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Abstract: Evaluating global climate model (GCM) outputs is essential for accurately simulating
future hydrological cycles using hydrological models. The GCM multi-model ensemble (MME)
precipitation simulations of the Climate Model Intercomparison Project Phases 5 and 6 (CMIP5 and
CMIP6, respectively) were spatially and temporally downscaled according to a multi-site statis-
tical downscaling method for the Hanjiang River Basin (HRB), China. Downscaled precipitation
accuracy was assessed using data collected from 14 meteorological stations in the HRB. The spatial
performances, temporal performances, and seasonal variations of the downscaled CMIP5-MME
and CMIP6-MME were evaluated and compared with observed data from 1970–2005. We found
that the multi-site downscaling method accurately downscaled the CMIP5-MME and CMIP6-MME
precipitation simulations. The downscaled precipitation of CMIP5-MME and CMIP6-MME captured
the spatial pattern, temporal pattern, and seasonal variations; however, precipitation was slightly
overestimated in the western and central HRB and precipitation was underestimated in the eastern
HRB. The precipitation simulation ability of the downscaled CMIP6-MME relative to the downscaled
CMIP5-MME improved because of reduced biases. The downscaled CMIP6-MME better simulated
precipitation for most stations compared to the downscaled CMIP5-MME in all seasons except
for summer. Both the downscaled CMIP5-MME and CMIP6-MME exhibit poor performance in
simulating rainy days in the HRB.

Keywords: global climate model; CMIP6; CMIP5; multi-site downscaling method; precipitation
downscaling results comparison; Hanjiang River Basin

1. Introduction

Over the past several decades, climate change, as a vital component of the changing
environment, has impacted the hydrological cycle process by varying degrees, leading
to hydrological effects [1]. Precipitation is a key component of the climate system and
a necessary condition for the formation and transformation of runoff [2]. Precipitation
changes caused by climate change alter the original rainfall-runoff relationship in the hydro-
logical cycle [1,3–5]. Climate change and the resulting precipitation variability substantially
impact water resource shortages, distributions, and flood risk uncertainties. Assessing
hydrological responses to future climate changes is essential for reducing flooding risks,
managing water resources, and addressing hydroclimatic variabilities [6].

The most common approach to investigating the impacts of climate change on runoff is
hydrological modeling [5]. The accuracy of precipitation, used as an input for hydrological
models, affects the reliability of runoff prediction results. Global climate models (GCMs),
which are developed by various modeling groups worldwide under the aegis of the

Atmosphere 2021, 12, 867. https://doi.org/10.3390/atmos12070867 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-2611-6100
https://orcid.org/0000-0002-4421-6781
https://doi.org/10.3390/atmos12070867
https://doi.org/10.3390/atmos12070867
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12070867
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12070867?type=check_update&version=2


Atmosphere 2021, 12, 867 2 of 20

Coupled Model Intercomparison Project (CMIP), are widely used to study the precipitation
evolution of past, present, and future climate changes arising from natural, unforced
variability or in response to climate change radiative forcing in a multi-model context [7,8].
Because of the spatial and temporal inadequacies of GCMs, downscaling methods have an
essential role in increasing the effectiveness of GCMs at regional and local scales. Dynamical
and statistical downscaling methodologies have previously been applied to downscale
GCM outputs. The dynamical downscaling method employs regional climate models to
generate regional-scale climate variables, using GCM outputs as the boundary conditions.
Statistical downscaling methods are typically categorized into three groups—weather
typing, stochastic generators, and regression-based approaches [9]. Compared with the
dynamical downscaling method, the calculations required for statistical downscaling are
fewer in number and easier to apply, which conserves both time and effort. Therefore,
the statistical downscaling method is favored by experts worldwide [2,10]. The single-
station weather generator statistical downscaling method can only produce climate change
scenarios for a single point or for independent scenarios at several points [11]. Therefore,
the spatial variability of climate change impacts on hydrology cannot be investigated. Over
the past few decades, several studies have utilized the multi-site downscaling method.
Su et al. [12] introduced a method for multi-site precipitation downscaling that combines
a single-site stochastic weather generator with a modified shuffle procedure constrained
with GCM multi-model ensemble (MME) monthly precipitation outputs. The results
demonstrated that the proposed downscaling method can accurately simulate the daily,
monthly, and annual precipitation means and lengths of wet spell lengths. Khalili and
Van Nguyen [13] presented an improved multi-site statistical downscaling approach for
concurrently downscaling daily precipitation at several sites, with the results indicating that
the proposed approach can accurately reproduce the multiple observed statistical properties
of precipitation occurrences. Chen et al. [14] proposed a multi-site downscaling approach
for hydrological climate change impact studies by coupling a single-site downscaling
method and a multi-site weather generator.

The CMIP has been organized six times, with Phase 6 of the CMIP (CMIP6) cur-
rently in progress [7]. Most recent studies have focused on Phase 5 of the CMIP (CMIP5)
GCMs to evaluate changes in hydroclimate variabilities, such as those for specific regions
or seasons [2,10,15,16]. For example, Salman et al. [15] statistically evaluated the ability
of 20 GCMs to replicate the spatial pattern of monsoon propagation toward Peninsular
Malaysia at annual and seasonal time scales compared to the 20th Century Reanalysis
dataset. Rao et al. [16] compared 32 climate models from CMIP5 with a daily gridded
observation dataset of extreme precipitation indices, illustrating that most models exhibit
sufficient performance for the spatial distribution but overestimate the precipitation ampli-
tude over northern China. Ta et al. [10] evaluated the ability of 37 CMIP5 GCMs to simulate
historical precipitation in central Asia and found that the models exhibited a variety of
precipitation simulation capabilities both spatially and temporally. A comprehensive lit-
erature review revealed that only a few scholars have studied CMIP6 GCM precipitation
simulations; hence, studies comparing CMIP6 and CMIP5 precipitation simulations and
potential improvements are rare. For example, Rivera and Arnould [17] evaluated the
ability of CMIP6 precipitation simulation historical runs to capture the complex spatial
and temporal patterns observed over the southwestern part of South America. Gusain
et al. [8] compared the performances of models available in CMIP5 and CMIP6 and their
multi-model averages, and observed significant improvement in the CMIP6 models in
capturing the spatiotemporal pattern of monsoons over India compared to that of CMIP5,
particularly in the Western Ghats and the north-eastern foothills of the Himalayas. Kim
et al. [18] evaluated the performance of CMIP6 GCM in simulating extreme climate indices
and found that the CMIP6 GCM abilities in modeling precipitation intensity and frequency
indices were comparable to those of the CMIP5 models, whereas precipitation intensity
simulations were improved in CMIP6 because of reduced dry biases. However, assessing
the precipitation simulation potential improvements and performance of CMIP6 GCMs
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relative to CMIP5 GCMs is necessary to predict runoff changes using hydrological models
under future climate scenarios.

In this study, we evaluated and compared the performances of the precipitation
downscaling results for the MME of CMIP5 (CMIP5-MME) and the MME of CMIP6 (CMIP6-
MME) in simulating different precipitation characteristics from 1970 to 2005 in the Hanjiang
River Basin (HRB), China. First, a multi-site downscaling method produced by Su et al. [12]
was used to downscale the GCM outputs of the CMIP5 and CMIP6 both spatially and
temporally. Second, the reliability of the downscaled precipitation data was assessed.
Finally, the performances of CMIP5-MME and CMIP6-MME precipitation downscaling
results were compared based on spatial distribution, temporal distribution, and seasonal
variations. This study provides a reference for evaluating the accuracy of precipitation
analysis, which is a critical hydrological model input, to improve the predictions of future
river basin hydrological cycles.

2. Materials and Methods
2.1. Study Region and Data Collection

The HRB, with an area of 1.59 × 105 km2, is located between 30◦8′–34◦11′ N and
106◦12′–114◦14′ E, and spans the provinces of Shanxi, Hubei, Henan, Sichuan, Gansu,
and Chongqing (Figure 1). The primary stream of the HRB, with a length of 1577 km,
is the largest tributary of the Yangtze River, China [19,20]. The west and central areas
of the HRB are mountainous and semi-mountainous, whereas the east is a plain habitat
with an elevation ranging from 0 to 3577 m (Figure 1). The basin is characterized by a
subtropical monsoon climate with an average annual temperature ranging from 15 ◦C to
17 ◦C and annual average precipitation ranging from 700 to 1800 mm [19]. The precipitation
distribution over a year is non-uniform, with precipitation between May and October
accounting for 70–80% of the entire year. The runoff caused by precipitation from May
to October accounts for approximately 75% of the annual total [19,20]. The HRB contains
water sources for the Hanjiang to Weihe River Project and the South-to-North Water
Diversion Project, which directly impact the water quality and quantity in China. The HRB
is vulnerable to climate change and human activities [21]; thus, flood and drought disasters
occur frequently in this region. It is essential to predict future precipitation changes in the
HRB for disaster prevention and mitigation.

In this study, daily precipitation observations from 1970 to 2005 for 14 meteorological
stations in the HRB (Figure 1 and Table 1) were obtained from the China Meteorological
Administration (http://data.cma.cn/, accessed on 1 July 2021), which is responsible for
monitoring, collecting, compiling, and releasing quality meteorological data in China. Data
quality controls including missing value inspections and extreme value tests have been
strictly implemented.

Table 1. HRB stations and their associated characteristics.

Station ID Station Name Abbreviation Latitude (N) Longitude (E) Average Annual Precipitation 1970–2005 (mm)

57127 Hanzhong HZ 33◦04′ 107◦02′ 853.52
57134 Foping FP 33◦31′ 107◦59′ 910.92
57143 Shangxian SX 33◦52′ 109◦58′ 683.58
57144 Zhenan ZA 33◦26′ 109◦09′ 772.01
57156 Xixia XX 33◦18′ 111◦30′ 851.51
57178 Nanyang NY 33◦06′ 112◦29′ 777.54
57232 Shiquan SQ 33◦03′ 108◦16′ 881.85
57245 Ankang AK 32◦43′ 109◦02′ 826.32
57259 Fangxian FX 32◦03′ 110◦45′ 831.05
57265 Laohekou LHK 32◦26′ 111◦44′ 825.78
57279 Zaoyang ZY 32◦09′ 112◦45′ 830.51
57378 Zhongxiang ZX 31◦10′ 112◦34′ 964.83
57483 Tianmen TM 30◦40′ 113◦08′ 1109.79
57494 Wuhan WH 30◦36′ 114◦03′ 1259.42

http://data.cma.cn/
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Figure 1. HRB map and distribution of the analyzed meteorological stations. 
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Figure 1. HRB map and distribution of the analyzed meteorological stations.

Twenty GCMs were selected for this study. Among these, 10 belong to CMIP5,
for which precipitation simulation outputs were obtained from https://esgf-node.llnl.
gov/search/cmip5/ (accessed on 1 July 2021), whereas 10 belong to CMIP6, for which
precipitation simulation outputs were obtained from https://esgf-node.llnl.gov/search/
cmip6/ (accessed on 1 July 2021). Monthly precipitation data from historical simulations of
both model groups were used in this study. The variant labels of the CMIP6 and CMIP5
models are r1i1p1f1 and r1i1p1, respectively. The time period of the CMIP6 and CMIP5
precipitation data used in this study is 1970–2005 because of the data availability of the
CMIP5 models. Table 2 lists the analyzed GCMs and their respective modeling centers,
countries, and horizontal resolutions. Notably, although the GCM daily precipitation data
can be obtained, we still selected GCM monthly precipitation data to evaluate and compare
the precipitation simulation performances of the CMIP6 and CMIP5 models. Some previous
studies indicated that GCM monthly outputs are more credible and accurate than the daily
data [14,22–24]. Additionally, because of the coarse spatial resolution of GCM outputs, the
inverse distance weighting method (IDW) was used to interpolate the GCM data at the
four nearest neighboring grid points to the target meteorological station. Choosing GCM
daily precipitation would have increased the difficulty of obtaining accurate wet spells. For
example, when the target station was in a grid without daily rainfall, but the other grids
received rainfall, wet spells would be increased artificially after interpolation. Because the
MME has been demonstrated to exhibit superior performance compared to that of any
individual model for analyzing CMIP historical simulations in the HRB [25,26], the CMIP5-
MME and CMIP6-MME monthly precipitation values were used to compare the historical
precipitation simulations of the CMIP5 and CMIP6 models with the observed data.

https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip5/
https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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Table 2. Studied GCMs from CMIP5 and CMIP6.

CMIP5
Modeling Center and

Country

CMIP6

Model Name Horizontal Resolution
(Latitude × Longitude) Model Name Horizontal Resolution

(Latitude × Longitude)

BCC-CSM1-1 2.8125◦ × 2.8125◦ Beijing Climate Center,
China BCC-CSM2-MR 1.125◦ × 1.125◦

BCC-CSM1-1-m 1.125◦ × 1.125◦ Beijing Climate Center,
China BCC-ESM1 2.81◦ × 2.81◦

FGOALS-g2 3◦ × 2.8◦
Institute of Atmospheric

Physics, Chinese Academy
of Sciences, China

FGOALS-g3 2.3◦ × 2◦

GISS-E2-H 2.5◦ × 2.5◦ NASA Goddard Institute
for Space Studies, USA. GISS-E2-1-H 1.25◦ × 1.25◦

CMCC-CM 0.75◦ × 0.75◦
Centro Euro-Mediterraneo

per I Cambiamenti
Climatici, Italy

CMCC-CM2-SR5 1◦ × 1◦

CMCC-CMS 1.875◦ × 1.875◦
Centro Euro-Mediterraneo

per I Cambiamenti
Climatici, Italy

CMCC-CM2-HR4 0.25◦ × 0.25◦

MIROC5 1.4◦ × 1.4◦
Japan Agency for

Marine-Earth Science and
Technology, Japan

MIROC6 1.4◦ × 1.4◦

IPSL-CM5A-LR 3.75◦ × 1.875◦ Institut Pierre Simon
Laplace, France IPSL-CM6A-LR 1.26◦ × 2.5◦

CanESM2 2.8125◦ × 2.8125◦
Canadian Centre for

Climate Modelling and
Analysis, Canada

CanESM5 2.81◦ × 2.81◦

MPI-ESM-LR 1.875◦ × 1.875◦ Max Planck Institute for
Meteorology, Germany MPI-ESM1-2-LR 1.5◦ × 1.5◦

2.2. Methods
2.2.1. Downscaling Method

A multi-site statistical downscaling method introduced by Su et al. [12] was used to
spatially and temporally downscale the GCM outputs. The method framework consists of
three steps, as illustrated in Figure 2. The first step is spatial downscaling, which includes
the IDW method and the equidistant cumulative distribution functions matching method
(EDCDFm). The second step is temporal downscaling, in which the spatially downscaled
monthly data are temporally downscaled into daily data using a single-site climate genera-
tor (CLIGEN). The final step re-creates the spatial correlation of the precipitation sequences
for the meteorological stations based on the shuffle method [12].

(1) Spatial downscaling step:
In the spatial downscaling step, the IDW method and EDCDFm were applied. The

IDW method interpolates the original large-scale GCM data at the four nearest neighbor-
ing grid points to the target meteorological station. The IDW method is expressed by
Equations (1)–(3) [12,27]:

D = cos−1(cos αo cos αs(cos βo cos βs + sin βo sin βs) + sin αo sin βs) (1)

Wj =
1

Dj
/

4

∑
n=1

1
Dj

(2)

Si =
4

∑
j=1

Wj × Sj(t) (3)

where D is the angular distance, αo is the latitude of the target meteorological station, βo
is the longitude of the target meteorological station, αs is the grid point latitude, and βs
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is the grid point longitude. Wj is the weight of four GCM grid points that are closest to
the target meteorological station. Sj is the value of the climatic variable of the GCM grid
points, and Si represents the mean weighted sum of the climatic variable for timescale t.
Using the above equations, interpolated GCM-generated precipitation data for CMIP5 and
CMIP6 were obtained. Finally, the CMIP5-MME and CMIP6-MME values were obtained
through calculations.

The deviation in the interpolated data of CMIP5-MME and CMIP6-MME must be
corrected; this was performed using EDCDFm. EDCDFm modifies the shape of the
theoretical probability distribution function of the simulated precipitation data based on
the shape of the theoretical probability distribution function of the observed precipitation
data. Additional details regarding EDCDFm have been described by Su et al., Li et al., and
Chen et al. [12,28,29]. EDCDFm can be written mathematically as Equation (4) [12].

x̃m− f ,cor = xm− f + F−1
o−c

(
Fm− f

(
xm− f

))
− F−1

m−c

(
Fm− f

(
xm− f

))
(4)

where x̃m− f ,cor is the post-corrected GCM monthly data, xm−f is the pre-corrected GCM
monthly data, F−1

o−c(F−1
m−c) is the cumulative distribution inverse function (CDF) of the

observed monthly data, and Fm−f is the CDF of the GCM monthly data. Finally, the
monthly precipitation of the CMIP5-MME and CMIP6-MME were spatially downscaled
using the IDW method and EDCDFm, respectively.
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(2) Temporal downscaling step:
In the temporal downscaling step, the CLIGEN model was used to downscale the

precipitation data generated by the GCMs from the monthly scale to the daily scale. The
CLIGEN is a stochastic weather generator that is often used to generate daily weather
series from monthly GCM projections for climate change impact studies [30,31]. There
are five input parameters, which are determined by the observed daily precipitation, and
are required for CLIGEN to downscale GCM-generated monthly precipitation to daily
precipitation: Pw, average daily precipitation on wet days; Sd, standard deviation of wet
day precipitation; Skew, coefficient of skewness of wet day precipitation; PW|W, probability
of a wet day following a wet day; and PW|D, probability of a wet day following a dry
day. Among these, the Skew of the GCM output was assumed to be the same as that of the
observed data. To determine the other four parameter values, the following procedure was
performed as described by Su et al. [12]:

Observed daily precipitation data for 1970–2005 for each month and site were first used
to compute the mean (Rm), variance, and the five CLIGEN parameters. Second, a linear
relationship between Rm and PW|D for each month and all sites was assumed to estimate
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the future wet-following-dry transition probability. We assumed that the probability of the
occurrence of a wet day (Rd) was proportional to PW|D. The mathematical expressions can
be expressed as Equations (5) and (6).

PW|D = a + b× Rm (5)

Rd =
(

Rm

(
1− PW|W + PW|D

))
/
(

Nd × PW|D

)
(6)

It follows that
P′W|D = α× Rd (7)

P′W|W = 1− α + P′W|D (8)

where a and b are constants, Nd is the number of days in the month, and P′W|W and P′W|D
are the new PW|W and PW|D, respectively.

Finally, when changes in PW|W and PW|D were small, the standard deviation for climate
projections based on the GCM data was calculated as shown in Equation (9).

Sd = Sdo

√
V
Vo

(9)

where Sd and Sdo are the standard deviations of the daily precipitation on wet days for
the GCM output and observed data, respectively, and V and Vo are the variances of the
monthly precipitation for the GCM output and the observed data, respectively.

Using these methods, the parameters for each station were adjusted separately for
the GCM-generated historical precipitation data. These adjusted parameters were then
inputted into CLIGEN, and the daily series precipitation data of each station were generated
for CMIP5-MME and CMIP6-MME during the period from 1970 to 2005.

(3) Spatial correlation reconstruction:
The CLIGEN downscaling method can only produce climate change scenarios at

a single site or independently at multiple sites [14]. However, the spatial correlation
between meteorological stations should be considered to maintain physical coherence.
The negligence of inter-site dependence in the downscaled meteorological fields can lead
to misrepresentation of the hydrological response variables in subsequent hydrological
impact studies [24]. Therefore, after temporal downscaling using the CLIGEN model, the
spatial correlation between stations in the HRB must be reconstructed. In this study, the
shuffle procedure provided by Su et al. [12] was used to rebuild the spatial correlations.
The details of this method have been described by Su et al. [12].

2.2.2. Assessment of Downscaling Methodology

Assessment of the downscaling method used to downscale the CMIP5-MME and
CMIP6-MME contained the following aspects. (1) To evaluate the performance of the
deviation correction in spatial downscaling for the CMIP5-MME and CMIP6-MME, the
mean and standard deviation were used. The calculation methods are expressed as Equa-
tions (10) and (11). (2) To evaluate the performance of the CLIGEN model in temporal
downscaling for the CMIP5-MME and CMIP6-MME, a quantile-quantile (QQ) plot of the
daily precipitation amount was used. (3) To assess the performance of the shuffle procedure
in spatial correlation reconstruction, the emphasis was placed on its capability to restore
the observed inter-station dependencies. The inter-station spatial correlation coefficient
of the relationship between precipitation values before and after spatial correlation recon-
struction (using the shuffle procedure) for CMIP5-MME and CMIP6-MME was considered
in this study.

M =
n

∑
i=1

xi
n

(10)
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SD =

√
∑n

i=1(xi −M)2

n− 1
(11)

where xi is the CMIP5-MME, CMIP6-MME, or observed monthly precipitation data; and n
is the total number of months.

2.2.3. Comparison Indices and Methods

The performance evaluation of the downscaled CMIP5-MME and CMIP6-MME for
precipitation simulation emphasize the capability to reproduce spatial patterns, temporal
patterns, and seasonal variations. For the capability to describe a spatial pattern, the spatial
distribution map of daily average precipitation and biases between the GCMs’ downscaled
data and observational data were used; for the capability to describe a temporal pattern, box
plots of monthly average precipitation and biases between the GCMs’ downscaled data and
observational data were used; for the capability to describe seasonal variations, the spatial
distribution map of seasonal precipitation and biases between the GCMs’ downscaled
data and the observational data of each station in the winter, spring, summer, and autumn
were used.

3. Results
3.1. Assessment of Downscaling Results

After spatial downscaling, the deviation correction results of the CMIP5-MME and
CMIP6-MME monthly precipitation data were verified. The mean and standard deviation
of monthly precipitation before and after the deviation correction of the CMIP5-MME
and CMIP6-MME were compared with the observed monthly precipitation for each sta-
tion, as shown in Figure 3. Before deviation correction, the mean values of the monthly
precipitation of CMIP5-MME and CMIP6-MME were larger than those of the observed
data for all stations, and the standard deviations were smaller. After deviation correction,
the mean and standard deviation values were nearly equal to those of the observed data
for each station. The results demonstrate that the performances of the CMIP5-MME and
CMIP6-MME were significantly improved after deviation correction, indicating that the
EDCDFm is suitable.
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After temporal downscaling, the downscaled daily values for 14 stations in the HRB
were evaluated. The QQ plots of observation versus GCM daily precipitation data for the
CMIP5-MME and CMIP6-MME are shown in Figure 4, where the quantiles varied from 0.5
to 99.9 when the stations were aggregated. The station scatter plot points followed a 1:1 line,
indicating that the downscaled daily precipitation of the CMIP5-MME and CMIP6-MME
fit the observed data well, and the two distributions were similar. When precipitation was
low, the downscaled daily precipitation of the CMIP5-MME and CMIP6-MME correlated
well with the observed data. However, as precipitation increased, the scatter plot points
gradually began to deviate from the 1:1 line, indicating that the CLIGEN model has a
weak ability to simulate extreme precipitation, which is consistent with the findings of
Su et al. [12].

After the shuffle procedure, the inter-station spatial correlation coefficients of the
CMIP5-MME and CMIP6-MME were compared with the observed data, as shown in
Figure 5. Before shuffling, the inter-station correlation coefficients of the CMIP5-MME
and CMIP6-MME were between −0.2 and 0.2, and the scatter plot points were far from
the 1:1 line (Figure 5), indicating that the spatial correlations between stations in the HRB
were inconsistent with the observed data. After shuffling, the inter-station correlation
coefficients of the CMIP5-MME and CMIP6-MME were between −0.2 and 0.85, and the
scatter plot points were distributed around the 1:1 line (Figure 5), indicating that the inter-
station correlation was equal or close to that of the observed data. The results indicate that
the shuffle procedure effectively restores the spatial correlation structures of the CMIP5-
MME and CMIP6-MME downscaled daily precipitation data compared to those of the
observed data.
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The results demonstrate that the downscaling method used in this study, proposed
by Su et al. [12], can be applied to address the problem of the coarse temporal and spatial
resolutions of the CMIP5-MME and CMIP6-MME for the HRB. The temporal and spatial
downscaling results of the GCM data can be used to evaluate and compare the precipitation
simulations of the CMIP5 and CMIP6 projections in the HRB.

3.2. Spatial Performance Comparison of CMIP5-MME and CMIP6-MME Downscaled Precipitation

Using the observed and downscaled GCM precipitation of the 14 meteorological
stations, the IDW method was leveraged to obtain spatial distribution maps of the mean
daily precipitation, as illustrated in Figure 6. The maps compare the precipitation pat-
tern over the HRB from 1970 to 2005 depicted by the CMIP5-MME and CMIP6-MME
downscaled data with that of the observed data. The precipitation spatial pattern of the
CMIP5-MME (Figure 6a) and CMIP6-MME downscaled data (Figure 6b) reflect that of the
observed precipitation (Figure 6c) in the HRB. The precipitation distributions of the CMIP5-
MME downscaled data, CMIP6-MME downscaled data, and observed data decrease from
southeast to northwest over the HRB, except for areas monitored by the FP, HZ, and SQ
stations. The maximum precipitation was observed at the WH station; the CMIP5-MME
downscaled data, CMIP6-MME downscaled data and observed data values were 3.48, 3.51,
and 3.46 mm/d, respectively. The minimum precipitation amount was observed at the SX
station; the CMIP5-MME downscaled data, CMIP6-MME downscaled data, and observed
data values were 1.88, 1.84, and 1.83 mm/d, respectively.
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Figure 6. Mean daily precipitation of (a) CMIP5-MME downscaled data, (b) CMIP6-MME downscaled data, and (c) observed
data over HRB from 1970 to 2005.

Figure 7 illustrates the spatial patterns of the daily precipitation biases between the
CMIP5-MME downscaled data and observed data, and the CMIP6-MME downscaled
data and observed data in 1970–2005 over the HRB. The daily precipitation biases of the
CMIP5-MME and CMIP6-MME downscaled data were similar, with excess precipitation
in the west and central areas and deficient precipitation in the eastern HRB, except for
the area monitored by the WH station. The results indicate that the downscaled CMIP5-
MME and the CMIP6-MME precipitation simulations slightly overestimated precipitation
in the western and central areas of the HRB and slightly underestimated precipitation
in the eastern area of the HRB, except for at the WH station. The downscaled CMIP6-
MME bias values of 10 stations accounted for 72% of all stations and are smaller than
those of the downscaled CMIP5-MME. The highest precipitation bias value between the
CMIP5-MME downscaled data and the observed data was 0.34 mm/d, occurring at the ZA
station; the highest precipitation bias value between the CMIP6-MME downscaled data
and observed data was 0.28 mm/d, occurring at the FP station. These results illustrate
that the precipitation simulation biases of the CMIP6 models were smaller than those of
the CMIP5 models. In addition, the bias between the CMIP5-MME and CMIP6-MME
downscaled data indicates that the downscaled CMIP6-MME reduced the precipitation
bias in the western and central areas of the HRB.
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3.3. Temporal Performance Comparison of CMIP5-MME and CMIP6-MME Downscaled Precipitation

According to the observed and GCM downscaled daily precipitation from the 14 me-
teorological stations, the average monthly precipitation for each month from 1970 to 2005
was calculated and compared, as illustrated in Figure 8, through box and scatter plots of the
CMIP5-MME downscaled data, CMIP6-MME downscaled data, and observed data. The
downscaled monthly precipitation distributions of the CMIP5-MME and CMIP6-MME data
are typically consistent with those of the observed data. The downscaled monthly precipita-
tion of the CMIP5-MME data was slightly greater than that of the observed data in January,
February, March, May, June, July, August, September, November, and December, whereas
that of the CMIP6-MME was greater than that of the observed data in January, February,
March, June, August, September, and December. The mean monthly precipitation ranges of
the CMIP5-MME downscaled data, the CMIP6-MME downscaled data, and the observed
data from 1970 to 2005 were 15.27–162.86, 15.25–160.73, and 12.63–161.05 mm, respectively.

Figure 9 displays the biases of the average monthly precipitation between the GCMs’
downscaled data and observed data for each station and month. Overall, the biases between
the GCMs’ downscaled data and the observed data were small, except for the precipitation
of the CMIP5-MME in June, July, August, and September and that of the CMIP6-MME
in July and August, when the bias exceeded 20 mm. These months include the rainy
days of the HRB. These results indicate that the downscaled CMIP6 and CMIP5 GCMs
poorly simulate heavy rainfall. Figure 9 also displays the mean monthly precipitation
in each month. The maximum bias of the monthly precipitation between the CMIP5-
MME downscaled data and observed data was 6.84 mm, and that between the CMIP6-
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MME downscaled data and observed data was 5.74 mm in August. The mean biases in
most months from January to December between the CMIP6-MME downscaled data and
observed data were smaller than those between the CMIP5-MME downscaled data and
observed data. The results indicate that the ability of the downscaled CMIP6-MME in
simulating temporal performance is superior to that of the downscaled CMIP5-MME.
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3.4. Seasonal Variation Comparison of CMIP5-MME and CMIP6-MME Downscaled Precipitation

Using the observed and downscaled GCM daily precipitation from the 14 meteo-
rological stations, the IDW method was used to obtain the spatial distribution map of
precipitation in winter, spring, summer, and autumn, as illustrated in Figure 10. The down-
scaled precipitation spatial patterns of CMIP6-MME and CMIP5-MME were consistent
with those of the observed data across seasons. In winter (Figure 10a–c), the precipitation
decreases from southeast to northwest, and the maximum precipitation of the observed
data, the CMIP6-MME downscaled data, and the CMIP5-MME downscaled data occurred
at the WH station (131.45, 127.41, and 125.51 mm, respectively). In spring (Figure 10d–f),
the precipitation in the southeast area was the greatest, and the maximum precipitation of
the observed data, the CMIP6-MME downscaled data, and the CMIP5-MME downscaled
data occurred at the WH station (392.58, 403.63, and 408.96 mm, respectively). In summer
(Figure 10g–i), the southeast, northwest, and northeast areas exhibited greater precipitation
compared with that of the central area, and the maximum precipitation of the observed
data, the CMIP6-MME downscaled data, and the CMIP5-MME downscaled data occurred
at the WH station (524.49, 532.28, and 518.86 mm, respectively). In autumn (Figure 10j–l),
the precipitation in the northwest area was greatest, and the maximum precipitation of
the observed data, the CMIP6-MME downscaled data, and the CMIP5-MME downscaled
data occurred at the SQ, FP, and HZ stations (261.25, 264.93, and 263.03 mm, respectively),
respectively. Figure 10 also displays the linear determination coefficients (R2) between
the downscaled GCMs’ precipitation and observed data in different seasons. The R2 val-
ues in winter, spring, and autumn are above 0.9 not only for CMIP6-MME but also for
CMIP5-MME. However, the R2 of CMIP6-MME and CMIP5-MME in summer were only
0.77 and 0.72, respectively, indicating that the downscaled CMIP5 and CMIP6 GCMs poorly
simulate precipitation during the rainy season.

Atmosphere 2021, 12, 867 16 of 21 
 

 

 
Figure 10. Precipitation (mm) of the CMIP6-MME downscaled data, the CMIP5-MME downscaled data, and the observed 
data in winter (a–c), spring (d–f), summer (g–i), and autumn (j–l) from 1970 to 2005. Determination coefficients (R2) are 
between observed data and the GCMs’ downscaled data. 

Figure 11 displays the average seasonal precipitation biases between the GCMs’ 
downscaled data and the observed data for each station. In winter, biases between the 
CMIP6-MME downscaled data and the observed data were smaller than those between 
the CMIP5-MME downscaled data and the observed data for 79% of stations. In spring 
and autumn, the downscaled CMIP6-MME exhibited a lower bias than the downscaled 
CMIP5-MME for 57% of stations. However, the downscaled CMIP5-MME outperformed 
the downscaled CMIP6-MME for 64% of stations in summer. There were substantial dif-
ferences in the bias values. In winter, the maximum biases of the CMIP5-MME and 
CMIP6-MME downscaled data occurred at the LHK station (12.6 and 12.18 mm, respec-
tively). In spring, the maximum bias of the CMIP5-MME downscaled data occurred at the 
ZA station (34.85 mm), and that of the CMIP6-MME downscaled data occurred at the ZX 
station (−27.34 mm). In summer, the maximum CMIP5-MME downscaled data bias oc-
curred at the ZA station (62.69 mm), and that of the CMIP6-MME downscaled data oc-
curred at the FP station (60.35 mm). In autumn, the maximum biases of the CMIP5-MME 
and CMIP6-MME downscaled data occurred at the FP station (18.32 and 20.74 mm, re-
spectively). In winter, the mean biases of the CMIP5-MME and CMIP6-MME downscaled 
data were 6.78 and 6.69 mm, respectively. In spring, the mean biases of the CMIP5-MME 
and CMIP6-MME downscaled data were 2.21 and −0.02 mm, respectively. In summer, the 
mean biases of the CMIP5-MME and CMIP6-MME downscaled data were 12.21 and 7.01 
mm, respectively. In autumn, the mean biases of the CMIP5-MME and CMIP6-MME 
downscaled data were 6.48 and 2.96 mm, respectively. Based on these results, the seasonal 
precipitation simulation capabilities of the downscaled CMIP6-MME were stronger for 
most stations compared to those of the downscaled CMIP5-MME in winter, spring, and 
autumn, and were weaker in summer. The bias value results indicate that the seasonal 

Figure 10. Precipitation (mm) of the CMIP6-MME downscaled data, the CMIP5-MME downscaled data, and the observed
data in winter (a–c), spring (d–f), summer (g–i), and autumn (j–l) from 1970 to 2005. Determination coefficients (R2) are
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Figure 11 displays the average seasonal precipitation biases between the GCMs’ down-
scaled data and the observed data for each station. In winter, biases between the CMIP6-
MME downscaled data and the observed data were smaller than those between the CMIP5-
MME downscaled data and the observed data for 79% of stations. In spring and autumn,
the downscaled CMIP6-MME exhibited a lower bias than the downscaled CMIP5-MME
for 57% of stations. However, the downscaled CMIP5-MME outperformed the downscaled
CMIP6-MME for 64% of stations in summer. There were substantial differences in the bias
values. In winter, the maximum biases of the CMIP5-MME and CMIP6-MME downscaled
data occurred at the LHK station (12.6 and 12.18 mm, respectively). In spring, the maximum
bias of the CMIP5-MME downscaled data occurred at the ZA station (34.85 mm), and that
of the CMIP6-MME downscaled data occurred at the ZX station (−27.34 mm). In summer,
the maximum CMIP5-MME downscaled data bias occurred at the ZA station (62.69 mm),
and that of the CMIP6-MME downscaled data occurred at the FP station (60.35 mm). In
autumn, the maximum biases of the CMIP5-MME and CMIP6-MME downscaled data
occurred at the FP station (18.32 and 20.74 mm, respectively). In winter, the mean biases of
the CMIP5-MME and CMIP6-MME downscaled data were 6.78 and 6.69 mm, respectively.
In spring, the mean biases of the CMIP5-MME and CMIP6-MME downscaled data were
2.21 and −0.02 mm, respectively. In summer, the mean biases of the CMIP5-MME and
CMIP6-MME downscaled data were 12.21 and 7.01 mm, respectively. In autumn, the mean
biases of the CMIP5-MME and CMIP6-MME downscaled data were 6.48 and 2.96 mm,
respectively. Based on these results, the seasonal precipitation simulation capabilities of
the downscaled CMIP6-MME were stronger for most stations compared to those of the
downscaled CMIP5-MME in winter, spring, and autumn, and were weaker in summer.
The bias value results indicate that the seasonal precipitation simulation performances of
the downscaled CMIP6 models were improved compared with those of the downscaled
CMIP5 models.
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4. Discussion

In this study, temporally and spatially downscaled precipitation data from 20 GCMs
from CMIP6 and CMIP5 projections were used to evaluate the precipitation simulation
performance for HRB, China. Comparison of the results with observed data during the
period of 1970–2005, showed that both the downscaled CMIP5-MME and CMIP6-MME
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captured the spatial pattern, temporal pattern, and seasonal variation precipitation charac-
teristics in the HRB. However, certain biases remain for the downscaled GCM precipitation
simulations. The precipitation simulation biases of CMIP6-MME downscaled data were
lower than those of CMIP5-MME downscaled data, indicating that the downscaled CMIP6-
MME reduced the precipitation bias. These findings are consistent with those of some
previous studies. Gusain et al. [8] assessed CMIP5 and CMIP6 GCM precipitation simula-
tions for indicative characteristics that represent the complex dynamics of Indian summer
monsoon rainfall and found significant improvement in CMIP6 models in capturing the
spatiotemporal pattern of monsoon rainfall over India, particularly in the Western Ghats
and the northeast foothills of the Himalayas. Rivera and Arnould [17] evaluated the ability
of CMIP6 precipitation simulation historical runs to capture the complex spatial and tem-
poral patterns observed over southwestern South America, with the results demonstrating
that the primary features of regional precipitation were adequately captured by most
CMIP6 models. Srivastava et al. [32] found that the multi-model medians of CMIP6 and
CMIP5 exhibit similar biases in climatology and variability, but those of the CMIP6 tend to
be smaller.

Our results illustrate that the precipitation simulation capabilities of the downscaled
CMIP6-MME at most stations were stronger than those of the downscaled CMIP5-MME
in winter, spring, and autumn, whereas they were weaker in summer. However, Zamani
et al. [33] found that CMIP6 models exhibited superior performance compared to that of
the CMIP5 models at most stations in winter, spring, and summer and weaker performance
in autumn. These differing results may be related to differences in the location and climate
type between the two study regions. Zamani et al. [33] selected an arid region in the west
of Asia between the latitudes 24◦ N and 40◦ N and longitudes 44◦ E and 64◦ E, which
exhibits a tropical desert climate. The seasons of a tropical desert climate are dry and less
rainy. The study region of our research is the HRB, which is in the east of Asia and belongs
to a subtropical monsoon zone. The subtropical monsoon climate is mild and humid, and
precipitation is abundant.

According to the spatial distribution comparisons, the results indicate that the CMIP5-
MME and CMIP6-MME downscaled simulations slightly overestimated precipitation in
the western and central HRB and slightly underestimated precipitation in the eastern
HRB. These results may be related to elevation and urbanization. The central and western
HRB belong to the upstream and midstream of the basin, which contain mountainous
and semi-mountainous areas (Figure 1), respectively, and the elevation is typically greater
than 3000 m. Some studies [34,35] reported that precipitation typically increases with
elevation but after reaching a certain height, precipitation begins to decrease. Because
air rises because of the uplift of the terrain, it cools and condenses to form precipitation.
However, as the elevation increases, the moisture content in the air decreases, and the
precipitation decreases rather than increases. Other studies showed that precipitation
increases with elevation, with inverse cases sometimes occurring locally because of the
topographic and meteorological features of the area [36]. This may have caused the GCMs
to overestimate the precipitation in the central and western HRB. The eastern HRB is
downstream, which belongs to the plain area, and most cities are in this region. Because
of urbanization, many cities experience the rain island effect, with increased precipitation
in cities. Sahoo et al. [37] discussed the impact of urbanization on rainfall processes and
mechanisms using the weather research and forecasting model, and the simulation results
illustrated that the current urbanization scenario exhibits a significant increase in rainfall by
over 100–200%. Kishtawal et al. [38] assessed the impacts of urbanization on heavy rainfall
climatology and concluded that an increasing trend for heavy rainfall event frequency is
more likely for regions where the urbanization rate is greater. Therefore, the urbanization
rain island effect may have led to the underestimation of the GCM-simulated precipitation
in the eastern HRB.

Our results indicate that the precipitation simulation abilities of the downscaled
CMIP5-MME and CMIP6-MME are poor during rainy months and seasons (rainy days) in
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the study region. This result may be related to the downscaling method. As described in
Section 3.1, the CLIGEN model showed a weak ability to simulate extreme precipitation,
which is supported by many scholars [12,31,39]. However, this result may also be related
to the poor simulation performance of GCM on rainy days over the HRB. Because of the
availability of observational data, the daily precipitation observations from 1970 to 2005
for 14 meteorological stations collected in the HRB were employed to verify the GCMs’
simulations in this study. Based on the limitations of the observational station data, a
multi-site downscaling method was required in this study. Although the observational
data used in this study were able to represent the spatiotemporal variability of precipitation,
precipitation accuracy could have been assessed against a gridded precipitation dataset in
addition to meteorological stations. There are dozens of gridded precipitation datasets and
reanalysis data available in previous studies [40–42]. In the future, a gridded precipitation
dataset must be applied to verify the GCMs’ simulation outputs, and another bias correction
method, such as the quantile mapping method, will be used. Furthermore, extreme climate
indices will be selected to explore and compare the model performance of the CMIP6 and
CMIP5 in simulating precipitation extremes over the HRB in the future.

A multi-site statistical downscaling method was used to spatially and temporally
downscale the GCM outputs. There are errors in the PW|W and skewness coefficient in the
CLIGEN model, which depends on the first-order two-state Markov chain [12]. Although
this Markov chain has been demonstrated to have sufficient applicability in simulating
the probability of precipitation transitions [30,43], a high-order multi-state Markov chain
must be used in future studies because of the lack of physical mechanisms [12]. Compared
with the statistical downscaling method, the dynamic downscaling method exhibits a clear
physical mechanism that can accurately simulate the regional climate variable features
and characterize the precipitation spatial pattern and convection processes of a catch-
ment [44,45]. Therefore, a dynamic downscaling method with a higher spatial resolution
should be considered in future studies. In addition, to compare the precipitation simula-
tions of CMIP5 and CMIP6 to the observed precipitation data, only 10 GCMs from CMIP5
and 10 GCMs from CMIP6 were used in this study because of data limitations. There are
substantial uncertainties in the precipitation simulation trends for the CMIP5 and CMIP6
GCMs. Additional evaluations of more GCMs are needed to comprehensively understand
the precipitation simulations in CMIP5 and CMIP6.

5. Conclusions

GCMs can provide essential meteorological data for simulating and assessing the
impact of climate change on regional hydrology. Selecting appropriate GCM output data
is the basis for accurate hydrology simulation prediction. In addition, because of the
coarse temporal and spatial resolutions of the GCMs, an effective downscaling method is
often required to study regional climatic conditions and hydrological processes. In this
study, a multi-site statistical downscaling method was applied to spatially and temporally
downscale the precipitation simulations of CMIP5-MME and CMIP6-MME.

The multi-site statistical downscaling method contains a spatial downscaling step that
utilizes the IDW and EDCDFm methods, a temporal downscaling step using the CLIGEN
model, and a spatial correlation reconstruction step suing a shuffle procedure method. The
CMIP5-MME and CMIP6-MME precipitation mean and standard deviation values were
used to evaluate the spatial downscaling step, QQ plots of the daily precipitation were
used to evaluate the temporal downscaling step, and inter-station spatial correlation coeffi-
cients of the CMIP5-MME and CMIP6-MME were used to evaluate the spatial correlation
reconstruction step. The results of all downscaling steps passed accuracy evaluation. The
temporal and spatial downscaling results of the GCM data can be used to evaluate and
compare the CMIP5 and CMIP6 precipitation simulations for the HRB.

A spatial distribution map, biases between the GCMs’ downscaled precipitation data
and the observed data, and box plots were used to evaluate the performances of the
downscaled CMIP5-MME and CMIP6-MME precipitation simulations compared with the
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observed data in the HRB from 1970 to 2005. The results illustrate that (1) the downscaled
CMIP5-MME and CMIP6-MME can capture the spatial pattern, temporal pattern, and
seasonal variations in the HRB but overestimate precipitation in the western and central
HRB and underestimate precipitation in the eastern HRB; (2) the precipitation simulation
biases of the downscaled CMIP6-MME are smaller than those of the downscaled CMIP5-
MME, demonstrating improvement for CMIP6-MME in reducing precipitation bias; (3) the
precipitation simulation capabilities of the downscaled CMIP6-MME in most stations are
stronger than those of the downscaled CMIP5-MME in winter, spring, and autumn but
are weaker in summer; and (4) the abilities of both the downscaled CMIP5-MME and
CMIP6-MME in simulating precipitation on rainy days are poor, which may be related
to the CLIGEN model. Our study provides a reference for data reliability to drive the
hydrological model simulation and the prediction of future hydrologic cycles. Future
studies should focus on the comparison of additional GCM precipitation simulation from
CMIP5 and CMIP6 and the evaluation of hydrological process changes using future GCM
precipitation data as an input to drive the hydrological model.
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