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Abstract: Six-hourly three-dimensional ensemble variational (3DEnVar) (6H-3DEnVar) data assim-

ilation (DA) assumes constant background error covariance (BEC) during a six-hour DA window 

and is, therefore, unable to account for temporal evolution of the BEC. This study evaluates the one-

hourly 3DEnVar (1H-3DEnVar) and six-hourly 4DEnVar (6H-4DEnVar) DA methods for the anal-

yses and forecasts of hurricanes with rapidly evolving BEC. Both methods account for evolving BEC 

in a hybrid EnVar DA system. In order to compare these methods, experiments are conducted by 

assimilating inner core Tail Doppler Radar (TDR) wind for Hurricane Edouard (2014) and by run-

ning the Hurricane Weather Research and Forecasting (HWRF) model. In most metrics, 1H-3DEn-

Var and 6H-4DEnVar analyses and forecasts verify better than 6H-3DEnVar. 6H-4DEnVar produces 

better thermodynamic analyses than 1H-3DEnVar. Radar reflectivity shows that 1H-3DEnVar pro-

duces better structure forecasts. For the first 24–48 h of the intensity forecast, 6H-4DEnVar forecast 

performs better than 1H-3DEnVar verified against the best track. Degraded 1H-3DEnVar forecasts 

are found to be associated with background storm center location error as a result of underdisper-

sive ensemble storm center spread. Removing location error in the background improves intensity 

forecasts of 1H-3DEnVar. 
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1. Introduction 

Tropical Cyclones (TCs) can cause losses of life and billions of dollars in damage. For 

example, recent category 5 hurricanes Irma (2017), Maria (2017), Michael (2018), and Do-

rian (2019) each caused more than $5 billion in damage and several dozen direct deaths 

along with hundreds of injuries and indirect deaths. Despite being weaker on the Saffir-

Simpson scale at landfall, Harvey (2017), and Florence (2018) produced additional signif-

icant impacts through widespread heavy rain and inland flooding after stalling near the 

coast. Summaries can be found at (https://www.nhc.noaa.gov/data/tcr, accessed on 12 

April 2021). One way to reduce the significant risk to life and property is through improv-

ing numerical predictions of hurricanes. For example, if rapid intensification (RI) can be 

more confidently forecasted in advance, the decision to evacuate could be made sooner. 

While forecasts can be improved through several avenues, this study focuses on improv-

ing the forecasts of hurricanes by applying advanced data assimilation (DA) techniques. 

Early studies used various bogusing vortex initialization methods to initialize hurri-

cane forecasts when inner-core observations were limited or lacking [1–6]. Although these 

methods were shown to improve forecast skill, the initial storm produced may not be 

dynamically and thermodynamically consistent. Recent studies have shown promise us-

ing ensemble-based data assimilation (DA) to directly ingest inner core observations to 
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initialize hurricane predictions. Such techniques allow more dynamic and thermody-

namic consistency in the TC analysis through the use of flow dependent ensemble covar-

iances. These studies include the use of pure Ensemble Kalman Filters (EnKF) [7–15]. 

Another ensemble-based approach for hurricane initialization uses the hybrid En-

semble-Variational (EnVar) approach. This approach typically incorporates the flow de-

pendent ensemble error covariances into the variational framework [16–21]. EnVar has 

been implemented on both global or convection parameterizing numerical models with a 

focus on hurricane track prediction [20,22–25] and convection allowing or near convection 

allowing models with a focus on hurricane intensity and structure prediction [15,26–29]. 

These studies showed that hybrid EnVar can produce better track or intensity forecast 

than the pure variational method which uses flow-independent background covariance. 

Although intensity forecasts have improved as a result of using more advanced data 

assimilation methods to ingest inner core observations, challenges still remain. One chal-

lenge is associated with the rapid evolution of TCs during the DA window. In such case, 

DA approaches which assume the background error statistics to be fixed during the DA 

window can introduce considerable errors in the analysis. For example, Wang and Lei 

(2014) [25] demonstrated using Hurricane Daniel (2010) that when the background is 

evolving rapidly, the 3DEnVar increment for a six-hourly assimilation window can be 

nearly the opposite of expected. Lu et al., (2017) [29] demonstrated with hurricane Edou-

ard (2014) that 3DEnVar produces poor inner core structure when the background is 

evolving. Such errors can be significant if the storm were to undergo rapid intensification 

or rapid weakening. 

One method to account for rapidly evolving TC background error is to use a four-

dimensional (4D) data assimilation approach where the evolution of the error covariance 

within the finite DA window is accounted for. Such approach includes 4DEnVar, which 

accounts for the 4D error covariance through the use of ensemble covariance [25,29,30]. 

For example, Wang and Lei (2014) [25] found that in Hurricane Daniel (2010) 4DEnVar 

produced an increment at the end of the DA window similar to that produced by propa-

gating the increment valid at the beginning of the window directly using the numerical 

model. Lu et al., (2017) [29] found 4DEnVar produced better inner-core structure and in-

tensity forecasts compared to 3DEnVar when assimilating high-resolution inner-core ob-

servations such as Tail Doppler Radar (TDR) and High-Definition Sounding System 

(HDSS) dropsondes. Another approach is 4DVar where the background covariance is 

propagated through TL/AJ of the model. For example, Poterjoy et al., (2014) [31] and Po-

terjoy and Zhang (2016) [32] tested 4DVar in hurricane Karl (2010) and additionally 

demonstrated hybridizing the ensemble with 4DVar produced smaller errors and a more 

favorable moisture field in hurricane Karl (2010) compared to a pure 4DVar. 

The second method to account for a rapidly evolving TC during DA is simply to re-

duce the length of the cycling interval for the 3D DA approach [11,12]. In the context of a 

linear system, the 4D with a long window and the 3D with multiple short windows should 

be equivalent [33]. However, the same cannot be claimed for the nonlinear system such as 

TC. While either 4D techniques or shorter 3D cycles can account for rapidly evolving TC 

background error covariances, it is unclear how the two methods compare in a case with 

non-linear error evolution such as a hurricane. Compared to a long window 4D approach, 

shorter 3D DA cycles can produce background error that is close to being under linear 

growth, which fits better to the most DA approaches with Gaussian assumption. How-

ever, frequent interruptions to the model can result in an increased imbalance in short 

window 3D compared to long window 4D approaches, which can result in degraded anal-

yses and forecasts. In nonlinear scenario, the error growth captured by a short-term en-

semble vs. a long-term ensemble may also behave differently. 

This study aims to compare and understand the differences of one-hourly 3DEnVar 

with six-hourly 4DEnVar in hurricanes with rapidly evolving background error covari-

ance (BEC) assimilating inner core observations. Furthermore, both methods are com-
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pared with six-hourly Hybrid-3DEnVar to quantify the improvements provided by ac-

counting for the evolution of the background error covariance. To best of the authors’ 

knowledge, there is no published study comparing one-hourly 3DEnVar with 6-Hourly 

4DEnVar for inner-core hurricane DA. The remainder of this paper is organized as fol-

lows: Section 2 describes the system configurations, Section 3 describes the model and 

experiment designs, Section 4 describes the results, Section 5 investigates the spindown 

problem in one-hourly 3DEnVar, and Section 6 is the discussion and conclusions. 

2. Description of Cycled Hybrid Ensemble DA System 

Following Lu et al., (2017) [29], this study utilizes a Gridpoint Statistical Interpolation 

(GSI) based hybrid EnKF-Var DA system for HWRF [28]. This DA system has both 3DEn-

Var and 4DEnVar capabilities with six-hourly frequency (Lu et al., 2017) [29] and is ex-

tended to include 3DEnVar with one-hourly frequency in this study. The system is briefly 

described here mirroring subsections 2(a)–2(d) in Lu et al., (2017) [29]. 

2.1. General Overview 

This study uses a GSI based dual resolution EnKF-Variational (EnVar) DA system 

with a 40-member ensemble and a separate control member. The control member is up-

dated using a variational framework where the ensemble covariance contributes to the 

BEC estimation as described in Section 2.2. The 40-member ensemble is updated by the 

ensemble square root filter (EnSRF) [34] as described in Section 2.3. Prior to the first DA 

cycle the ensemble and control member are initialized using the ensemble analysis from 

the National Centers for Environmental Predictions (NCEP) operational GFS hybrid DA 

system [20]. After a 6 h spinup, the system is continuously cycled. For each cycle, vortex 

relocation (VR) [5,35] is used. Take the 6-hourly 3DEnVar as an example. VR is used to 

update the 6 h ensemble forecast, and 3, 6, and 9 h control forecasts initialized from the 

previous analysis. The modified ensemble and control member are then used as the back-

ground for the first DA cycle. 

The Hybrid DA process [20] consists of four steps: 

1. The relocated background for the control member is updated by the dual-resolution 

GSI augmented control vector (GSI-ACV) [21] using the BEC from the relocated en-

semble. 

2. The relocated ensemble is updated using EnSRF. 

3. The ensemble is recentered such that the ensemble mean matches the control analy-

sis. 

4. The outermost domain is replaced with the GFS Ensemble and control grids for all 

members. 

A 120 h free forecast is initialized from the control analysis. To prepare for the next 

DA cycle, a forecast is initialized from the background and control analyses. Following 

Lu et al., (2017) [29], a directed moving nest strategy is employed for all ensemble forecasts 

to prevent non-overlapping domains for the next DA. 

2.2. GSI-ACV 

The Dual-resolution GSI-ACV updates the relocated control background and is fur-

ther detailed here following Wang (2010) [21], Wang et al., (2013) [20], Wang and Lei 

(2014) [25], and Lu et al., (2017) [29]. For dual-resolution 4DEnVar, the analysis increment 

at time t is defined as 

��
� = � �[�� ∘ (��

�)�

�

���

]       (1)

where D is an operator mapping coarse ensemble model fields to the finer control model 

grid, ��  is the augmented control vectors for the k-th ensemble member, (��
�)� is the k-th 
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ensemble perturbation that is normalized by √K − 1 at time t, with K being the ensemble 

size, and ◦ is the Schur product. The cost function is unchanged from single resolution 

4DEnVar [25]: 
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where a is <a1, a2, …, ak> for k = 1, …, K; A is the matrix defining the localization to the 

ensemble covariance, the length of the DA window is defined by L, ��
��

, �� and � are 

the innovation vector, linearized observation operator and observation error covariance 

valid at time t, respectively. In other words, the ACV is formed by concatenating k unitless 

vectors, and are constrained by a block diagonal matrix, A, during the variational mini-

mization (Equation (2)). Wang et al., (2007) [36] demonstrates the equivalence of this ap-

proach to using the localized ensemble covariance as the background error covariance. 

The localization matrix A is defined with E-folding distance of 1600 km for the horizontal 

localizations and 1.1 scale height (natural log of pressure) for the vertical localization us-

ing the Gaspari and Cohn (1999) [37] localization function following Wang et al., (2013) 

[20] and Lu et al., (2017) [28,29]. When only a single time is considered, Equations (1) and 

(2) describe 3DEnVar [20]. 

2.3. EnKF 

Following Lu et al., (2017) [28,29] the ensemble members are updated by an EnKF, 

specifically the EnSRF [34]. EnSRF is a three-step process: 

First, the ensemble mean is updated by 

��� = ��� + �(� − ����) (3)

where ���  is the analysis ensemble mean, ��� is the prior ensemble mean, � is the Kalman 

gain, y is the observation vector, and H is the observation operator. K is given by 

����(����� + �)��, where �� is the ensemble error variance, and R is the observation 

error variance. 

Second, the ensemble perturbations are updated by: 

�′�
� = (� − ���)�′�

� (4)

where �′�
�  is the ensemble analysis perturbations, I is the identity matrix, ��  is the reduced 

Kalman gain computed as �� = �1 + �
�

����� + ��

��

�, and �′�
�  is the prior ensemble per-

turbations. 

Finally, Equations (3) and (4) are combined to produce the final analysis 

��
� = ��� + �′�

� (5)

where ��
�

 is the analysis ensemble. 

The EnSRF code [34] is designed for use with HWRF and uses the observations pre-

processing, forward operators and quality control provided by GSI. Horizontal and verti-

cal localization implemented to treat sampling errors are similar to those used in the GSI-

ACV. Further, the Relaxation to prior spread (RTPS) multiplicative inflation algorithm 

developed by Whitaker and Hamill (2002) [34] is adopted and the inflation parameter is 

set to 0.9 following Lu et al., (2017) [29]. 

2.4. Vortex Relocation and Modification 

For 6 h forecasts the average storm location error is 15–40 km [38,39]. Location errors 

of this magnitude can degrade the analysis due to violation of the gaussian error assump-

tion [28,29,40,41]. Therefore, following Lu et al., (2017) [28,29], we adopt the HWRF vortex 

relocation (VR) (Vortex Relocation (VR) and Vortex Modification (VM) are 2 steps that 

compose Vortex Initialization (VI) in the operational HWRF [42]). VR takes the simulated 
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vortex and moves it to a new location, while VM adjusts the size and intensity of the vor-

tex) procedure [5,35,42–44] for both the ensemble and control members. In addition, the 

vortex modification (VM) procedure is adopted for the control member when there are no 

inner core observations. The storm center locations are determined using the EnSRF 

method from Whitaker and Hamill (2002) [34] for a single-variable problem. The observa-

tion is the TCVitals storm center location with error estimated to be 10 km following Tra-

han and Sparling (2012) [37]. The TC vortex is removed from the model background and 

then placed in the desired location, where dynamical balancing is applied to ensure co-

herency of the model fields. Details can be found in Lu et al., (2017) [28]. 

Initial tests suggest that applying VR provides benefits in both intensity and track 

forecasts for experiments with both 1 and 6 h frequency when compared to the forecasts 

that did not use VR (not shown). As a result, VR procedures are applied prior to each DA 

cycle in all experiments. Because negative impacts resulting from the interaction between 

the assimilation of actual observations and VM have been seen [45], VM is not used when 

inner core data (e.g., TDR data) are available following Lu et al., (2017) [28,29]. 

3. Experiment Design 

3.1. Hurricane Edouard and Observations Assimilated 

This study uses Hurricane Edouard (2014) to evaluate the performance of one-hourly 

3DEnVar and six-hourly 4DEnVar for hurricanes with rapidly evolving BEC for the pe-

riod where abundant inner core data such as those from TDR are available. Hurricane 

Edouard developed 720 n mi west of the Cape Verde Islands on 1200 UTC 11 September 

2014. Edouard peaked in intensity at 105 kts at 1200 UTC 16 September 2014 before im-

mediately weakening due to an eyewall replacement cycle 

(https://www.nhc.noaa.gov/data/tcr/AL062014_Edouard.pdf, accessed on 14 February 

2019). Edouard began a northward then northeastward motion during this weakening 

phase, accelerating ahead of a midlatitude trough. Finally, Edouard transitioned into a 

post-tropical cyclone on 19 September, before the remnant low was absorbed into a frontal 

system on 21 September. 

Observations from HWRF operational data stream including conventional observa-

tions, clear-sky radiances from satellites (intermediate domain only), satellite derived 

winds [41], and radial velocities from TDR (Table 1) are assimilated. Except where indi-

cated all data are assimilated on both the intermediate and innermost domains. Radial 

velocities are recorded by TDR mounted on the NOAA P-3 aircraft. Descriptions of the 

processing of TDR data can be found in Gamache et al., (2015) [46] and Lu et al., (2017) 

[28]. 

Table 1. Data types assimilated. 

Data Type Domain (d01) Domain (d02) Domain (d03) 

Conventional Obser-

vations 

Radiosondes 

No observations are 

assimilated 

Y Y 

Dropwindsondes Y Y 

Aircraft Reports Y Y 

Surface Ship and Buoy Observations Y Y 

Surface Observations over Land Y Y 

Pibal Winds Y Y 

Wind Profilers Y Y 

Radar-derived Velocity Azimuth Display 

Winds 
Y Y 

WindSat Scatterometer Winds Y Y 

Integrated Precipitable Water 

Derived from the Global Positioning Sys-

tem 

Y Y 
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Tail Doppler Radar Observations Y Y 

Satellite Derived Winds Y Y 

Satellite radiances 
IR Y N 

MW Y N 

DA experiments are performed and compared during cases in which inner-core TDR 

data are available (Figure 1; Table 2). Because data collection during TDR missions is in-

dependent of DA cycle windows, TDR data from a single TDR mission may not be homo-

geneously distributed in these DA windows when assimilated in the six-hourly DA con-

figurations. For example, for the six-hourly DA, DA cycles will be performed at 1200 UTC 

15 September (E1), 1800 UTC 15 September, 1800 UTC 16 September (E2), 1800 UTC 17 

September (E3), 1200 UTC 17 September (E4), and 1800 UTC 17 September (E5), among 

which the 1200 UTC and 1800 UTC 15 September cycles share data from a single flight, as 

do the 1200 UTC and 1800 UTC 17 September cycles. Therefore, inner-core data may not 

be temporally symmetric in these DA windows when assimilated with six-hourly DA. The 

data that corresponds to a single 6 h DA window will be referred to as a batch. 

 

Figure 1. Edouard (2014) Best track maximum wind speed (Vmax; blue) with Tail Doppler Radar 

(TDR) data availability overlaid (green). Center of six-hourly DA windows marked with red dot. 

Table 2. Table of Edouard (2014). Time provided is the center of the 6 h data assimilation (DA) 

window in the six-hourly DA experiments, and the center of the corresponding batch of data. 

Date Abbreviation SFMR Legs 

1200 UTC 15 September 2014 E1 5 

1800 UTC 15 September 2014 E2 3 

1800 UTC 16 September 2014 E3 4 

1200 UTC 17 September 2014 E4 2 

1800 UTC 17 September 2014 E5 1 
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3.2. HWRF Configuration 

The HWRF model is developed by the Environmental Modeling Center (EMC) with 

the Geophycisal Fluid Dynamics Laboratory (GFDL) and the University of Rhode Island 

(URI) since 2002 [41,42]. This study uses the 2014 HWRF configuration and codes (HWRF 

v3.6a) [41] with a two-way triple nested domain with horizontal grid spacing of 

0.18°/0.06°/0.02° (approximately 27/9/3 km). There are 61 vertical levels with the model 

top at 2 hPa following Lu et al., (2017) [28,29]. The outermost, intermediate, and innermost 

domain use 216 × 432, 232 × 454, and 181 × 322 horizontal grid points, respectively. Table 

3 shows the physics parameters follow the 2014 operational HWRF [41], except that ocean 

coupling is disabled. 

A dual resolution EnVar is used to update the control member as described in Section 

2.2. Briefly, the 3 km grid and the 9 km grid both ingest the ensemble from the 9 km grid 

for their EnVar updates. The ensemble of the 9 km grid is updated using an EnSRF as 

described in Section 2.3 and recentered on the control member as described in Lu et al., 

(2017) [28,29].  

Table 3. Table of model physics used for Edouard (2014). 

Physics Scheme 

Microphysics Ferrier 

Cumulus Simplified Arakawa-Schubert (SAS) 

Surface Layer HWRF Surface Layer 

Land-surface Model GFDL slab scheme 

Planetary Boundary Layer Non-local 

Radiation Eta Longwave and Shortwave 

3.3. Experiments 

To test the hypothesis that six-hourly 4DEnVar and one-hourly 3DEnVar produce 

better analyses and forecasts than six-hourly 3DEnVar, three experiments are conducted. 

The first is 6H-3DEnVar, the second is 6H-4DEnVar and the third is 1H-3DEnVar. The 

results of the latter two experiments will be further compared to each other to determine 

what the difference is between the two systems. 

The backgrounds for each experiment are generated from a continuously cycled six-

hourly 3DEnVar system for HWRF from Lu et al., (2017) [29], initialized at 12 UTC 11 

September for Edouard (2014). Given our goal is to compare six-hourly 3DEnVar, six-

hourly 4DEnVar, and one-hourly 3DEnVar for inner core data, experiments are conducted 

when TDR data are available, corresponding to cycles 16, 17, 21, 24, and 25 of Lu et al., 

(2017) [29]. For homogeneous comparison each experiment will start with the same back-

ground from Lu et al., (2017) [29], and one free forecast will be initialized once all the data 

in a single batch has been assimilated. For batches E2 and E5 our experiments are contin-

uously cycled using our E1 and E4 forecasts as backgrounds rather than using the Lu et 

al., (2017) [29] background. When comparing experiments, the discussion will focus on 

the data batches rather than individual cycles unless otherwise noted. 

3.3.1. 6H-3DEnVar 

As stated in Sections 2.1 and 2.4, VR is performed on the control backgrounds at 

hours 3, 6, and 9, and on ensemble forecast at hour 6 in six-hourly3DEnVar prior to DA 

(Figure 2a). Such location updates on the additional control backgrounds at hours 3 and 

9 are due to the requirement of the First Guess at Appropriate time (FGAT) [37] technique, 

which is used during the 3DEnVar GSI-ACV step of the DA to interpolate the background 

to the time of each observation. The 6H-3DEnVar analysis is valid at the center of the 6 h 

DA window with observations of ±3 h from analysis time being assimilated. 
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Figure 2. Comparison of the (a) six-hourly 3DEnVar, (b) six-hourly 4DEnVar, and (c) one-hourly 

3DEnVar systems. 

3.3.2. 6H-4DEnVar 

Like six-hourly 3DEnVar, a 9 h forecast is initialized from the previous control anal-

ysis for six-hourly 4DEnVar and a single analysis is output at the center of the 6 h DA 

window each cycle. Additionally, 9 h ensemble background forecasts are launched from 

each ensemble analysis (Figure 2b). VR is used to relocate the background each hour from 

3 to 9 h for both control and ensemble members. Instead of 3DEnVar, the 4DEnVar DA 

algorithm [25] is used for the GSI-ACV step. As stated earlier, for homogeneous compar-

ison, if no TDR data are available for the previous cycle, the forecast from the previous 

6H-3DEnVar cycle from Lu et al., (2017) [29] is used. If TDR data are available for consec-

utive 6 h DA cycles 6H-4DEnVar uses the forecast from the previous 6H-4DEnVar cycle 

as the background. 
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3.3.3. 1H-3DEnVar 

As stated earlier, each batch of data is assimilated through seven one-hourly DA cycles. 

An analysis is valid at each hour, including at the beginning and end of the mission (Figure 

2c). Like 6H-4DEnVar, 1H-3DEnVar is only run when TDR data are available. When TDR 

data are available in consecutive batches, 1H-3DEnVar uses the final analysis from the 

previous 1H-3DEnVar batch as the background, effectively completing a full 1 h cycle. 

When no TDR data are available in the previous batch, the 3 h forecast initialized from the 

previous Lu et al., (2017) [29] six-hourly 3DEnVar analysis is used as the background. VR 

modifies the background before each hourly DA cycle. A 3DEnVar GSI-ACV update is 

performed on the control member as in the six-hourly 3DEnVar, except only using data 

that occurs during the 1 h window as described above. Similarly, the ensemble is updated 

by the EnKF using only the data in the 1 h window. The standard six-hourly GFS ensemble 

is interpolated in time to initialize the outermost domain. To ensure same observations 

are assimilated across experiments before launching forecasts, the 5-day free forecast for 

1H-3DEnVar is launched from the final analysis of each 6 h period. 

3.3.4. Experiments to Investigate Sensitivity to Relocated Storm Position 

To investigate the impact of storm center location on the analysis and forecast two 

additional experiments are conducted. 6H-4DEnVar-sl and 1H-3DEnVar-sl are the same 

as 6H-4DEnVar and 1H-3DEnVar, respectively, except that during vortex relocation storm 

center locations are manually determined using satellite imagery. All members are relo-

cated to this location instead of using TCVitals and EnSRF to determine the position of 

each member. All experiments are summarized in Table 4, and the flow charts are shown 

in Figure 2. 

Table 4. Table of experiments. 

Experiment Name DA Window Vortex Relocation Procedure DA Method 

6H-3DEnVar 6 h TCVitals + EnSRF 3DEnVar 

6H-4DEnVar 6 h TCVitals + EnSRF 4DEnVar 

1H-3DEnVar 1 h TCVitals + EnSRF 3DEnVar 

6H-4DEnVar-sl 6 h Satellite 4DEnVar 

1H-3DEnVar-sl 1 h Satellite 3DEnVar 

4. Results 

4.1. Intensity Forecast 

Maximum wind speed (Vmax) and minimum sea-level pressure (MSLP) forecasts are 

verified against the National Hurricane Center’s (NHC) best track data for the five data 

batches where TDR data are available. Two spuriously strong maximum wind speed anal-

yses are seen in 6H-3DEnVar (Figure 3a) leading to large Vmax root mean square error 

(RMSE) for 0–6 h (not shown). As a result, 6H-3DEnVar remained too strong once Edou-

ard began to weaken. Both 1H-3DEnVar and 6H-4DEnVar eliminate the spuriously strong 

wind analyses seen in 6H-3DEnVar. However, spindown occurs in three forecasts for 1H-

3DEnVar. Spindown is defined as Vmax decreasing greater than 5 m s−1 (6 h)−1 during the 

first 6–12 h of model integrationwith no such weakening occurring in observations [47]. 

An investigation of the cause of this spindown is shown in Section 5. None of the 3 exper-

iments were able to accurately predict the peak intensity of Edouard. However, forecasts 

of 6H-3DEnVar from E1 and E2 most accurately capture the maximum wind speed in-

creasing trend. Analysis of 6H-4DEnVar valid at E3 best capture the high Vmax. Analyses 

of 1H-3DEnVar capture the Vmax more closely than 6H-4DEnVar for E1 and E2. Forecasts 

initialized during the weakening phase (E4 and E5) in both 6H-4DEnVar and 1H-3DEnVar 

verify better against the best track than 6H-3DEnVar. As is the case for Vmax, MSLP  

(Figure 3b) is spuriously strong in multiple forecast for 6H-3DEnVar at early lead times. 
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6H-4DEnVar and 1H-3DEnVar produce overall more accurate MSLP values in the anal-

yses. While the tendency for spindown in 1H-3DEnVar Vmax does not produce a corre-

sponding significant increase in MSLP, the 1H-3DEnVar forecast tends to produce a bias 

toward a weak storm during peak intensity. 

 

Figure 3. (a) Vmax and (b) MSLP Forecasts plotted over Best track. Hour is hours from 1200 UTC 

15 September. Scatter plot of (c) Vmax vs. MSLP plotted over Best track. Red is 6H-4DEnVar, blue 

is 6H-3DEnVar, green is 1H-3DEnVar, and black is best track. Squares represent the mean of each 

experiment and lines are the slope. p = 0.17 for difference of 1H-3DEnVar and Best track slopes. 
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Figure 3c shows the relationship between Vmax and MSLP. If the model is capturing 

the intensity evolution correctly the slope and the mean of each variable will be similar to 

best track. 6H-3DEnVar and 6H-4DEnVar have similar slopes to best track but 6H-3DEn-

Var shows an apparent strong intensity bias along the slope. 1H-3DEnVar has a smaller 

slope than best track (significant at 83% level), suggesting that for a given change in MSLP 

the change in Vmax is less than expected based on the best track. This relationship shown 

in 1H-3DEnVar is primarily seen in the 0–30 h analysis and forecast due to the spindown 

occurring in Vmax. Overall, 6H-4DEnVar produces the best Vmax and MSLP relationship. 

Figure 3 shows that 1H-3DEnVar and 6H-4DEnVar overall produce better Vmax and 

MSLP analyses than 6H-3DEnVar. Further, once the spindown in 1H-3DEnVar has recov-

ered, 1H-3DEnVar and 6H-3DEnVar produce better forecasts on average than 6H-3DEn-

Var. Specifically, 6H-3DEnVar produces spuriously strong analyses that result in poor 

early forecasts, while 6H-4DEnVar and 1H-3DEnVar forecasts correspond more closely to 

the best track values. This suggests that accounting for the evolution of the BEC is benefi-

cial. However, 1H-3DEnVar experiences spindown, and therefore a less accurate evolu-

tion of Vmax and MSLP compared to 6H-4DEnVar. In summary, 6H-4DEnVar outper-

forms 6H-3DEnVar and 1H-3DEnVar for Vmax and MSLP verification. Further diagnos-

tics are conducted in the following sections to verify the structure and thermodynamic 

fields, to further investigate the differences in analyses and forecasts, and to diagnose the 

causes of these differences. 

4.2. Three-Dimensional Structure Correlation 

In order to evaluate the three-dimensional structure of the TC produced by the mod-

els, the three-dimensional spatial correlation of the model wind field with the TDR wind 

composite (Available at: https://www.aoml.noaa.gov/hrd/Storm_pages/edouard2014/ra-

dar.html, accessed on 9 July 2018) is calculated. The TDR data are recentered for each ex-

periment to match the center of the simulated storm. This three-dimensional spatial cor-

relation (Figure 4) reveals that 6H-3DEnVar provides a worse wind analysis than other 

experiments. 6H-3DEnVar never produces the highest correlation and the mean of the 

correlation is about 4.7% smaller that of 1H-3DEnVar and 6H-4DEnVar. 6H-4DEnVar and 

1H-3DEnVar produce similar wind analysis correlations on average. E3 and E4 show the 

largest difference between experiments, with 6H-4DEnVar having the highest correlation, 

1H-3DEnVar the second highest, and 6H-3DEnVar is the lowest. To demonstrate the dif-

ferences in structure correlation, Figure 4b–d show E4 analyses at 1000 m above ground 

level (AGL). 6H-3DEnVar has a spuriously strong wind maximum on the east side of the 

storm, consistent with the lower structure correlation and the strong Vmax seen in Figure 

3. Further investigation into structure and thermodynamic variables are conducted in the 

next few sections to differentiate the experiments forecasts and to further understand the 

analyses. 
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Figure 4. (a) HRD wind composite at 15 UTC 17 September 2014 at 1000 m, 3 h after the valid time 

of E4. (b) E4 1000 m wind and pressure analysis for 6H-3DEnVar (c) E4 1000 m wind and pressure 

analysis for 6H-4DEnVar (d) E4 1000 m wind and pressure analysis for 1H-3DEnVar (e) three-di-

mensional spatial correlation coefficient of the model wind speed analysis with the TDR wind com-

posite (the values with the highest correlation coefficient among experiments are bolded). 

4.3. Simulated Reflectivity 

In order to better understand the structure of the forecasts, model simulated reflec-

tivity is compared to reflectivity from TDR. Given HWRF does not cycle hydrometeors 

during the DA, only forecasts are compared to reflectivity. Two TDR batches observe the 

inner core near two forecast valid times: valid at 1800 UTC 15 September and 1200 UTC 

17 September in corresponding to the 6 h forecast from batch 1 (E1 + 6 h; not shown) and 

the 18 h forecast from batch 3 (E3 + 18 h; Figure 5), respectively. For the E2 + 6 h forecast, 
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no experiments produced results with consistent distinguishable differences. Therefore, 

this analysis focuses on the E3 + 18 h case. 

 

Figure 5. Simulated radar reflectivity valid 1200 UTC 17 September for (a) 6H-3DEnVar, (b) 6H-4DEnVar from forecast 

launched 1800 UTC 16 September and, (c) 1H-3DEnVar from forecast launched at 2100 UTC 16 September (E3) (d) and 

observed TDR reflectivity valid at 1312 17 UTC September. A and B are structures within the inner eyewall, C marks the 

secondary eyewall, and the rainband marked with D. 

Observations show a double eyewall structure at 1200 UTC 17 September (Figure 5d). 

Each experiment is able to produce the double eyewall structure with varying accuracy. The 

structure within the inner eyewall A/B is captured by both the 6H-4DEnVar (Figure 5b) and 

1H-3DEnVar (Figure 5c), with each capturing 2 distinct maxima in the reflectivity. 6H-

3DEnVar (Figure 5a) only displays one maximum with a small region of lower reflectivity 

extending to the south (A in Figure 5a). The outer eyewall C is well defined in both 6H-

3DEnVar and 1H-3DEnVar, while in 6H-4DEnVar the outer eyewall is present but is not 

as coherent as the other experiments. Randband D is too strong in each experiment, with 

6H-4DEnVar producing notably higher reflectivity values than the 3DEnVar experiments. 

Overall, 1H-3DEnVar is able to capture the structure of both the eyewalls and the rain-

band more accurately compared to the observations than either the 6H-3DEnVar or the 

6H-4DEnVar. 
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4.4. Verification against Stepped Frequency Microwave Radiometer 

Instruments onboard the NOAA WP-3D aircraft allow for some in situ and independ-

ent measurements to verify model analyses and forecasts. The Stepped Frequency Micro-

wave Radiometer (SFMR) provides wind speed measurements with which the inner-core 

structure of the simulated TC is verified. RMSEs for analyses and model forecasts during 

each penetrating leg are calculated and the mean of the RMSEs for each leg of each flight 

mission are computed. Statistical significance for this and all further RMSEs in this paper 

are calculated using the F-Test for equal variances. Model output is recentered so the sim-

ulated TC center matches the observed TC location, allowing the direct comparison of the 

hurricane structure. The number of legs in each case is listed in Table 2. For each free 

forecast, only the first forecast lead time where SFMR and flight level data are available is 

verified. Specifically, these cases are: the 6 h forecast of batch 1 (E1 + 6 h), 24 h forecast 

from batch 2 (E2 + 24 h), 18 h forecast from batch 3 (E3 + 18 h) and 6 h forecast from batch 

4 (E4 + 6 h). No forecast is verified for batch 5 as there is no data available after analysis 

time. SFMR wind speed verification of the analyses shows that 6H-3DEnVar has a mean 

RMSE 40% larger than those of both 6H-4DEnVar and 1H-3DEnVar (Figure 6a), and 6H-

3DEnVar has a larger RMSE than both 1H-3DEnVar and 6H-4DEnVar for 4 of the 5 anal-

yses. Figure 7 shows the increased error in 6H-3DEnVar can be attributed to a wider eye 

with stronger wind maxima than other experiments. No notable difference in RMSE oc-

curs between 1H-3DEnVar and 6H-4DEnVar. 1H-3DEnVar produces a storm with a 

properly sized eye, but 6H-4DEnVar captures the wind speed better (smaller RMSE) ex-

cept in the eyewall. For the forecast, 3 of 4 6H-4DEnVar and 1H-3DEnVar cases produce 

better forecasts than 6H-3DEnVar (Figure 6b). Similarly, the mean RMSE of all cases 

shows the largest RMSE for 6H-3DEnVar, although the difference is smaller than for the 

analyses. 6H-3DEnVar produced the largest wind speed forecast of any experiment in all 

legs (Figure 8). Because all experiments result in similarly sized eyes, the primary differ-

ences are caused by the strength of the eyewall. In summary, verification against SFMR 

data suggests that both 1H-3DEnVar and 6H-4DEnVar produce both better surface wind 

analyses and forecasts than 6H-3DEnVar. However, SFMR only samples small slices of 

the storm and may not be representative of the entire storm. 
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Figure 6. Wind speed (a) Analysis error and (b) Forecast as verified using Stepped Frequency Mi-

crowave Radiometer (SFMR). The value for each experiment is combined RMSE of the penetrating 

legs for each case. Black triangles indicate statistically significant difference between 6H-3DEnVar 

and 6H-4DEnVar at 95% level, black stars indicate statistically significant differences between 6H-

3DEnVar and 1H-3DEnVar at 95% level, and black squares indicate statistically significant differ-

ences between 6H-4DEnVar and 1H-3DEnVar at 95% level. 
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Figure 7. (a–d) SFMR wind speed (black) and model surface wind speed along the SFMR flight track for each leg. (e) HRD 

0 m wind speed composite with penetrating flight legs overlayed (Arrows). Numbers correspond to leg number, and color 

of number corresponds to the color of the arrow representing the leg. Analysis valid at 1800 UTC 16 September 2014. 
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Figure 8. (a–d) SFMR wind speed (black) and model surface wind speed along the SFMR flight track for each leg. Forecast 

valid at 1800 UTC 16 September 2014 from forecast launched 24 h prior. The flight path is the same as in Figure 7. 

5. Diagnosis of Spindown Issue in 1H-3DEnVar 

Frequent spindown is observed in 1H-3DEnVar (Figure 3c), causing a degradation of 

the Vmax forecast at early lead times. An investigation into the cause of the spindown is 

discussed in this section. First, the impact of imbalance due to frequent interruption by 

DA with shortened interval is investigated. To further investigate additional cause of the 

inferior performance of 1H-3DEnVar, in depth diagnostics is performed on a representa-

tive case on 1800 UTC 15 September 2014 case is chosen (Batch 2). The spindown in 1H-

3DEnVar for this batch is typical of all cases. 

5.1. Imbalance 

Previous studies have shown that dynamical imbalance can be introduced during the 

DA process [20]. Mean absolute sea level pressure tendency (Mdpdt) is calculated follow-

ing Equation (6) to evaluate the imbalance. 

Mdpdt =
∑ ∑ ������

�
���

�
���

�∗�
, dpdt = �

�������

∆�
� (6)

where p is pressure, t is time, m and n are the number of grid points along each axis in the 

subdomain being averaged over. Higher values of Mdpdt indicate that absolute value of 

mean pressure is changing more rapidly, which indicates that the model is less balanced 

and is an undesired artifact of the analysis. The imbalance introduced by DA may be seen 
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in MSLP as wave propagating outward from the imbalance. Averaging over the outer-

most domain reveals that Mdpdt in 1H-3DEnVar increases steadily over time (Figure 9a), 

while the 6H-4DEnVar and 6H-3DEnVar do not show a similar increase. However, when 

averaging over the region corresponding to the innermost domain, the peak magnitude 

of dpdt is similar for all experiments. No growth is seen in 1H-3DEnVar and Mdpdt re-

turns to similar baseline levels as 6H-3DEnVar and 6H-4DEnVar before each analysis. The 

wave propagates outside of the inner domain in 45 min (seen as a return to baseline values 

of Mdpdt in Figure 9b–d), within the 1 h window and before the start of next 1 h DA. 

Therefore, the instability is not impacting future DA in the innermost domain. 

 

Figure 9. Mean absolute pressure tendency averaged over (a) the full outermost domain for E1 and E2, and (b–d) over the 

innermost domain during (b) E1 and E2, (c) E3, and (d) E4 and E5. 

5.2. Dry Air Intrusion 

A region of anomalously dry air develops near the inner core in the 1H-3DEnVar 

analyses for batch 2 (E2). This region of dry air is advected into the inner core leading to 

spindown. This dry air results from a persistent region of spuriously strong negative mois-

ture increments in the 1H-3DEnVar analysis. Figure 10 shows that negative moisture in-

crements occur over several consecutive cycles at 2 km above ground level (AGL) to the 

north and northwest of Edouard. This region of drying is not seen in 6H-4DEnVar (not 

shown). Comparing simulated long wave infrared (LWIR) brightness temperature to 

GOES 13 LWIR (Band 4) satellite imagery suggests that these increments result in a 1H-

3DEnVar analysis that is too dry. In contrast, the 6H-4DEnVar analysis is not nearly as 

dry (Figure 11). While there is another region to the northeast of Edouard with persistent 

drying (Figure 10), it does not impede on the inner core and does not have a strong impact 

on the intensity. 
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Figure 10. Left column: Specific humidity analysis (colors) for E2 1H-3DEnVar at (a) 1600 UTC, (c) 

1700 UTC, (e) 1800 UTC, and (g) 1900 UTC with pressure (contours) every 4 hPa and wind barbs 

overlaid. Regions of new dry air and dry air advected during forecasts are circled. Right column: 

Specific humidity (colors) and pressure (contours) increments for E2 1H-3DEnVar at (b) 1600 UTC, 

(d) 1700 UTC, (f) 1800 UTC, and (h) 1900 UTC. The main regions of negative Q increments are cir-

cled. 
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Figure 11. Simulated brightness temperature from the E2 1H-3DEnVar analysis in (a,c) at 1600 UTC and 2100 UTC, re-

spectively, and (e) 6H-4DEnVar analysis at 1800 UTC. Observed GOES 13 LWIR in (b,d,f) at 1600 UTC, 2100 UTC, and 

1800 UTC 15 September 2014, respectively. 

In addition to simulated satellite imagery, dropsonde data are used for in situ verifi-

cation of the specific humidity. Figure 12 shows histograms of analysis specific humidity 

minus observation specific humidity for E2. 1H-3DEnVar (Figure 12c) analysis has a larger 
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standard deviation (SD) of errors and a more negative (dry) mode than 6H-3DEnVar  

(Figure 12a) and 6H-4DEnVar (Figure 12b). In the cycle shown in this section, the anoma-

lously dry regions contribute to weakening of the storm, which is consistent with the spin-

down seen in the forecast. The smaller SD in 6H-4DEnVar is similarly consistent with the 

improved performance during this cycle. This is consistent with the satellite imagery sug-

gesting larger dry regions in the 1H-3DEnVar compared to the 6H-4DEnVar. 

 

Figure 12. Analysis specific humidity error for the 700–900 mb layer as calculated against dropsonde observations for 

batch E2 for (a) 6H-3DEnVar, (b) 6H-4DEnVar, (c) 1H-3DEnVar. 

A small difference in storm location is observed between the model background and 

the satellite imagery and confirmed by wind speed innovations (Figure 13a,b). Due to a 

strong gradient in wind speed near the eyewall, a small location difference can lead to a 

large difference between the background and the observations. The TDR radial wind ob-

servations with absolute innovations > 10 m s−1 are shown in Figure 13 with the 1000 m 

background wind speed and pressure. In order to use the wind observations to update 

additional state variables, the cross-variable covariance is used. Because the dominant 

component of the wind increment is the meridional (U) component, ensemble cross-co-

variances between U and specific humidity is computed for a location representative of 

the large innovations shown in Figure 13b. Figure 13c shows that the largest positive 

cross-covariances for the sample observation are co-located with the largest specific hu-

midity increments in Figure 10. As the U innovation is negative, the positive cross-covar-

iance leads to drying, which is consistent with the sign of the increments in Figure 10. This 

result suggests that the difference in storm location between the relocated background 

and the observations is responsible for the drying through the innovations and cross-var-

iable covariances. A similar cross-covariance pattern exists for 6H-4DEnVar, but the dry-

ing problem is not as severe. As suggested further in Section 5.3, the magnitude of the 

cross-covariances is larger in 1H-3DEnVar than in 6H-4DEnVar. The innovation in 1H-

3DEnVar is also larger than in 6H-4DEnVar. Both are attributed to the under-dispersive-

ness of storm locations in the 1H-4DEnVar background ensemble. 

5.3. Underdispersive Ensemble of Storm Center Locations 

Diagnostics show that the drying issue is likely associated with the underdispersive 

location spread of the ensemble, leading to insufficient correct of storm location and there-

fore poor storm location in the control background of 1H-3DEnVar. Such a poor location 

in the control leads to large innovation shown in Figure 13. Figure 14 shows that the 1H-

3DEnVar background ensemble is consistently more under-dispersive compared to 6H-

4DEnVar, although both use the same RTPS ensemble inflation. When the ensemble is 

underdispersive, the observation is under-utilized, leading to a smaller than optimal 

storm location update. Such a suboptimal update will lead to large innovation seen in 

Figure 13 for observations near large gradients in the observed variable. The 6H-4DEnVar 

ensemble is also underdispersive, however the spread to error ratio is larger than in 1H-
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3DEnVar. As a result, 6H-4DEnVar does not experience the same problems with poor lo-

cation updates. The underspersiveness in the one-hourly ensemble appears to develop 

due to slow growth of the ensemble spread during the 1 h forecast. Hamill and Whitaker 

(2011) [48] similarly demonstrated that ensemble perturbation growth rate can be slow for 

EnKF initilaized forecasts espeically for short lead times. 

 

Figure 13. (a) GOES 13 long wave infrared Satellite imagery with TCVital (red) overlaid. (b) 1H-

3DEnVar E2 at 1700 UTC wind analysis (colors and barbs) overlaid with wind speed increments > 

10 m/s (blue dots) and TCVital (black). (c) 1700 UTC 1H-3DEnVar Ensemble cross-covariance be-

tween U wind speed and specific humidity (Q) for a sample observation (green triangle) corre-

sponding to the region of large innovations. TCVital overlaid (Black dot). 
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Figure 14. Ensemble spread (solid lines) and mean background position error (dotted lines) for 6H-4DEnVar (red) and 

1H-3DEnVar (green) by forecast hour. 

To test the hypothesis that the suboptimal DA analysis resulting from poor back-

ground storm location due to underdispersive location spread is leading to spindown in 

the 1H-3DEnVar, additional experiments are conducted. Both 1H-3DEnVar and 6H-

4DEnVar are rerun. To isolate the impact of location error, all backgrounds are relocated 

to the satellite derived storm centers. Using the satellite derived storm centers reduces the 

position error associated with the linear interpolation of TCVitals. As 6H-3DEnVar does 

not use hourly relocation, and the six-hourly tcvitals are in agreement with the satellite 

locations, 6H-3DEnVar is not rerun with the satellite data derived location. Figure 15 

shows reduced spindown in 1H-3DEnVar-sl compared to 1H-3DEnVar. This is consistent 

with the hypothesis that position error plays a crtical role in the spindown of 1H-3DEn-

Var. However, the 1H-3DEnVar-sl continues to produce a weaker Vmax than other exper-

iments during peak storm intensity, and no improvement is seen in 1H-3DEnVar-sl MSLP 

forecast compared to 1H-3DEnVar. Further, there was some improvement in 6H-4DEn-

Var-sl analysis compared to 6H-4DEnVar. This suggests that both the 1H-3DEnVar and 

6H-4DEnVar systems could benefit from improved VR strategies. 
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Figure 15. Vmax (a) and MSLP (b) for E2 using satellite derived locations during VR. 

6. Summary and Discussion 

The six-hourly four-dimensional and one-hourly three-dimensional EnVar are com-

pared with the six-hourly three-dimensional EnVar for the assimilation of the inner core 

TDR observations for hurricane prediction. Experiments are conducted using hurricane 

Edouard (2014) to evaluate the impact of accounting for the evolution of background error 

covariance in hurricanes with rapidly evolving BEC. Specifically, one-hourly 3DEnVar 

and six-hourly 4DEnVar are proposed as alternatives to the six-hourly Hybrid-3DEnVar 

system that uses stationary covariances over the 6 h DA window. Furthermore, the two 

approaches that both take into account of the rapid background error covariance evolu-

tion, one-hourly Hybrid-3DEnVar and six-hourly Hybrid-4DEnVar, are intercompared. 

6H-3DEnVar is seen to produce the worst analyses, often with spuriously strong wind 
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maxima and pressure minima. 6H-3DEnVar analyses have the largest RMSE when veri-

fied against independent SFMR and dropsonde observations. Structure correlation shows 

a similar result but with a small difference in magnitude. These results suggest that both 

6H-4DEnVar and 1H-3DEnVar produce better analyses than 6H-3DEnVar, supporting the 

hypothesis that accounting for background evolution when the background is evolving 

rapidly improves the analysis. Comparing 6H-4DEnVar and 1H-3DEnVar analyses, the 

6H-4DEnVar produced better moisture analyses than 1H-3DEnVar, particularly in cases 

where 1H-3DEnVar experienced spindown in the forecast. Further diagnostics showed 

that the degraded moisture analyses were responsible for the spindown that degraded the 

1H-3DEnVar forecasts. 

During the forecast, simulated reflectivity and SFMR wind speed suggest that 6H-

3DEnVar in general does not perform as well as 1H-3DEnVar and 6H-4DEnVar. Vmax 

and MSLP forecast by 6H-3DEnVar is in general inferior to that of 1H-3DEnVar and 6H-

4DEnVar. Additionally, although 6H-3DEnVar shows a similar slope of the Vmax and 

MLSP relationship to best track, 6H-3DEnVar shows a bias toward strong storms. 

1H-3DEnVar has a larger weak bias than 6H-4DEnVar. These issues appear to be re-

lated to spindown seen in the 1H-3DEnVar forecast where Vmax weakens, and there is no 

notable corresponding increase in MSLP. This spindown was shown to be a result of 

poorly predicted storm locations in the relocated background that lead to a poor moisture 

analysis and subsequent spindown. A strong wind gradient exists in the transition from 

eye to eyewall, and a slight dislocation between the observations and the background can 

result in large innovations. This problem is further exacerbated by an underdispersive 1H-

3DEnVar ensemble of storm center locations. As a result, little update to the background 

storm center occurs during VR. To prove this hypothesis, additional experiments were 

conducted to relocate all background members to the best possible TC locations. Given 

the temporal frequency limitation of the TCVitals, satellite derived storm centers were 

used in 1H-3DEnVar. Spindown of 1H-3DEnVar is largely alleviated with the improved 

VR. 

Initial cost analysis including both CPU hours and IO shows that the cost of 1H-

3DEnVar is about 5 times that of 6H-3DEnVar. Breakdown of the individual components 

of the cost analysis show that the 5 times increase is primarily due to increased utilization 

of vortex relocation on an hourly basis and the hourly IO associated with shorter cycles. 

Similar analysis shows that 6H-4DEnVar is around 2.5–3 times more expensive than 6H-

3DEnVar. Analysis of the individual components of the cost suggests this is primarily due 

to the use of VR component on hourly backgrounds. Without considering VR, 4DEnVar 

is only about 1.5 times as expensive as 6H-3DEnVar. This 50% cost increase in 6H-4DEn-

Var is attributed to the increased IO associated with hourly backgrounds and the 9 h back-

ground ensemble forecasts. 

In summary, both 6H-4DEnVar and 1H-3DEnVar perform better than 6H-3DEnVar 

by most verification metrics in both the analysis and early forecast but become similar 

after about 48 h. Most differences between 6H-4DEnVar and 1H-3DEnVar are small except 

for (1) Moisture analysis, (2) spindown. Diagnostics suggests that improved vortex relo-

cation can further reduce the differences between 6H-4DEnVar and 1H-3DEnVar. As a 

first attempt to understand 6H-3DEnVar, 6H-4DEnVar and 1H-3DEnVar, a case study is 

performed. Systematic experimentation with more storms are needed for further studies. 
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