw.nhs.wales/
https://www.ons.gov.uk/
https://www.nrscotland.gov.uk/
https://www.health-ni.gov.uk/
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Table 1. Cont.

Measuring
Unit

Time
Period Format Source

(Access Date Same As Time Period)

Population

China

No. of
residents

Estimates 2017 Tabular
Prefecture level

https://www.citypopulation.de/
Data from Province Governments

Italy 2019 Tabular
Province level

Istat—Italian National Institute of Statistics
http://dati.istat.it/

US Estimates 2018 Tabular
County level

US Census Bureau (on ESRI ArcGIS):
https://www.arcgis.com/home/item.html?id=a00d6

b6149b34ed3b833e10fb72ef47b

Iran 2016 Tabular
Province level

Statistical Center of Iran:
https://www.amar.org.ir/

France Estimates 2020 Tabular
Department level

Insee—French National Institute of Statistics:
https://www.insee.fr/

Spain 2019 Tabular
Province level

INE—Spanish National Institute of Statistics:
https://www.ine.es/en/index.htm

Germany Estimates 2018 Tabular
District level

Database of the Federal Statistic Office:
https://www-genesis.destatis.de/

UK Estimates 2018 Tabular
LTLA/NHS level

U.K. Office of National Statistics
https://www.ons.gov.uk/

Air Quality (ground measures)

China
PM 2.5, PM 10,

O3, NO2, SO2, CO
AQI 2014 Tabular

GPS points

University of Harvard Dataverse:
https://dataverse.harvard.edu

Data from http://aqicn.org
Italy

PM 2.5, PM 10 µg/m3 Annual
2013-2016

Tabular
Location name

Ambient Air Quality Database, WHO, April 2018
https://www.who.int/airpollution/data/cities/en/

US
PM 2.5, PM 10,

O3, NO2, SO2, CO

µg/m3

ppm, ppb
2019 Tabular

GPS points
EPA—United States Environmental Protection Agency

https://www.epa.gov/outdoor-air-quality-data

Air Quality (satellite)

PM 2.5 µg/m3 Annual
1998-2016

Continuous grid
(0.01 arc deg.)

Global Annual PM 2.5 Grids from MODIS, MISR and
SeaWiFS Aerosol Optical Depth (AOD) with GWR, v1

https://doi.org/10.7927/H4ZK5DQS

NO2 ppb 3-year running means
(1996-2012)

Continuous grid
(0.1 arc deg.)

Global 3-Year Running Mean Ground-Level NO2 Grids
from GOME, SCIAMACHY and GOME-2, v1

(1996–2012)
https://doi.org/10.7927/H4JW8BTT

2.2. Data Collection and Processing

Exploratory analysis of the variables was conducted with a focus on evaluating the air
pollution distributions within each country. Due to the highly skewed distributions of both
population-adjusted dependent variables, namely COVID-19 infections/100,000 inhabi-
tants, COVID-19 deaths/100,000 inhabitants, and mortality rates (deaths/infections × 100),
we opted for a non-parametric correlation metric. Kendall tau correlation coefficients were
employed for all statistical tests.

Since both virus spread and air pollution dynamics present visible spatially dependent
dynamics, we identified potential clusters of adjacent administrations using Local Moran’s
Bivariate statistic [94,95]. This metric also shows which regions mostly explain the resulting
correlations by excluding non-significant regions.

These results are illustrated with thematic maps that better highlight the overlap
between air quality and COVID-19 distributions within the eight assessed countries.

3. Results
3.1. Correlation between Air Pollution Variables and COVID-19 Infections, Deaths, and Mortality Rates

Significant positive correlations between air quality variables and COVID-19 infec-
tions, deaths, and mortality rates were found in China, the US, Italy, Iran, France, and the
UK, but not entirely in Spain and Germany (Tables 2–4). The strongest correlations were
found in Italy, both for infections and deaths, while population size and densities did not
explain COVID-19 incidence. In China, population densities showed a similar positive

https://www.citypopulation.de/
https://www.arcgis.com/home/item.html?id=a00d6b6149b34ed3b833e10fb72ef47b
https://www.arcgis.com/home/item.html?id=a00d6b6149b34ed3b833e10fb72ef47b
https://www.amar.org.ir/
https://www.insee.fr/
https://www.ine.es/en/index.htm
https://www-genesis.destatis.de/
https://www.ons.gov.uk/
https://dataverse.harvard.edu
https://www.who.int/airpollution/data/cities/en/
https://www.epa.gov/outdoor-air-quality-data
https://doi.org/10.7927/H4ZK5DQS
https://doi.org/10.7927/H4JW8BTT
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correlation with the virus infections and deaths than air pollution, while in the US and UK,
the population density had a stronger correlation than air pollution variables. In the UK,
air pollution showed a fair degree of correlation with deaths and mortality but not with
the infections. Despite its small sample size (df = 29), Iran showed a significant correlation
with NO2 distribution and no incidence from population variables. The results for Spain
and Germany showed different patterns. Differences in air pollution could not explain the
spread of COVID-19 and its related deaths in Spain; however, the mortality rate varied with
NO2 concentration. Moreover, population size and density were negatively correlated with
the virus. In a distinct manner, population density weakly explained COVID-19 infections
in Germany, while the distribution of fine particulate matter was in some cases weakly
negatively correlated. Among the different pollutants analysed, O3 and SO2 measures
from ground stations in China and the United States did not show significant correlations
with COVID-19 or were negatively correlated, in contrast with the overall results from the
other pollutants.

3.2. COVID-19 Distribution, Clusters, and Air Quality Maps

Figure 1 reports comparison maps of COVID-19 distributions with the satellite-based
PM 2.5 concentrations for the eight analysed countries. These graphical representations also
allow for a rapid assessment of the air pollution pattern in each country (basic descriptive
statistics for each pollutant can be found in Appendix A, Table A1). While the PM 2.5 maps
are continuous surfaces drawn following the same classification scheme across countries,
the COVID-19 infections and deaths maps required ad hoc classification adaptations due to
different population profiles and infection dynamics. In China, due to the vast population
and an apparently effective policy for the containment of the virus, the number of infections
per 100,000 residents was relatively low and highly concentrated in the epicentre of the
outbreak (Wuhan and the Hubei province). A visual correlation between the two maps can
be perceived, especially between the eastern and western parts of the country, which are
also highlighted in the cluster map (Figure 2).
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Table 2. Correlation coefficients between COVID-19 infections per 100,000 inhabitants and air quality variables. Significant Kendall correlations with p-values < 0.05 are shown in bold;
blue and red shadings indicate positive and negative correlations, respectively.

China US Italy (Provinces) Iran Spain Germany UK

df
(N-2) Tau P

Value
df

(N-2) Tau P
Value

df
(N-2) Tau P

value
df

(N-2) Tau P
Value

df
(N-2) Tau P

Value
df

(N-2) Tau P
Value

df
(N-2) Tau P

Value
population 337 0.23 <0.001 3102 0.26 <0.001 105 0.00 0.951 29 −0.15 0.250 41 −0.27 0.010 399 0.03 0.317 362 0.18 <0.001
pop. dens 337 0.32 <0.001 3102 0.30 <0.001 105 0.12 0.078 29 0.14 0.279 41 −0.33 0.002 399 0.10 0.002 362 0.21 <0.001
PM 2.5 sat 337 0.28 <0.001 3102 0.25 <0.001 105 0.62 <0.001 29 0.24 0.061 41 −0.03 0.778 399 −0.07 0.046 362 −0.03 0.386

NO2 sat 337 0.24 <0.001 3101 0.22 <0.001 105 0.55 <0.001 29 0.40 <0.001 41 0.08 0.470 399 −0.03 0.375 360 0.06 0.086
PM 2.5 gr 302 0.15 <0.001 427 0.21 <0.001 88 0.34 <0.001
PM 10 gr 302 0.04 0.330 201 0.14 0.004 99 0.11 0.096

CO gr 302 −0.01 0.840 156 0.18 0.001
NO2 gr 302 0.12 0.002 246 0.41 <0.001
O3 gr 302 −0.03 0.477 749 0.03 0.238

SO2 gr 302 −0.01 0.843 314 −0.12 0.002

Table 3. Correlation coefficients between COVID-19 deaths per 100,000 inhabitants and air quality variables. Significant Kendall correlations with p-values < 0.05 are shown in bold; blue
and red shadings indicate positive and negative correlations, respectively.

China US Italy (Regions) France Spain Germany UK

df
(N-2) Tau P

Value
df

(N-2) Tau P
Value

df
(N-2) Tau P

Value
df

(N-2) Tau P
Value

df
(N-2) Tau P

Value
df

(N-2) Tau P
Value

df
(N-2) Tau P

Value
population 337 0.17 <0.001 3102 0.36 <0.001 19 0.01 0.976 94 0.17 0.015 41 −0.25 0.019 399 0.03 0.409 362 0.13 <0.001
pop. dens 337 0.16 <0.001 3102 0.36 <0.001 19 0.16 0.323 94 0.24 <0.001 41 −0.40 <0.001 399 0.05 0.153 362 0.29 <0.001
infect 100k 337 0.39 <0.001 3102 0.55 <0.001 19 0.83 <0.001 . . . 41 0.81 <0.001 399 0.65 <0.001 362 0.46 <0.001
PM 2.5 sat 337 0.18 <0.001 3102 0.24 <0.001 19 0.60 <0.001 94 0.56 <0.001 41 −0.09 0.385 399 −0.04 0.241 362 0.16 <0.001

NO2 sat 337 0.16 <0.001 3101 0.26 <0.001 19 0.51 <0.001 94 0.57 <0.001 41 0.08 0.470 399 −0.05 0.118 360 0.23 <0.001
PM 2.5 gr 302 0.18 <0.001 427 0.24 <0.001 17 0.22 0.183
PM 10 gr 302 0.12 0.006 201 0.18 <.001 19 0.00 1.00

CO gr 302 0.11 0.012 156 0.20 <.001
NO2 gr 302 0.12 0.005 246 0.42 <.001
O3 gr 302 −0.02 0.585 749 0.03 0.173

SO2 gr 302 0.04 0.409 314 −0.08 0.028
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Table 4. Correlation coefficients between COVID-19 mortality rates and air quality variables. Significant Kendall correlations with p-values < 0.05 are shown in bold; blue and red shadings
indicate positive and negative correlations, respectively.

China US Italy (Regions) Spain Germany UK

df
(N-2) Tau P

value
df

(N-2) Tau P
value

df
(N-2) Tau P

value
df

(N-2) Tau P
value

df
(N-2) Tau P

value
df

(N-2) Tau P
value

PM 2.5 sat 313 0.16 <0.001 2904 0.17 <0.001 19 0.45 0.004 41 −0.09 0.408 399 0.00 0.987 361 0.25 <0.001
NO2 sat 313 0.14 0.001 2904 0.20 <0.001 19 0.34 0.031 41 0.13 0.205 399 −0.07 0.047 360 0.20 <0.001

PM 2.5 gr 285 0.18 <0.001 418 0.18 <0.001 17 0.07 0.674
PM 10 gr 285 0.13 0.005 191 0.15 0.002 19 0.08 0.654

CO gr 285 0.12 0.007 156 0.14 0.009
NO2 gr 285 0.12 0.007 239 0.26 <0.001
O3 gr 285 −0.03 0.482 738 0.02 0.435

SO2 gr 285 0.06 0.178 309 0.00 0.925
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Figure 1. Map comparisons of satellite-derived PM 2.5 distributions and COVID-19 infections, deaths (per 100,000 inhab-
itants), or mortality rates (deaths/infections) in eight countries (see Table 1 for information about dates and data sources). 
Maps of different countries may not be compared directly due to different classification schemes and spatial scales. Some 
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Catalunia, and Pais Vasco in Spain). 

Figure 1. Map comparisons of satellite-derived PM 2.5 distributions and COVID-19 infections, deaths (per 100,000
inhabitants), or mortality rates (deaths/infections) in eight countries (see Table 1 for information about dates and data
sources). Maps of different countries may not be compared directly due to different classification schemes and spatial scales.
Some administrative units’ boundaries were adapted according to the COVID-19 data available (e.g., merged districts of
Galicia, Catalunia, and Pais Vasco in Spain).
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Figure 2. Maps of clustered, adjacent administrations resulting from Local Moran Bivariate analysis. Four types of signif-
icant spatial relationships exist. HH in filled red: High COVID-19 (infections, deaths, or mortality rates) and High PM 2.5; 
HL in empty red: High COVID-19 and Low PM 2.5; LH in empty blue: Low COVID-19 and High PM 2.5; LL in filled blue: 
Low COVID-19 and Low PM 2.5. While HH and LL filled coloured clusters support the COVID-19/air pollution correlation 
hypothesis, HL and LH empty colours represent spatial outliers in which air pollution does not explain the virus’ presence. 
Note that the COVID-19 variables used in each country are those of Figure 1. Data sources can be found in Table 1. 

Figure 2. Maps of clustered, adjacent administrations resulting from Local Moran Bivariate analysis. Four types of significant
spatial relationships exist. HH in filled red: High COVID-19 (infections, deaths, or mortality rates) and High PM 2.5; HL in
empty red: High COVID-19 and Low PM 2.5; LH in empty blue: Low COVID-19 and High PM 2.5; LL in filled blue: Low
COVID-19 and Low PM 2.5. While HH and LL filled coloured clusters support the COVID-19/air pollution correlation
hypothesis, HL and LH empty colours represent spatial outliers in which air pollution does not explain the virus’ presence.
Note that the COVID-19 variables used in each country are those of Figure 1. Data sources can be found in Table 1.
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The presence of outlier clusters (HL and LH) and large non-significant areas in most
of the countries partly explains the limited significance and strengths of correlations shown
in the tables at the general countries’ level. The highly developed and polluted areas in the
east of China represent outlier clusters due to the low COVID-19 infections compared to
the Hubei province. In the US, the virus noticeably appears to spread over several areas.
PM 2.5 differences are not large, but their distribution looks adequately coincident with the
deaths. Similar to China, a longitudinal pattern is visible with low-deaths/low-pollution
clusters (LL) concentrated in the mid-western part of the country while high-death and
high-pollution clusters (HH) are found in the east, along the Mississippi River and the
states surrounding New York. However, a high number of outliers of both types (HL and
LH) exist. The high correlation results found for Italy are clearly visible. The polluted areas
of the Po Valley are those heavily affected by COVID-19 infections. The clusters are clear,
and the number of outliers is minimal. While in Iran and France, the correlations are only
lightly perceivable, and the cluster maps show a north–south regionalisation pattern similar
to Italy. The maps of Spain confirm the absence or weak correlation shown in Tables 2–4,
apparently going against our general hypotheses. Nevertheless, PM 2.5 levels in Spain are
minimal, as well as their variation—as indicated by the low range and interquartile range
(Table A1, Appendix A). The UK map of PM 2.5 shows well the higher concentrations
around urban areas and the overall southeastern area where COVID-19 mortality is higher,
too. However, also, a few counties/NHS in the north of Scotland are particularly affected
by the virus infections, becoming outliers in the clusters map. Finally, COVID-19 mortality
in Germany is low, and no apparent distribution pattern can be detected, being quite well
spread. Similarly, PM 2.5 concentrations are fairly high all over the country, with peaks
in the eastern districts, where a few HH clusters and LH outliers are found. The high
number of non-significant clusters and both types of outliers confirm this tendency to a
homogenous distribution of COVID-19 and air pollution.

3.3. Previous Literature Account

Given the delay between the last of our preprints [84] and the present publication, we
include a list of 10 recent studies that support our correlational findings (Table 5). These
and other research works are discussed in the next section. It is worth noting that a study
by Ogen [96] found a positive correlation between NO2 levels and COVID-19 fatalities in
the administrative regions of Spain, Germany, Italy, and France when considered together
as a cluster. However, our results showed that within the second-order administrative
regions of Germany and Spain, the correlation were not always significant, and it was
sometimes negative. Except for our study and these two countries, we were not able to
find other works contradicting our initial hypotheses.

Table 5. A list of correlational studies between long-term exposure to air pollution and incidence of COVID-19 at a country-wide
or cluster of countries level. Studies including smaller geographical areas have not been listed as well as those considering
the short-term hypothesis (pollution particles acting as virus carriers). The pollutants are specified whether to having been
collected from ground (G) or satellite (S) stations.

Country Pollutants (G/S) Correlation Comment References

US PM 2.5 (G) Positive Additional cofactors studied [97,98]

Italy PM 2.5 (G), PM 10 (G),
NO2 (G), etc Positive Additional cofactors studied [76,99]

Spain, Germany, Italy, France NO2 (S) Positive Differences between countries
not considered [96]

Netherlands PM 2.5 (G) Positive Additional cofactors studied [100,101]

Japan PM 2.5 (G) Positive [102]

India PM 2.5 (G), NO2 (G), CO2
(G) Positive [103]

Canada PM 2.5 (G) Positive [104]
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4. Discussion and Conclusions

As a preprint [84], this study was the first to investigate the correlation between
COVID-19 and air pollution during the early stage of the pandemic. Specifically, we have
assessed long-term air pollution exposure for eight countries, which was measured by
satellite and ground sensors as a potential and highly likely risk factor for the incidence of
and mortality rates due to SARS-CoV-2. It provides some evidence that the new coronavirus
infections are most often found in highly polluted and densely populated areas. In Italy and
Iran, air pollution independent from population density explained the distribution pattern
of the virus. In addition, in these areas affected by a mixture of air pollutants, the virus
killed more frequently than elsewhere. In the questionable case that the figures provided
by these eight nations concerning the number of infections and deaths are inaccurate [105],
our analyses and conclusions would not need to be reframed. If that were the case, this
error would most likely be concentrated in just one or very few administrations, or it
would be evenly spread across administrations, not affecting the general significance of
the correlations.

In Chinese cities [106] and, more in detail, in the Hubei province, time analyses give
preliminary evidence of a correlation between high levels of NO2 and 12-day delayed virus
outbreaks [107] and other PM covariates [108,109]. With our paper, we therefore add the
long-term exposure effects for China as we did in greater detail before [46]. As shown in
the maps, China bears extremely high rates of air pollution, as concentrated in the east.
However, COVID-19 infections occurred mainly in the constrained area of Hubei. All
evidence suggests that the enforced lockdown was the major factor controlling the virus
spread. Nevertheless, it is peculiar that the onset of the pandemic still appeared in one of
the most polluted areas of the globe.

In the US, an increase of a mere 1 µg/m3 in PM 2.5 was recently found responsible
for an 8% higher mortality rate by COVID-19 than baseline from previous years. This is
a rate relatively higher than the other 11 demographic co-variables tested [97,98]. Ozone
and diesel particulate matter were recently confirmed to be a source of concern over
there [110]. With our study, we add PM 10, NO2, and CO measures from ground stations
to those analyses.

We found that in Italy, the correspondence between poor air quality and SARS-CoV-2
appearance as well as its induced mortality was the starkest. The area with the largest
number of infections and deaths in Italy is the Po Valley, which is also the foremost
place of polluted air in Europe [111]. This result was first hypothesised [112] and later
confirmed by another study [76] and a remarkable further one [99] that has controlled for
five demographic co-variables. The fact that population density does not play a role in
the incidence of COVID-19 in Italy and Iran is a result of our investigation that strongly
supports the common hypotheses of these other studies and questions the widespread
scepticism maintaining that air pollution usually overlaps with areas of high population
density, and that the contribution of each to the virus incidence cannot be discerned (tested
in Appendix B, Table A2). Other factors to be attributed to such a severe virus incidence
in Italy include its very large ageing population, which might have gotten exposed to air
pollutants for the longest time. In turn, such pollutants cause other comorbidities [77] and
COVID-19 vulnerabilities such as cardiocirculatory diseases.

Unfortunately, information on COVID-19 infections was available for Iran only at
the first administration level until 22 March 2020. Nonetheless, the results there are very
similar to the Italian ones, with the pollution gradient explaining most of the virus incidence.
France provides up-to-date information about deaths only. Despite this limitation, France
as well shows highly clustered COVID-19/pollution distributions, resulting in significant
positive correlations that confirm our hypotheses.

The absence of correlation found in Spain may be attributable to the high levels
of air quality throughout its national territory, which are within the green Air Quality
Index standard range, ensuing minimal differences among the provinces. Moreover, the
regions most affected by the virus seem to be those less densely populated, which is a
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peculiarity still not explained thoroughly in the literature that requires future investigation.
In Germany, also, a clear correlation could not be detected because, inversely, pollution is
widely spread across its districts. For these two countries, we therefore back up another
report [96] that analysed these two countries together with Italy and France at the first-
order administrative level. Higher levels of NO2 associated with COVID-19 mortality were
found in this super-region.

Finally, in the UK, where containment measures were implemented late compared to
other countries, deaths and mortality rates, but not infections alone, are correlated with air
pollution, suggesting that when affected by the disease, a weakened respiratory system
due to prolonged stress by air pollution increases the risk of mortality in those polluted
areas of the southeast.

Despite the significant and consistent correlations of these findings that we collected
over three time periods in March [83], April [84] and, as reported here, end of May, their
interpretation needs to be cautious. The virus spread in most countries is still ongoing [113]
and is being contained [47]. Causation should not be inferred by correlational data alone.
Air pollution is just one of the risk factors for increased COVID-19 incidence. It is partly
comforting that we find outliers or non-significances via clustering analysis. In fact, the
regions flagged as such and prevalent in most countries may become sites for the virus
due to other factors than air pollution. It is not necessarily because an area is polluted
that it will have a higher frequency of COVID-19. The other external factors involved
in SARS-CoV-2 infection include age, pathological comorbidities, access to health care,
socioeconomic status, multigenerational housing, travel in crowded transportation hubs,
attendance at super-spreading events, etc. In addition, other factors include policies for
prevention and containment as well as compliance to measures such as wearing face masks,
social distancing, contact tracing, lockdowns, etc.

There are confounding factors, such as how the virus infection was determined
in patients by different countries. However, the larger the geographical areas affected
by the pandemic, the lower these elements play a role. Finally, it should be noted that
by accounting for yearly averaged air quality indexes, we accounted for the long-term
exposure to these pollutants, therefore keeping on the conservative side. In fact, these
correlations would become even more robust when limiting the analysis to the more
polluted winter months, given how they invariably bear lower air quality.

We run these analyses considering eight countries in their second-order administra-
tions’ level. If controlling for several other predictors such as demographic variables is
something advisable to perform at a single-country level to cross-check for interdepen-
dence, including them at an international scale poses an apparent technical limitation [114].
National or federal health systems have different capacities and provide care in distinct
ways. In turn, this influences case detections, intensive care capacity, and mortality rates.
Cofactors such as the earliest location of the pathogen, population mobility, and patient
socioeconomic status or ethnicity may not be accounted reliably between such diverse
countries spanning from Asia to the western world, because they are interdependent and
only in part nested within countries or administrations, even when included as random
factors as in a comprehensive generalised mixed model. Yet, the epidemic, which has
turned into a pandemic, might have catered for this limitation; the wider its extent, the
more prominent a common factor such as air pollution has become, while other secondary
predictors will level out across places.

Left alone, ambient, outdoor air pollution, causing an estimated 4.2 million deaths
yearly worldwide [81], is a risk cofactor to be hypothesised in connection with a new
respiratory disease, without necessarily having to analyse some of the other cofactors,
especially in the temperate climate zones where new countries keep reporting similar
correlations between PM 2.5 and the virus: the Netherlands [100,101], controlling for some
other medical risk factors; Japan [102], finding a positive correlation in the elderly; and
also India, which holds a similar trend in relation to the long-term hypothesis [103] and in
relation to the short-term one, too [115,116]. Lastly, Canada [104], Peru [117], with other



Atmosphere 2021, 12, 795 15 of 22

Latin America countries plus the Caribbean [118], and Malaysia [119] were reported to
bear positive associations. To note that, in the most comprehensive analysis performed
during the first infection wave in 126 countries, CO2 and SO emissions correlated with
COVID-19 when analysed using the “Our World in Data” database [120].

Since there is now some first evidence that the cross of the virus from animals to
humans may have happened earlier than the end of 2019 [79] and further south than in
the Chinese city of Wuhan [121], we can speculate that air pollution could have allowed
the new epidemic to become recognised due to an influx of patients with weak respiratory
systems showing higher morbidity and mortality than influenza. The same seems to have
happened in Europe, as the virus, in February 2020, quickly moved from central Europe to
the most polluted region of the continent, in northern Italy [47,122].

Further research in the field of genetics will ascertain whether virulence has evolved
in the areas of those countries where a gradient of air pollution is present. The initial
location of the pathogen, long-distance travelling, and super-spreader events are deemed
to be the foremost factors governing the epidemics. Later on, other factors such as hospital
capacities, population confinement, and possibly also indoor air pollution may become
major predictors for severe infections to keep on manifesting. In relation to short-term
exposure to peaks of low air quality levels, the capacity of pollutants to act as viral vectors
should be investigated further [123,124]. In fact, particulate matter does act as a medium
for the aerial transport of SARS-CoV-2 [40,125,126]. Aggregates of particulate matter with
this virus have been collected in the worst affected northern Italian city of Bergamo [127].
If the viral load carried by the aggregates is enough to cause morbidity, pollution would
directly act as a vector, broadening the harm done by the human-to-human contagions.

To conclude, these findings are sufficiently significant to prompt researchers studying
the public health of industrialised countries to always consider air pollution as a con-
tributing risk factor for COVID-19 and for any other airborne viral epidemics [128]. To
overcome the limitations of our study, longitudinal screenings performed on patients from
retrospective cohorts may further point at air pollution as a cofactor [129]. These results
inform epidemiologists and policymakers on how to prevent future, more frequent and
lethal viral outbreaks by curbing air pollution and, ultimately, meeting climate goals [130].
Can the fossil fuel economy carry on unabated once we resume the lockdowns? Institu-
tions need to endorse these interventions and speed up reforms more seriously [131,132],
together with endorsing collateral and more comprehensive measures [133] playing a role
in epidemics and zoonoses [134,135], such as impeding biodiversity loss and land use
change [136–140], decreasing intensive livestock farming, and alleviating poverty [141,142].
This new coronavirus shall be an opportunity given to the governments to forcefully revive
sustainable development goals.
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Appendix A

Table A1. Descriptive statistics for the air pollution variables in the eight analysed countries.

Variable Unit Count Mean std min 25% 50% 75% Max Range iqr

China

PM25_sat ug/m3 347 30.31 15.80 2.08 19.11 29.09 40.01 70.98 68.90 20.89
NO2_sat ppb 347 1.96 1.96 0.06 0.54 1.26 3.06 13.75 13.69 2.52
PM25_gr AQI 308 110.78 27.79 38.20 92.63 111.55 128.51 186.96 148.76 35.88
PM10_gr AQI 308 63.61 22.98 19.96 46.26 60.90 75.67 170.27 150.31 29.40
CO_gr AQI 308 9.71 3.97 2.39 7.11 8.74 11.85 27.01 24.63 4.74
NO2_gr AQI 308 13.72 5.40 3.17 9.63 13.40 17.41 28.57 25.40 7.78
O3_gr AQI 308 25.83 5.87 14.22 21.70 25.17 28.98 50.54 36.31 7.28
SO2_gr AQI 308 13.24 7.96 1.14 7.88 10.97 16.46 40.58 39.44 8.58

US

PM25_sat ug/m3 3104 9.37 2.68 2.32 7.26 9.68 11.54 15.57 13.24 4.28
NO2_sat ppb 3103 1.59 1.25 0.17 0.73 1.20 2.13 14.97 14.80 1.40
PM25_gr ug/m3 429 7.22 2.10 0.00 5.88 7.37 8.66 15.73 15.73 2.78
PM10_gr ug/m3 203 16.09 6.36 4.60 12.41 15.43 18.62 40.64 36.04 6.21
CO_gr ppm 158 0.25 0.10 0.04 0.19 0.25 0.30 0.82 0.78 0.12
NO2_gr ppb 248 14.63 7.93 1.08 7.88 14.50 20.65 36.73 35.65 12.76
O3_gr ppm 751 0.05 0.00 0.03 0.04 0.05 0.05 0.06 0.03 0.00
SO2_gr ppb 316 2.61 5.56 -0.38 0.57 1.30 2.51 75.47 75.85 1.94

Italy
(provinces)

PM25_sat ug/m3 107 12.82 6.08 4.50 7.68 11.62 18.10 25.37 20.86 10.42
NO2_sat ppb 107 2.67 2.42 0.39 0.99 1.61 3.95 11.56 11.16 2.96
PM25_gr ug/m3 90 16.37 4.89 6.00 13.00 15.37 19.46 29.00 23.00 6.46
PM10_gr ug/m3 101 23.67 5.61 13.67 19.75 22.50 26.75 41.00 27.33 7.00

Italy
(regions)

PM25_sat ug/m3 21 11.29 4.73 4.90 7.73 10.48 13.84 20.59 15.69 6.11
NO2_sat ppb 21 1.93 1.68 0.48 0.83 1.35 2.25 7.08 6.59 1.42
PM25_gr ug/m3 19 15.19 3.50 9.50 13.00 14.67 16.05 22.96 13.46 3.05
PM10_gr ug/m3 21 22.15 4.40 15.60 20.40 21.29 22.92 34.67 19.07 2.52

Iran
PM25_sat ug/m3 31 10.97 3.07 5.89 8.74 10.47 13.74 16.43 10.54 5.00
NO2_sat ppb 31 0.47 0.47 0.10 0.22 0.31 0.42 2.24 2.14 0.21

France
PM25_sat ug/m3 96 10.23 2.42 6.22 8.13 9.90 11.79 16.49 10.27 3.66
NO2_sat ppb 96 2.37 1.75 0.55 1.20 1.80 3.02 8.79 8.24 1.82

Spain PM25_sat ug/m3 43 7.05 1.13 2.36 6.49 6.93 7.54 10.10 7.74 1.05
NO2_sat ppb 43 1.02 0.45 0.10 0.69 0.91 1.27 2.69 2.58 0.58

Germany PM25_sat ug/m3 401 13.95 1.53 8.91 13.10 13.86 14.93 18.47 9.56 1.83
NO2_sat ppb 401 4.77 2.04 1.48 3.48 4.19 5.24 11.86 10.38 1.76

UK
PM25_sat ug/m3 364 10.51 2.64 2.16 9.06 11.29 12.07 15.37 13.21 3.01
NO2_sat ppb 362 5.47 2.24 0.48 4.12 5.26 6.62 10.23 9.76 2.50

Appendix B

Table A2. Correlation coefficients between population density and air pollution variables in the eight analysed countries.
Significant correlations (p-value < 0.05) are shown in bold; blue and red colour highlights indicate positive and negative
correlations, respectively.

China US Italy (Provinces) Italy (Regions)

df
(N-2) Tau P

Value
df

(N-2) Tau P
Value

df
(N-2) Tau P

Value
df

(N-2) Tau P
Value

PM25_sat 345 0.58 <0.001 3102 0.38 <0.001 105 0.27 <0.001 19 0.30 0.065
NO2_sat 345 0.63 <0.001 3101 0.54 <0.001 105 0.36 <0.001 19 0.42 0.007
PM25_gr 306 0.34 <0.001 427 0.33 <0.001 88 0.31 <0.001 17 0.45 0.008
PM10_gr 306 0.21 <0.001 201 0.27 <0.001 99 0.38 <0.001 19 0.69 <0.001
CO_gr 306 0.09 0.022 156 0.40 <0.001
NO2_gr 306 0.37 <0.001 246 0.52 <0.001
O3_gr 306 0.13 <0.001 749 0.01 0.824
SO2_gr 306 0.15 <0.001 314 −0.09 0.016

Iran France Spain Germany UK

df
(N-2) Tau P

Value
df

(N-2) Tau P
Value

df
(N-2) Tau P

Value
df

(N-2) Tau P
Value

df
(N-2) Tau P

Value

PM25_sat 29 0.56 <0.001 94 0.34 <0.001 41 0.44 <0.001 399 0.14 <0.001 362 0.44 <0.001
NO2_sat 29 0.56 <0.001 94 0.44 <0.001 41 0.25 0.018 399 0.40 <0.001 360 0.39 <0.001



Atmosphere 2021, 12, 795 17 of 22

References
1. Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [CrossRef]
2. Perlman, S. Another decade, another coronavirus. N. Engl. J. Med. 2020, 382, 760–762. [CrossRef] [PubMed]
3. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.M.; et al. A novel coronavirus from

patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [CrossRef] [PubMed]
4. WHO. Pneumonia of Unknown Cause—China. Available online: https://www.who.int/csr/don/05-january$-$2020-pneumonia-

of-unkown-cause-china/en/ (accessed on 21 April 2020).
5. Wu, F.; Zhao, S.; Yu, B.; Chen, Y.-M.; Wang, W.; Song, Z.-G.; Hu, Y.; Tao, Z.-W.; Tian, J.-H.; Pei, Y.-Y.; et al. A new coronavirus

associated with human respiratory disease in China. Nature 2020, 579, 265–269. [CrossRef] [PubMed]
6. Mattiuzzi, C.; Lippi, G. Which lessons shall we learn from the 2019 novel coronavirus outbreak? Ann. Transl. Med. 2020, 8, 48.

[CrossRef]
7. McCloskey, B.; Heymann, D.L. SARS to novel coronavirus—Old lessons and new lessons. Epidemiol. Infect. 2020, 148, e22.

[CrossRef]
8. Nay, O. Can a virus undermine human rights? Lancet Public Health 2020, 5, e238–e239. [CrossRef]
9. Di, Q.; Wang, Y.; Zanobetti, A.; Wang, Y.; Koutrakis, P.; Choirat, C.; Dominici, F.; Schwartz, J.D. Air pollution and mortality in the

Medicare population. N. Engl. J. Med. 2017, 376, 2513–2522. [CrossRef]
10. Krewski, D. Evaluating the effects of ambient air pollution on life expectancy. N. Engl. J. Med. 2009, 360, 413–415. [CrossRef]
11. Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature

mortality on a global scale. Nature 2015, 525, 367–371. [CrossRef]
12. Tager, I. Chronic Exposure and Susceptibility to Oxidant Air Pollutants. In Lung Biology In Health Disease; Foster, W.M., Costa,

D.L., Eds.; Routledge: Milton Park, UK, 2005; Volume 204, p. 259.
13. Ebenstein, A.; Fan, M.; Greenstone, M.; He, G.; Zhou, M. New evidence on the impact of sustained exposure to air pollution on

life expectancy from China’s Huai River Policy. Proc. Natl. Acad. Sci. USA 2017, 114, 10384. [CrossRef]
14. Brauer, M.; Amann, M.; Burnett, R.T.; Cohen, A.; Dentener, F.; Ezzati, M.; Henderson, S.B.; Krzyzanowski, M.; Martin, R.V.;

Dingenen, R.V.; et al. Exposure Assessment for Estimation of the Global Burden of Disease Attributable to Outdoor Air Pollution.
Environ. Sci. Technol. 2012, 46, 652–660. [CrossRef]

15. Silva, D.R.; Viana, V.P.; Müller, A.M.; Livi, F.P.; Dalcin, P.D.T.R. Respiratory viral infections and effects of meteorological
parameters and air pollution in adults with respiratory symptoms admitted to the emergency room. Influenza Other Respir. Viruses
2014, 8, 42–52. [CrossRef]

16. Cui, Y.; Zhang, Z.-F.; Froines, J.; Zhao, J.; Wang, H.; Yu, S.-Z.; Detels, R. Air pollution and case fatality of SARS in the People’s
Republic of China: An ecologic study. Environ. Health 2003, 2, 15. [CrossRef] [PubMed]

17. Cipolla, M.; Sorgenti, M.; Gentile, C.; Bishara, M.M. Air Pollution and Lung Diseases. In Clinical Handbook of Air Pollution-Related
Diseases; Springer: New York, NY, USA, 2018; pp. 327–339.

18. Bayram, H.; Sapsford, R.J.; Abdelaziz, M.M.; Khair, O.A. Effect of ozone and nitrogen dioxide on the release of proinflammatory
mediators from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients in vitro. J. Allergy Clin.
Immunol. 2001, 107, 287–294. [CrossRef]

19. Johannson, K.A.; Vittinghoff, E.; Lee, K.; Balmes, J.R.; Ji, W.; Kaplan, G.G.; Kim, D.S.; Collard, H.R. Acute exacerbation of
idiopathic pulmonary fibrosis associated with air pollution exposure. Eur. Respir. J. 2014, 43, 1124–1131. [CrossRef]

20. Ko, F.W.; Tam, W.; Wong, T.W.; Chan, D.P.; Tung, A.H.; Lai, C.K.; Hui, D.S. Temporal relationship between air pollutants and
hospital admissions for chronic obstructive pulmonary disease in Hong Kong. Thorax 2007, 62, 780–785. [CrossRef] [PubMed]

21. Thillai, M.; Moller, D.R.; Meyer, K.C. Clinical Handbook of Interstitial Lung Disease; CRC Press: Boca Raton, FL, USA, 2017.
22. Zhang, Y.; Ding, Z.; Xiang, Q.; Wang, W.; Huang, L.; Mao, F. Short-term effects of ambient PM1 and PM2.5 air pollution on

hospital admission for respiratory diseases: Case-crossover evidence from Shenzhen, China. Int. J. Hyg. Environ. Health 2020, 224,
113418. [CrossRef] [PubMed]

23. Zhang, Y.; Wang, S.G.; Xia, Y.; Shang, K.Z.; Cheng, Y.F.; Xu, L.; Ning, G.C.; Zhao, W.J.; LI, N.R. Association between ambient air
pollution and hospital emergency admissions for respiratory and cardiovascular diseases in Beijing: A time series study. J. Biomed.
Environ. Sci. 2015, 28, 352–363.

24. Shinya, K.; Ebina, M.; Yamada, S.; Ono, M.; Kasai, N.; Kawaoka, Y. Influenza virus receptors in the human airway. Nature 2006,
440, 435–436. [CrossRef] [PubMed]

25. Milne, S.; Yang, C.X.; Timens, W.; Bossé, Y.; Sin, D.D. SARS-CoV−2 receptor ACE2 gene expression and RAAS inhibitors. Lancet
Respir. Med. 2020, 8, e50–e51. [CrossRef]

26. Harrod, K.S.; Jaramillo, R.J.; Rosenberger, C.L.; Wang, S.Z.; Berger, J.A.; McDonald, J.D.; Reed, M.D. Increased susceptibility to
RSV infection by exposure to inhaled diesel engine emissions. Am. J. Respir. Cell Mol. Biol. 2003, 28, 451–463. [CrossRef]

27. Lambert, A.L.; Mangum, J.B.; DeLorme, M.P.; Everitt, J.I. Ultrafine carbon black particles enhance respiratory syncytial virus-
induced airway reactivity, pulmonary inflammation, and chemokine expression. Toxicol. Sci. 2003, 72, 339–346. [CrossRef]

28. Chen, T.-M.; Kuschner, W.G.; Gokhale, J.; Shofer, S. Outdoor Air Pollution: Nitrogen Dioxide, Sulfur Dioxide, and Carbon
Monoxide Health Effects. Am. J. Med Sci. 2007, 333, 249–256. [CrossRef] [PubMed]

29. Burge, H.A. Biological Airborne Pollutants. In Lung Biology In Health Disease, Foster, W.M., Costa, D.L., Eds.; Taylor & Francis
Group: Boca Raton, FL, USA, 2005; Volume 204, p. 329.

http://doi.org/10.1038/s41579-018-0118-9
http://doi.org/10.1056/NEJMe2001126
http://www.ncbi.nlm.nih.gov/pubmed/31978944
http://doi.org/10.1056/NEJMoa2001017
http://www.ncbi.nlm.nih.gov/pubmed/31978945
https://www.who.int/csr/don/05-january$-$2020-pneumonia-of-unkown-cause-china/en/
https://www.who.int/csr/don/05-january$-$2020-pneumonia-of-unkown-cause-china/en/
http://doi.org/10.1038/s41586-020-2008-3
http://www.ncbi.nlm.nih.gov/pubmed/32015508
http://doi.org/10.21037/atm.2020.02.06
http://doi.org/10.1017/S0950268820000254
http://doi.org/10.1016/S2468-2667(20)30092-X
http://doi.org/10.1056/NEJMoa1702747
http://doi.org/10.1056/NEJMe0809178
http://doi.org/10.1038/nature15371
http://doi.org/10.1073/pnas.1616784114
http://doi.org/10.1021/es2025752
http://doi.org/10.1111/irv.12158
http://doi.org/10.1186/1476-069X-2-15
http://www.ncbi.nlm.nih.gov/pubmed/14629774
http://doi.org/10.1067/mai.2001.111141
http://doi.org/10.1183/09031936.00122213
http://doi.org/10.1136/thx.2006.076166
http://www.ncbi.nlm.nih.gov/pubmed/17311838
http://doi.org/10.1016/j.ijheh.2019.11.001
http://www.ncbi.nlm.nih.gov/pubmed/31753527
http://doi.org/10.1038/440435a
http://www.ncbi.nlm.nih.gov/pubmed/16554799
http://doi.org/10.1016/S2213-2600(20)30224-1
http://doi.org/10.1165/rcmb.2002-0100OC
http://doi.org/10.1093/toxsci/kfg032
http://doi.org/10.1097/MAJ.0b013e31803b900f
http://www.ncbi.nlm.nih.gov/pubmed/17435420


Atmosphere 2021, 12, 795 18 of 22

30. Wong, G.; Ko, F.; Lau, T.; Li, S.; Hui, D.; Pang, S.; Leung, R.; Fok, T.; Lai, C. Temporal relationship between air pollution and
hospital admissions for asthmatic children in Hong Kong. Clin. Exp. Allergy 2001, 31, 565–569. [CrossRef] [PubMed]

31. Smets, W.; Moretti, S.; Denys, S.; Lebeer, S. Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmos. Environ.
2016, 139, 214–221. [CrossRef]

32. Dong, L.; Qi, J.; Shao, C.; Zhong, X.; Gao, D.; Cao, W.; Gao, J.; Bai, R.; Long, G.; Chu, C. Concentration and size distribution of
total airborne microbes in hazy and foggy weather. Sci. Total Environ. 2016, 541, 1011–1018. [CrossRef] [PubMed]

33. Wei, K.; Zou, Z.; Zheng, Y.; Li, J.; Shen, F.; Wu, C.-Y.; Wu, Y.; Hu, M.; Yao, M. Ambient bioaerosol particle dynamics observed
during haze and sunny days in Beijing. Sci. Total Environ. 2016, 550, 751–759. [CrossRef]

34. Li, Y.; Fu, H.; Wang, W.; Liu, J.; Meng, Q.; Wang, W. Characteristics of bacterial and fungal aerosols during the autumn haze days
in Xi’an, China. Atmos. Environ. 2015, 122, 439–447. [CrossRef]

35. Cao, C.; Jiang, W.; Wang, B.; Fang, J.; Lang, J.; Tian, G.; Jiang, J.; Zhu, T.F. Inhalable microorganisms in Beijing’s PM2.5 and PM10
pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507. [CrossRef]

36. Ye, Q.; Fu, J.-F.; Mao, J.-H.; Shang, S.-Q. Haze is a risk factor contributing to the rapid spread of respiratory syncytial virus in
children. Environ. Sci. Pollut. Res. 2016, 23, 20178–20185. [CrossRef]

37. Chen, P.-S.; Tsai, F.T.; Lin, C.K.; Yang, C.-Y.; Chan, C.-C.; Young, C.-Y.; Lee, C.-H. Ambient influenza and avian influenza virus
during dust storm days and background days. Environ. Health Perspect. 2010, 118, 1211–1216. [CrossRef]

38. Chen, G.; Zhang, W.; Li, S.; Williams, G.; Liu, C.; Morgan, G.G.; Jaakkola, J.J.; Guo, Y. Is short-term exposure to ambient fine
particles associated with measles incidence in China? A multi-city study. Environ. Res. 2017, 156, 306–311. [CrossRef]

39. Peng, L.; Zhao, X.; Tao, Y.; Mi, S.; Huang, J.; Zhang, Q. The effects of air pollution and meteorological factors on measles cases in
Lanzhou, China. Environ. Sci. Pollut. Res. 2020, 27, 13524–13533. [CrossRef]

40. Contini, D.; Costabile, F. Does Air Pollution Influence COVID−19 Outbreaks? Atmosphere 2020, 11, 377. [CrossRef]
41. Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Pallavicini, A.; Ruscio, M.; Piscitelli, P.; Colao, A.; Miani, A. Searching for

SARS-COV−2 on Particulate Matter: A Possible Early Indicator of COVID−19 Epidemic Recurrence. Int. J. Environ. Res. Public
Health 2020, 17, 2986. [CrossRef] [PubMed]

42. Wu, J.T.; Leung, K.; Bushman, M.; Kishore, N.; Niehus, R.; de Salazar, P.M.; Cowling, B.J.; Lipsitch, M.; Leung, G.M. Estimating
clinical severity of COVID−19 from the transmission dynamics in Wuhan, China. Nat. Med. 2020, 26, 506–510. [CrossRef]
[PubMed]

43. Kraemer, M.U.G.; Yang, C.-H.; Gutierrez, B.; Wu, C.-H.; Klein, B.; Pigott, D.M.; du Plessis, L.; Faria, N.R.; Li, R.; Hanage, W.P.; et al.
The effect of human mobility and control measures on the COVID−19 epidemic in China. Science 2020, 368, 493–497. [CrossRef]
[PubMed]

44. Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.T.; Mellan, T.A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J.W.; et al.
Estimating the effects of non-pharmaceutical interventions on COVID−19 in Europe. Nature 2020, 584, 257–261. [CrossRef]

45. Guan, W.-J.; Zheng, X.-Y.; Chung, K.F.; Zhong, N.-S. Impact of air pollution on the burden of chronic respiratory diseases in
China: Time for urgent action. Lancet 2016, 388, 1939–1951. [CrossRef]

46. Pansini, R.; Fornacca, D. COVID−19 Higher Mortality in Chinese Regions With Chronic Exposure to Lower Air Quality. Front.
Public Health 2021, 8, 597753. [CrossRef] [PubMed]

47. Cereda, D.; Tirani, M.; Rovida, F.; Demicheli, V.; Ajelli, M.; Poletti, P.; Trentini, F.; Guzzetta, G.; Marziano, V.; Barone, A.; et al. The
early phase of the COVID−19 outbreak in Lombardy, Italy. arXiv E Prints 2020, 2003, 09320.

48. Apolone, G.; Montomoli, E.; Manenti, A.; Boeri, M.; Sabia, F.; Hyseni, I.; Mazzini, L.; Martinuzzi, D.; Cantone, L.; Milanese, G.; et al.
Unexpected detection of SARS-CoV−2 antibodies in the prepandemic period in Italy. Tumori J. 2020. [CrossRef]

49. Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. Temperature, Humidity, and
Latitude Analysis to Estimate Potential Spread and Seasonality of Coronavirus Disease 2019 (COVID−19). JAMA Netw Open
2020, 3, e2011834. [CrossRef]

50. Lipsitch, M. Seasonality of SARS-CoV−2: Will COVID−19 Go Away on Its Own in Warmer Weather? Available online: https:
//ccdd.hsph.harvard.edu/will-covid$-$19-go-away-on-its-own-in-warmer-weather/ (accessed on 23 March 2020).

51. Ficetola, G.F.; Rubolini, D. Containment measures limit environmental effects on COVID−19 early outbreak dynamics. Sci. Total
Environ. 2021, 761, 144432. [CrossRef]

52. Luo, W.; Majumder, M.S.; Liu, D.; Poirier, C.; Mandl, K.D.; Lipsitch, M.; Santillana, M. The role of absolute humidity on
transmission rates of the COVID−19 outbreak. medRxiv 2020. [CrossRef]

53. O’Reilly, K.M.; Auzenbergs, M.; Jafari, Y.; Liu, Y.; Flasche, S.; Lowe, R. Effective transmission across the globe: The role of climate
in COVID−19 mitigation strategies. Lancet Planet. Health 2020, 4, e172. [CrossRef]

54. Srivastava, A. COVID−19 and air pollution and meteorology-an intricate relationship: A review. Chemosphere 2021, 263, 128297.
[CrossRef]

55. Stier, A.J.; Berman, M.G.; Bettencourt, L.M.A. COVID−19 attack rate increases with city size. arXiv 2020, 2003, 10376.
56. Jung, S.-M.; Akhmetzhanov, A.R.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, T.; Kinoshita, R.; Nishiura, H.

Real-time estimation of the risk of death from novel coronavirus (COVID−19) infection: Inference using exported cases. J. Clin.
Med. 2020, 9, 523. [CrossRef]

57. Findlater, A.; Bogoch, I.I. Human Mobility and the Global Spread of Infectious Diseases: A Focus on Air Travel. Trends Parasitol.
2018, 34, 772–783. [CrossRef] [PubMed]

http://doi.org/10.1046/j.1365-2222.2001.01063.x
http://www.ncbi.nlm.nih.gov/pubmed/11359423
http://doi.org/10.1016/j.atmosenv.2016.05.038
http://doi.org/10.1016/j.scitotenv.2015.10.001
http://www.ncbi.nlm.nih.gov/pubmed/26473703
http://doi.org/10.1016/j.scitotenv.2016.01.137
http://doi.org/10.1016/j.atmosenv.2015.09.070
http://doi.org/10.1021/es4048472
http://doi.org/10.1007/s11356-016-7228-6
http://doi.org/10.1289/ehp.0901782
http://doi.org/10.1016/j.envres.2017.03.046
http://doi.org/10.1007/s11356-020-07903-4
http://doi.org/10.3390/atmos11040377
http://doi.org/10.3390/ijerph17092986
http://www.ncbi.nlm.nih.gov/pubmed/32344853
http://doi.org/10.1038/s41591-020-0822-7
http://www.ncbi.nlm.nih.gov/pubmed/32284616
http://doi.org/10.1126/science.abb4218
http://www.ncbi.nlm.nih.gov/pubmed/32213647
http://doi.org/10.1038/s41586-020-2405-7
http://doi.org/10.1016/S0140-6736(16)31597-5
http://doi.org/10.3389/fpubh.2020.597753
http://www.ncbi.nlm.nih.gov/pubmed/33585383
http://doi.org/10.1177/0300891620974755
http://doi.org/10.1001/jamanetworkopen.2020.11834
https://ccdd.hsph.harvard.edu/will-covid$-$19-go-away-on-its-own-in-warmer-weather/
https://ccdd.hsph.harvard.edu/will-covid$-$19-go-away-on-its-own-in-warmer-weather/
http://doi.org/10.1016/j.scitotenv.2020.144432
http://doi.org/10.1101/2020.02.12.20022467
http://doi.org/10.1016/S2542-5196(20)30106-6
http://doi.org/10.1016/j.chemosphere.2020.128297
http://doi.org/10.3390/jcm9020523
http://doi.org/10.1016/j.pt.2018.07.004
http://www.ncbi.nlm.nih.gov/pubmed/30049602


Atmosphere 2021, 12, 795 19 of 22

58. Hoehl, S.; Rabenau, H.; Berger, A.; Kortenbusch, M.; Cinatl, J.; Bojkova, D.; Behrens, P.; Böddinghaus, B.; Götsch, U.;
Naujoks, F.; et al. Evidence of SARS-CoV−2 Infection in Returning Travelers from Wuhan, China. N. Engl. J. Med. 2020,
382, 1278–1280. [CrossRef] [PubMed]

59. Ng, O.-T.; Marimuthu, K.; Chia, P.-Y.; Koh, V.; Chiew, C.J.; De Wang, L.; Young, B.E.; Chan, M.; Vasoo, S.; Ling, L.-M.; et al.
SARS-CoV−2 Infection among Travelers Returning from Wuhan, China. N. Engl. J. Med. 2020, 382, 1476–1478. [CrossRef]

60. Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.;
Fu, H.; et al. Estimates of the severity of COVID−19 disease. medRxiv 2020, 20, 669–677. [CrossRef]

61. Wells, C.R.; Sah, P.; Moghadas, S.M.; Pandey, A.; Shoukat, A.; Wang, Y.; Wang, Z.; Meyers, L.A.; Singer, B.H.; Galvani, A.P. Impact
of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. Proc. Natl. Acad.
Sci. 2020, 117, 7504. [CrossRef]

62. Read, J.M.; Bridgen, J.R.E.; Cummings, D.A.T.; Ho, A.; Jewell, C.P. Novel coronavirus 2019-nCoV: Early estimation of epidemio-
logical parameters and epidemic predictions. medRxiv 2020. [CrossRef]

63. Menkir, T.F.; Chin, T.; Hay, J.A.; Surface, E.D.; De Salazar, P.M.; Buckee, C.O.; Watts, A.; Khan, K.; Sherbo, R.; Yan, A.W.C.; et al.
Estimating internationally imported cases during the early COVID−19 pandemic. Nat. Commun. 2021, 12, 311. [CrossRef]

64. Soriano-Paños, D.; Arias-Castro, J.H.; Reyna-Lara, A.; Martínez, H.J.; Meloni, S.; Gómez-Gardeñes, J. Vector-borne epidemics
driven by human mobility. Phys. Rev. Res. 2020, 2, 013312. [CrossRef]

65. Arenas, A.; Cota, W.; Gómez-Gardeñes, J.; Gómez, S.; Granell, C.; Matamalas, J.T.; Soriano-Paños, D.; Steinegger, B. Modeling the
Spatiotemporal Epidemic Spreading of COVID−19 and the Impact of Mobility and Social Distancing Interventions. Phys. Rev. X
2020, 10, 041055. [CrossRef]

66. Bogoch, I.I.; Watts, A.; Thomas-Bachli, A.; Huber, C.; Kraemer, M.U.G.; Khan, K. Potential for global spread of a novel coronavirus
from China. J. Travel Med. 2020, 27. [CrossRef]

67. De Salazar, P.M.; Niehus, R.; Taylor, A.; Buckee, C.O.; Lipsitch, M. Using predicted imports of 2019-nCoV cases to determine
locations that may not be identifying all imported cases. medRxiv 2020. [CrossRef]

68. Lloyd-Smith, J.O.; Schreiber, S.J.; Kopp, P.E.; Getz, W.M. Superspreading and the effect of individual variation on disease
emergence. Nature 2005, 438, 355–359. [CrossRef]

69. Hu, K.; Zhao, Y.; Wang, M.; Zeng, Q.; Wang, X.; Wang, M.; Zheng, Z.; Li, X.; Zhang, Y.; Wang, T.; et al. Identification of a
super-spreading chain of transmission associated with COVID−19. medRxiv 2020. [CrossRef]

70. Xia, Y.; Jin, R.; Zhao, J.; Li, W.; Shen, H. Risk of COVID−19 for cancer patients. Lancet Oncol. 2020, 21, e181. [CrossRef]
71. Olds, J.L.; Kabbani, N. Is nicotine exposure linked to cardiopulmonary vulnerability to COVID−19 in the general population?

FEBS J. 2020, 287, 3651–3655. [CrossRef] [PubMed]
72. WHO. Smoking and COVID−19. Available online: https://www.who.int/publications/i/item/smoking-and-covid$-$19

(accessed on 4 June 2020).
73. Comunian, S.; Dongo, D.; Milani, C.; Palestini, P. Air Pollution and Covid−19: The Role of Particulate Matter in the Spread and

Increase of Covid−19’s Morbidity and Mortality. Int. J. Environ. Res. Public Health 2020, 17, 4487. [CrossRef] [PubMed]
74. Copat, C.; Cristaldi, A.; Fiore, M.; Grasso, A.; Zuccarello, P.; Signorelli, S.S.; Conti, G.O.; Ferrante, M. The role of air pollution (PM

and NO2) in COVID−19 spread and lethality: A systematic review. Environ. Res. 2020, 191, 110129. [CrossRef]
75. Lanchipa-Ale, T.; Moreno-Salazar, K.; Luque-Zúñiga, B. COVID−19 perspective on air pollution. Rev. Soc. Científica Parag. 2020,

25, 155–182. [CrossRef]
76. Fattorini, D.; Regoli, F. Role of the chronic air pollution levels in the Covid−19 outbreak risk in Italy. Environ. Pollut. 2020, 264,

114732. [CrossRef]
77. Wu, X.; Braun, D.; Schwartz, J.; Kioumourtzoglou, M.A.; Dominici, F. Evaluating the impact of long-term exposure to fine

particulate matter on mortality among the elderly. Sci. Adv. 2020. [CrossRef]
78. Travaglio, M.; Popovic, R.; Yu, Y.; Leal, N.; Martins, L.M. Links between air pollution and COVID−19 in England. medRxiv 2020.

[CrossRef]
79. Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV−2. Nat. Med. 2020, 26,

450–452. [CrossRef] [PubMed]
80. Guascito, M.R.; Pietrogrande, M.C.; Decesari, S.; Contini, D. Oxidative Potential of Atmospheric Aerosols. Atmosphere 2021, 12,

531. [CrossRef]
81. WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; World Health Organization: Geneva,

Switzerland, 2018; Available online: http://www.who.int/phe/publications/air-pollution-global-assessment/en/ (accessed on
10 April 2020).

82. Kyle, A.D.; Woodruff, T.J.; Buffler, P.A.; Davis, D.L. Use of an Index to Reflect the Aggregate Burden of Long-Term Exposure to
Criteria Air Pollutants in the United States. Environ. Health Perspect. 2002, 110, 95–102. [CrossRef] [PubMed]

83. Pansini, R.; Fornacca, D. Initial evidence of higher morbidity and mortality due to SARS-CoV−2 in regions with lower air quality.
medRxiv 2020. [CrossRef]

84. Pansini, R.; Fornacca, D. Higher virulence of COVID−19 in the air-polluted regions of eight severely affected countries. medRxiv
2020. [CrossRef]

85. Cohen, J.; Kupferschmidt, K. Countries test tactics in ‘war’ against COVID−19. Science 2020, 367, 1287. [CrossRef]

http://doi.org/10.1056/NEJMc2001899
http://www.ncbi.nlm.nih.gov/pubmed/32069388
http://doi.org/10.1056/NEJMc2003100
http://doi.org/10.1101/2020.03.09.20033357
http://doi.org/10.1073/pnas.2002616117
http://doi.org/10.1101/2020.01.23.20018549
http://doi.org/10.1038/s41467-020-20219-8
http://doi.org/10.1103/PhysRevResearch.2.013312
http://doi.org/10.1103/PhysRevX.10.041055
http://doi.org/10.1093/jtm/taaa011
http://doi.org/10.1101/2020.02.04.20020495
http://doi.org/10.1038/nature04153
http://doi.org/10.1101/2020.03.19.20026245
http://doi.org/10.1016/S1470-2045(20)30150-9
http://doi.org/10.1111/febs.15303
http://www.ncbi.nlm.nih.gov/pubmed/32189428
https://www.who.int/publications/i/item/smoking-and-covid$-$19
http://doi.org/10.3390/ijerph17124487
http://www.ncbi.nlm.nih.gov/pubmed/32580440
http://doi.org/10.1016/j.envres.2020.110129
http://doi.org/10.32480/rscp.2020.25.2.155
http://doi.org/10.1016/j.envpol.2020.114732
http://doi.org/10.1126/sciadv.aba5692
http://doi.org/10.1016/j.envpol.2020.115859
http://doi.org/10.1038/s41591-020-0820-9
http://www.ncbi.nlm.nih.gov/pubmed/32284615
http://doi.org/10.3390/atmos12050531
http://www.who.int/phe/publications/air-pollution-global-assessment/en/
http://doi.org/10.1289/ehp.02110s195
http://www.ncbi.nlm.nih.gov/pubmed/11834467
http://doi.org/10.1101/2020.04.04.20053595
http://doi.org/10.1101/2020.04.30.20086496
http://doi.org/10.1126/science.367.6484.1287


Atmosphere 2021, 12, 795 20 of 22

86. Xinhua. Full Text: Q&A on the Revisions to the Numbers of Confirmed Cases and Fatalities of COVID−19 in Wuhan. Available
online: http://www.xinhuanet.com/english/2020$-$04/17/c_138984721.htm (accessed on 17 April 2020).

87. Legido-Quigley, H.; Mateos-García, J.T.; Campos, V.R.; Gea-Sánchez, M.; Muntaner, C.; McKee, M. The resilience of the Spanish
health system against the COVID−19 pandemic. Lancet Public Health 2020, 5, e251–e252. [CrossRef]

88. Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global
Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998−2016. Available online:
https://doi.org/10.7927/H4ZK5DQS (accessed on 10 April 2020).

89. van Donkelaar, A.; Martin, R.V.; Brauer, M.; Hsu, N.C.; Kahn, R.A.; Levy, R.C.; Lyapustin, A.; Sayer, A.M.; Winker, D.M. Global
Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environ.
Sci. Technol. 2016, 50, 3762. [CrossRef]

90. Geddes, J.A.; Martin, R.V.; Boys, B.L.; van Donkelaar, A. Global 3-Year Running Mean Ground-Level Nitrogen Dioxide (NO2) Grids from
GOME, SCIAMACHY and GOME−2; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2017.

91. Geddes, J.A.; Martin, R.V.; Boys, B.L.; van Donkelaar, A. Long-term Trends Worldwide in Ambient NO2 Concentrations Inferred
from Satellite Observations for Exposure Assessment. Environ. Health Perspect. 2016, 124, 281–289. [CrossRef]

92. Zhou, C.; Su, F.; Pei, T.; Zhang, A.; Du, Y.; Luo, B.; Cao, Z.; Wang, J.; Yuan, W.; Zhu, Y.; et al. COVID−19: Challenges to GIS with
Big Data. Geogr. Sustain. 2020, 1, 77–87. [CrossRef]

93. Donkelaar, A.v.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of Satellite Observations for Long-Term Exposure Assessment of Global
Concentrations of Fine Particulate Matter. Environ. Health Perspect. 2014, 123, 135–143. [CrossRef]

94. Wartenberg, D. Multivariate Spatial Correlation: A Method for Exploratory Geographical Analysis. Geographical Analysis 2010, 17,
263–283. [CrossRef]

95. Anselin, L.; Syabri, I.; Smirnov, O. Visualizing multivariate spatial correlation with dynamically linked windows. In Proceedings
of the CSISS Workshop on New Tools for Spatial Data Analysis, Santa Barbara, CA, USA, 20–23 March 2002.

96. Ogen, Y. Response to the commentary by Alexandra A. Chudnovsky on ‘Assessing nitrogen dioxide (NO2) levels as a contributing
factor to coronavirus (COVID−19) fatality’. Sci. Total Environ. 2020, 139239. [CrossRef] [PubMed]

97. Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID−19 mortality in the United States: Strengths
and limitations of an ecological regression analysis. Sci. Adv. 2020, 6, eabd4049. [CrossRef]

98. Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID−19 mortality in the United
States. medRxiv 2020. [CrossRef]

99. Pluchino, A.; Biondo, A.E.; Giuffrida, N.; Inturri, G.; Latora, V.; Le Moli, R.; Rapisarda, A.; Russo, G.; Zappalà, C. A novel
methodology for epidemic risk assessment of COVID−19 outbreak. Sci. Rep. 2021, 11, 5304. [CrossRef]

100. Andree, B.P.J. Incidence of COVID−19 and Connections with Air Pollution Exposure: Evidence from the Netherlands. Available
online: http://documents.worldbank.org/curated/en/462481587756439003/Incidence-of-COVID$-$19-and-Connections-with-
Air-Pollution-Exposure-Evidence-from-the-Netherlands (accessed on 5 May 2020).

101. Cole, M.A.; Ozgen, C.; Strobl, E. Air Pollution Exposure and Covid−19 in Dutch Municipalities. Environ. Resour. Econ. 2020, 76,
581–610. [CrossRef]

102. Nawahda, A. The Rises of Coronavirus Disease (COVID−19) Death Rate in Japan with High PM2.5. Available online:
https://www.researchgate.net/publication/341333433_The_Rises_of_Coronavirus_Disease_COVID$-$19_death_rate_in_
Japan_with_high_PM25 (accessed on 20 June 2020).

103. Mele, M.; Magazzino, C. Pollution, economic growth, and COVID−19 deaths in India: A machine learning evidence. Environ. Sci.
Pollut. Res. 2021, 28, 2669–2677. [CrossRef] [PubMed]

104. Stieb, D.M.; Evans, G.J.; To, T.M.; Brook, J.R.; Burnett, R.T. An ecological analysis of long-term exposure to PM2.5 and incidence
of COVID−19 in Canadian health regions. Environ. Res. 2020, 191, 110052. [CrossRef]

105. Qiao, L.; Lau, S.-F.; Mudie, L. Estimates show Wuhan death toll far higher than official figure. Available online: https://www.rfa.
org/english/news/china/wuhan-deaths$-$03272020182846.html (accessed on 30 March 2020).

106. Zhu, Y.; Xie, J.; Huang, F.; Cao, L. Association between short-term exposure to air pollution and COVID−19 infection: Evidence
from China. Sci. Total Environ. 2020, 727, 138704. [CrossRef]

107. Yao, Y.; Pan, J.; Liu, Z.; Meng, X.; Wang, W.; Kan, H.; Wang, W. Ambient nitrogen dioxide pollution and spread ability of
COVID−19 in Chinese cities. Ecotoxicol. Environ. Saf. 2020. [CrossRef]

108. Wang, B.; Liu, J.; Fu, S.; Xu, X.; Li, L.; Ma, Y.; Zhou, J.; Yao, J.; Liu, X.; Zhang, X.; et al. An effect assessment of Airborne par-ticulate
matter pollution on COVID−19: A multi-city Study in China. medRxiv 2020. [CrossRef]

109. Yao, Y.; Pan, J.; Wang, W.; Liu, Z.; Kan, H.; Qiu, Y.; Meng, X.; Wang, W. Association of particulate matter pollution and case fatality
rate of COVID−19 in 49 Chinese cities. Sci. Total Environ. 2020, 741, 140396. [CrossRef]

110. Hendryx, M.; Luo, J. COVID−19 prevalence and fatality rates in association with air pollution emission concentrations and
emission sources. Environ. Pollut. 2020, 265, 115126. [CrossRef]

111. EEA. European Environment Agency—Air quality in Europe—2018. Available online: http://www.eea.europa.eu/publications/
air-quality-in-europe$-$2018/ (accessed on 10 April 2020).

112. Conticini, E.; Frediani, B.; Caro, D. Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV−2
lethality in Northern Italy? Environ. Pollut. 2020. [CrossRef] [PubMed]

http://www.xinhuanet.com/english/2020$-$04/17/c_138984721.htm
http://doi.org/10.1016/S2468-2667(20)30060-8
https://doi.org/10.7927/H4ZK5DQS
http://doi.org/10.1021/acs.est.5b05833
http://doi.org/10.1289/ehp.1409567
http://doi.org/10.1016/j.geosus.2020.03.005
http://doi.org/10.1289/ehp.1408646
http://doi.org/10.1111/j.1538-4632.1985.tb00849.x
http://doi.org/10.1016/j.scitotenv.2020.139239
http://www.ncbi.nlm.nih.gov/pubmed/32402464
http://doi.org/10.1126/sciadv.abd4049
http://doi.org/10.1101/2020.04.05.20054502
http://doi.org/10.1038/s41598-021-82310-4
http://documents.worldbank.org/curated/en/462481587756439003/Incidence-of-COVID$-$19-and-Connections-with-Air-Pollution-Exposure-Evidence-from-the-Netherlands
http://documents.worldbank.org/curated/en/462481587756439003/Incidence-of-COVID$-$19-and-Connections-with-Air-Pollution-Exposure-Evidence-from-the-Netherlands
http://doi.org/10.1007/s10640-020-00491-4
https://www.researchgate.net/publication/341333433_The_Rises_of_Coronavirus_Disease_COVID$-$19_death_rate_in_Japan_with_high_PM25
https://www.researchgate.net/publication/341333433_The_Rises_of_Coronavirus_Disease_COVID$-$19_death_rate_in_Japan_with_high_PM25
http://doi.org/10.1007/s11356-020-10689-0
http://www.ncbi.nlm.nih.gov/pubmed/32886309
http://doi.org/10.1016/j.envres.2020.110052
https://www.rfa.org/english/news/china/wuhan-deaths$-$03272020182846.html
https://www.rfa.org/english/news/china/wuhan-deaths$-$03272020182846.html
http://doi.org/10.1016/j.scitotenv.2020.138704
http://doi.org/10.1016/j.ecoenv.2020.111421
http://doi.org/10.1101/2020.04.09.20060137
http://doi.org/10.1016/j.scitotenv.2020.140396
http://doi.org/10.1016/j.envpol.2020.115126
http://www.eea.europa.eu/publications/air-quality-in-europe$-$2018/
http://www.eea.europa.eu/publications/air-quality-in-europe$-$2018/
http://doi.org/10.1016/j.envpol.2020.114465
http://www.ncbi.nlm.nih.gov/pubmed/32268945


Atmosphere 2021, 12, 795 21 of 22

113. Piccolomini, E.L.; Zama, F. Monitoring Italian COVID−19 spread by a forced SEIRD model. PLoS ONE 2020, 15, e0237417.
[CrossRef] [PubMed]

114. Milan, S.; Treré, E. A widening data divide: COVID−19 and the Global South. Available online: https://data-activism.net/2020
/04/bigdatasur-a-widening-data-divide-covid$-$19-and-the-global-south/ (accessed on 31 April 2020).

115. Singh, P.; Dey, S.; Purohit, B.; Dixit, K.; Chakraborty, S. Robust association between short-term ambient PM2.5 exposure and
COVID prevalence in India. Res. Sq. 2020. [CrossRef]

116. Kumar, S. Effect of meteorological parameters on spread of COVID−19 in India and air quality during lockdown. Sci. Total
Environ. 2020, 745, 141021. [CrossRef]

117. Velásquez, R.M.A.; Lara, J.V.M. Gaussian approach for probability and correlation between the number of COVID−19 cases and
the air pollution in Lima. Urban Clim. 2020, 33, 100664. [CrossRef] [PubMed]

118. Bolaño-Ortiz, T.R.; Camargo-Caicedo, Y.; Puliafito, S.E.; Ruggeri, M.F.; Bolaño-Diaz, S.; Pascual-Flores, R.; Saturno, J.; Ibarra-
Espinosa, S.; Mayol-Bracero, O.L.; Torres-Delgado, E.; et al. Spread of SARS-CoV−2 through Latin America and the Caribbean
region: A look from its economic conditions, climate and air pollution indicators. Environ. Res. 2020, 191, 109938. [CrossRef]
[PubMed]

119. Suhaimi, N.F.; Jalaludin, J.; Latif, M.T. Demystifying a Possible Relationship between COVID−19, Air Quality and Meteorological
Factors: Evidence from Kuala Lumpur, Malaysia. Aerosol Air Qual. Res. 2020, 20, 1520–1529. [CrossRef]

120. Notari, A.; Torrieri, G. COVID−19 transmission risk factors. arXiv Preprint 2020, arXiv:2005.03651.
121. Forster, P.; Forster, L.; Renfrew, C.; Forster, M. Phylogenetic network analysis of SARS-CoV−2 genomes. Proc. Natl. Acad. Sci.

USA 2020, 117, 9241–9243. [CrossRef] [PubMed]
122. Giovanetti, M.; Angeletti, S.; Benvenuto, D.; Ciccozzi, M. A doubt of multiple introduction of SARS-CoV-2 in Italy: A preliminary

overview. J. Med Virol. 2020, 92, 1634–1636. [CrossRef]
123. Luo, C.; Yao, L.; Zhang, L.; Yao, M.; Chen, X.; Wang, Q.; Shen, H. Possible Transmission of Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV−2) in a Public Bath Center in Huai’an, Jiangsu Province, China. JAMA Netw. Open 2020, 3, e204583.
[CrossRef]

124. Van Doremalen, N.; Bushmaker, T.; Lloyd-Smith, J.O.; De Wit, E.; Munster, V.J.; Morris, D.H.; Holbrook, M.G.; Gamble, A.;
Williamson, B.N.; Tamin, A.; et al. Aerosol and Surface Stability of SARS-CoV−2 as Compared with SARS-CoV−1. N. Engl. J.
Med. 2020, 382, 1564–1567. [CrossRef]

125. Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Licen, S.; Perrone, M.G.; Piazzalunga, A.; Borelli, M.; Palmisani, J.;
Di Gilio, A.; et al. Potential role of particulate matter in the spreading of COVID−19 in Northern Italy: First observational
study based on initial epidemic diffusion. BMJ Open 2020, 10, e039338. [CrossRef]

126. Greenhalgh, T.; Jimenez, J.L.; Prather, K.A.; Tufekci, Z.; Fisman, D.; Schooley, R. Ten scientific reasons in support of airborne
transmission of SARS-CoV−2. Lancet 2021, 397, 1603–1605. [CrossRef]

127. Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Torboli, V.; Fontana, F.; et al.
SARS-Cov−2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environ. Res. 2020, 188, 109754.
[CrossRef] [PubMed]

128. Coccia, M. An index to quantify environmental risk of exposure to future epidemics of the COVID−19 and similar viral agents:
Theory and practice. Environ. Res. 2020, 191, 110155. [CrossRef]

129. Villeneuve, P.J.; Goldberg, M.S. Methodological Considerations for Epidemiological Studies of Air Pollution and the SARS and
COVID−19 Coronavirus Outbreaks. Environ. Heal. Perspect. 2020, 128, 095001. [CrossRef]

130. Patz, J.A.; Hahn, M.B. Climate Change and Human Health: A One Health Approach. In One Health: The Human–Animal–
Environment Interfaces in Emerging Infectious Diseases; Mackenzie, J.S., Jeggo, M., Daszak, P., Richt, J.A., Eds.; Springer:
Berlin/Heidelberg, Germany, 2012; Volume 366, pp. 141–171.

131. Poland, G.A. SARS-CoV−2: A time for clear and immediate action. Lancet Infect. Dis. 2020, 20, 531–532. [CrossRef]
132. Herrero, M.; Thornton, P. What can COVID−19 teach us about responding to climate change? Lancet Planet. Heal. 2020, 4, e174.

[CrossRef]
133. Okello, A.L.; Vandersmissen, A.; Welburn, S.C. One Health into action: Integrating Global Health Governance with national

priorities in a globalized world. In One Health: The Theory and Practice of Integrated Health Approaches; CABI Publishing: Wallingford,
UK, 2015; pp. 283–303.

134. Atlas, R.M.; Maloy, S. One Health: People, Animals, and the Environment; ASM Press: Washington, CD, USA, 2014. [CrossRef]
135. Editorial. Prevent and predict. Nat. Ecol. Evol. 2020, 4, 283. Available online: https://www.nature.com/articles/s41559-020-1150-

5.pdf (accessed on 10 April 2020). [CrossRef]
136. Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.D.M.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.E.; Jones, K.;

Mitchell, C.E.; et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nat. Cell Biol. 2010, 468,
647–652. [CrossRef]

137. Johnson, C.K.; Hitchens, P.L.; Pandit, P.S.; Rushmore, J.; Evans, T.S.; Young, C.C.W.; Doyle, M.M. Global shifts in mammalian
population trends reveal key predictors of virus spillover risk. Proc. R. Soc. B Boil. Sci. 2020, 287, 20192736. [CrossRef] [PubMed]

138. Nabi, G.; Siddique, R.; Ali, A.; Khan, S. Preventing bat-born viral outbreaks in future using ecological interventions. Environ. Res.
2020, 185, 109460. [CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0237417
http://www.ncbi.nlm.nih.gov/pubmed/32760133
https://data-activism.net/2020/04/bigdatasur-a-widening-data-divide-covid$-$19-and-the-global-south/
https://data-activism.net/2020/04/bigdatasur-a-widening-data-divide-covid$-$19-and-the-global-south/
http://doi.org/10.21203/rs.3.rs-38126/v1
http://doi.org/10.1016/j.scitotenv.2020.141021
http://doi.org/10.1016/j.uclim.2020.100664
http://www.ncbi.nlm.nih.gov/pubmed/32834964
http://doi.org/10.1016/j.envres.2020.109938
http://www.ncbi.nlm.nih.gov/pubmed/32858479
http://doi.org/10.4209/aaqr.2020.05.0218
http://doi.org/10.1073/pnas.2004999117
http://www.ncbi.nlm.nih.gov/pubmed/32269081
http://doi.org/10.1002/jmv.25773
http://doi.org/10.1001/jamanetworkopen.2020.4583
http://doi.org/10.1056/NEJMc2004973
http://doi.org/10.1136/bmjopen-2020-039338
http://doi.org/10.1016/S0140-6736(21)00869-2
http://doi.org/10.1016/j.envres.2020.109754
http://www.ncbi.nlm.nih.gov/pubmed/32526492
http://doi.org/10.1016/j.envres.2020.110155
http://doi.org/10.1289/EHP7411
http://doi.org/10.1016/S1473-3099(20)30250-4
http://doi.org/10.1016/S2542-5196(20)30085-1
http://doi.org/10.1128/9781555818432
https://www.nature.com/articles/s41559-020-1150-5.pdf
https://www.nature.com/articles/s41559-020-1150-5.pdf
http://doi.org/10.1038/s41559-020-1150-5
http://doi.org/10.1038/nature09575
http://doi.org/10.1098/rspb.2019.2736
http://www.ncbi.nlm.nih.gov/pubmed/32259475
http://doi.org/10.1016/j.envres.2020.109460
http://www.ncbi.nlm.nih.gov/pubmed/32247155


Atmosphere 2021, 12, 795 22 of 22

139. Morand, S.; Owers, K.A.; Bordes, F. Biodiversity and Emerging Zoonoses. In Confronting Emerging Zoonoses; Springer Science and
Business Media LLC: Berlin/Heidelberg, Germany, 2014; pp. 27–41.

140. Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic host diversity increases
in human-dominated ecosystems. Nat. Cell Biol. 2020, 584, 398–402. [CrossRef] [PubMed]

141. Bedford, J.; Farrar, J.; Ihekweazu, C.; Kang, G.; Koopmans, M.; Nkengasong, J. A new twenty-first century science for effective
epidemic response. Nat. Cell Biol. 2019, 575, 130–136. [CrossRef]

142. Ahmed, F.; Ahmed, N.; Pissarides, C.; Stiglitz, J. Why inequality could spread COVID−19. Lancet Public Heal. 2020, 5, e240.
[CrossRef]

http://doi.org/10.1038/s41586-020-2562-8
http://www.ncbi.nlm.nih.gov/pubmed/32759999
http://doi.org/10.1038/s41586-019-1717-y
http://doi.org/10.1016/S2468-2667(20)30085-2

	Introduction 
	Materials and Methods 
	Data Collection and Processing 
	Data Collection and Processing 

	Results 
	Correlation between Air Pollution Variables and COVID-19 Infections, Deaths, and Mortality Rates 
	COVID-19 Distribution, Clusters, and Air Quality Maps 
	Previous Literature Account 

	Discussion and Conclusions 
	
	
	References

