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Abstract: The COVID-19 pandemic resulted in stay-at-home policies and other social distancing
behaviors in the United States in spring of 2020. This paper examines the impact that these ac-
tions had on emissions and expected health effects through reduced personal vehicle travel and
electricity consumption. Using daily cell phone mobility data for each U.S. county, we find that
vehicle travel dropped about 40% by mid-April across the nation. States that imposed stay-at-home
policies before March 28 decreased travel slightly more than other states, but travel in all states
decreased significantly. Using data on hourly electricity consumption by electricity region (e.g.,
balancing authority), we find that electricity consumption fell about 6% on average by mid-April
with substantial heterogeneity. Given these decreases in travel and electricity use, we estimate the
county-level expected improvements in air quality, and, therefore, expected declines in mortality.
Overall, we estimate that, for a month of social distancing, the expected premature deaths due to
air pollution from personal vehicle travel and electricity consumption declined by approximately
360 deaths, or about 25% of the baseline 1500 deaths. In addition, we estimate that CO2 emissions
from these sources fell by 46 million metric tons (a reduction of approximately 19%) over the same
time frame.

Keywords: air pollution; COVID-19; social distancing; carbon emissions

1. Introduction

The novel coronavirus outbreak, along with measures intended to contain the spread
of COVID-19, resulted in significant and, in some cases, unprecedented, changes in society.
Social distancing and other measures led to a dramatic decline in economic activity [1].
In a fossil fuel-based economy, such as the U.S., a large adverse demand shock is likely to
have appreciable repercussions for emissions and ambient pollution levels. Though long-
run outcomes are not yet discernible, it is feasible to assess near-term changes in certain
measures of environmental quality. Furthermore, because there is an established literature
linking exposure to ambient pollution to various health outcomes, it is possible to gauge
the effects of such changes on public health [2,3]. The goal of this analysis is to quantify
the health effects of these unprecedented changes from two channels: reduced travel and
electricity consumption. In recent years, emissions from travel and electricity generation
account for between 25% and 50% of national total emissions for several pollutants (see
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Table A1 in Appendix A). Hence this quantification is an important input in an economic
analysis of social distancing.

Our analysis uses cell phone data, which are reported daily for every U.S. county,
to measure changes in mobility, and, by extension, vehicle-miles traveled, over the Febru-
ary to April 2020 period. For electricity, we employ hourly data by electricity region
(e.g., balancing authority) to estimate the changes in electricity consumption, and the
corresponding emissions, over the same time period controlling for observable factors,
such as temperature and a battery of temporal fixed effects. We focus on reductions in
emissions (PM2.5, SO2, NOx, and VOCs) that contribute to the formation of fine particulate
matter (PM2.5). We use integrated assessment modeling to connect emissions to changes
in ambient PM2.5 and the associated reductions in expected adverse health effects from
exposure to pollution. Of particular interest are reductions in PM2.5-associated mortality
risk, as this health endpoint contributes the largest share of air pollution damages [4].

Our study contributes to the literature that uses integrated assessment modeling to
analyze human health effects of pollution emissions from economic activity. Previous
studies that use similar methodology include, for example, analysis of emissions from
pipeline and rail shipments of petroleum products, the emissions consequences of moving
from gasoline vehicles to electric vehicles, and the emissions reductions from increasing
solar generation of electricity [5–7]. Our paper also contributes to the general literature on
the determinants and consequences of social distancing policy [8–13]. Finally, our paper
complements contemporaneous work on the coronavirus’ effect on outdoor air pollution
in North America [14–16], Europe [17,18], and Asia [19–22], and indoor air pollution [23].
Relative to these other papers, our contribution is two-fold. First, we analyze reductions
in emissions by source (either travel or electricity generation) and second we map these
reductions in emissions to spatially disaggregated human health outcomes.

Section 2 describes the data sources and methods for our estimation of the reduction
in deaths from reduced travel and reduced electricity consumption. Section 3 describes the
results, Section 4 provides a discussion of the results with some caveats.

2. Materials and Methods

Calculating the expected health effects of the reductions in personal vehicle travel and
electricity consumption from social distancing has three components: first, estimating the
reduction in travel or electricity consumption; second, calculating the resulting reduction
in emissions; and third, calculating the health effects of the reduction in emissions. To esti-
mate the reduction in travel or electricity consumption, we use estimates of counterfactual
travel or electricity usage based on historical data with controls for relevant confounding
variables, e.g., weather. Next, estimates of emission reductions are based on emissions
rates per unit of travel or on observed emissions from power plants. Finally, the health
effects of the reductions in emissions are calculated from the AP3 integrated assessment
model [5,24,25]. AP3 maps emissions of different primary pollutants from different sources
(counties or point sources) into ambient concentrations of secondary pollutants at receptor
counties and uses dose-response relationships and county-specific demographics to calcu-
late expected deaths from the emissions. Below, we describe the procedure for estimating
health effects from reductions in travel and electricity usage in turn and then give details
of the AP3 model.

2.1. Personal Vehicle Travel

To estimate the health effects of reduced vehicle travel, we combine estimates of
the reduction in travel with emission rates per mile and estimates of the marginal health
effects (marginal damage) per unit of emissions. First we determine the reduction in travel.
Comprehensive data on vehicle miles traveled (VMT) is reported by a variety of state
agencies and collected at the national level. However, our analysis requires high frequency
data to estimate the effect of social distancing that has only been in effect for a short time.
For high-frequency travel data, we turn to Unacast [26]. Unacast, which specializes in
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mobility data analysis, created a pro bono COVID-19 toolkit to help researchers and to
raise public awareness of social distancing. Unacast analyzed cell phone mobility data to
calculate a percentage reduction in distance traveled for each county. To date, Unacast
has not provided information on the time frame over which they estimated counterfactual
travel reductions and which control variables they included. In Appendix A, we analyze
data from Streetlight, who use an alternative methodology to infer VMT from cell phone
mobility data. The results are similar for the two sources. We also present evidence from
gasoline sales. An important confound might be the concurrent, dramatic fall in gasoline
prices. Because the decreasing gasoline price would tend to increase gasoline consumption,
our calculations may understate the true effect. We combine these percentage reductions
with county-level estimates of light duty vehicle VMT from the US EPA MOVES model to
determine the reduction in VMT in each county. Light duty vehicles include cars, mini-
vans, sport utility vehicles (SUVs), and some pick-up trucks. By applying the Unacast
percentage reduction to all light duty vehicles, we are assuming that reductions in travel
are proportional across the vehicle classes.

Second, we use fleet average emissions rates of SO2, PM2.5, NOx, and volatile organic
compounds (VOCs) to map the reduction in travel into the reduction in emissions. Emission
rates for PM2.5, NOx, and VOC are based on national average fleet characteristics and
fuel properties in 2018 and are reported in Tables 4–43 in [27]. The emissions rate for SO2
assumes 22.3 fleet average mpg [28] and 10 ppm sulfur in gasoline, which reflects the latest
gasoline sulfur content regulations. Carbon emissions per mile can be calculated from this
mpg and the carbon content of gasoline.

Third, we use data from the AP3 model that delineates marginal damages per
unit of emissions in each county to map the reduction in emissions to reduction in
marginal damages.

2.2. Electricity Use

To estimate the health effects of reduced electricity usage, we combine estimates of the
reduction in electricity use with estimates of the marginal health effects (marginal damage)
per unit of power produced.

The reduction in electricity usage is estimated from data from individual indepen-
dent system operators (ISOs) and the Energy Information Administration (EIA) on hourly
electricity consumption, referred to as ‘system load’. System load is the aggregate of all
power taken from the grid, including residential, commercial, and residential customers,
as well as line losses. ISOs and the EIA vary in the geographic specificity of their report-
ing, ranging from zones covering local municipal utilities to the entire Tennessee Valley
Authority. We refer to each reporting unit as a power control area (PCA) to simplify the
distinction between types of load zones and balancing authorities. In total there are 105
PCAs in our data.

We match hourly load data to local temperature readings from the National Weather
Service’s Automated Surface Observing Systems (ASOS), a network of automated weather
stations that are typically located at airports. These stations are matched to counties,
and multiple stations’ data are aggregated up to the PCA using population weights. To ac-
count for behind-the-meter generation, we also include hourly reports of solar generation
for PCAs in California and New England.

To develop an estimate of reduced electricity consumption, we pool hourly readings of
load and temperature from 2017-present. For each PCA, we regress the natural logarithm
of hourly load on a set of day of week, hour of day, and week of year dummies. These
control for the regular fluctuations in consumption that follow the clock and calendar.
Hourly temperature data allow us to control for heating and cooling with the inclusion
of a measure of prevailing temperature relative to 18 degrees Celsius (see [29] for more
details on the data assembly and estimation). Our estimate of the reduction in electricity
consumption in a PCA is the remaining unexplained variation in electricity consumption,
which is captured by a set of dummies for each date of interest.
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We estimate the health effects of these reductions in electricity consumption using
a two-step procedure similar to that in Holland et al. [30] for estimating marginal dam-
ages. The first step is to determine hourly expected deaths from pollution from power
plants. The second step is to determine the change in expected deaths from a change in
electricity consumption.

In the first step, we use data reported from EPA’s Continuous Emissions Monitoring
System (CEMS) to measure hourly emissions of SO2, NOx, and PM2.5 at each of the
approximately 1500 fossil fuel fired power plants in the contiguous U.S. SO2 and NOx
are directly reported, and we impute hourly PM2.5 emissions based on average emissions
rates and observed hourly generation. CEMS also reports carbon emissions. We use
a similar procedure to estimate marginal carbon emissions from a change in electricity
usage. Holland et al. [30] report a dramatic decline in emissions in recent years, so we
use emissions from 2017, which is the most recent year in their dataset. Based on the
location of each power plant, we use the AP3 model to map emissions of each pollutant
into expected deaths. We then aggregate across pollutants and across power plants within
an interconnection to calculate the hourly expected deaths from the pollution.

In the second step, we regress hourly expected deaths on hourly electricity load in each
interconnection: East, West, and Texas. We aggregate deaths and load to the interconnection
because electricity generally flows throughout an interconnection and PCA loads are highly
correlated. See [30]. More specifically, let Dt be the expected deaths in the interconnection
due to emissions of all pollutants from all power plants in an interconnnection in hour t.
Our estimating equation is

Dt = βLoadt + αmh + εt, (1)

where Loadt is electricity usage in the interconnnection in hour t and αmh are month of
sample times hour fixed effects (1 year * 12 months * 24 hours fixed effects). The coeffi-
cient β is the change in expected deaths from a change in electricity consumption in the
interconnection.

2.3. The AP3 Model

The AP3 model accounts for pollution dispersal, ambient pollution levels, and popula-
tion density and ages, and hence emissions of different pollutants have different effects in
different locations. AP3 maps emissions of local air pollutants to concentrations, population
exposure, and premature deaths in each of the 3109 counties in the contiguous U.S. [5].
AP3 is an updated version of the AP2 model [4,31].

The first step in the model matches emissions reported in the 2014 National Emissions
Inventory (NEI) to the location of release, by source type. The model differentiates between
ground level area source emissions (vehicles, residences, and small businesses) and point
source emissions (power plants and factories). In the second step, AP3 uses an air quality
model to link annual total emissions to annual average concentrations of both primary and
secondary ambient PM2.5. At its core, the air quality modeling approach used in AP3 is
Gaussian (see appendix to [32]. Further, AP3 employs multi-year average weather data to
model dispersion. AP3 models primary PM2.5, (dispersion), and secondary organics re-
sulting from emissions of VOC are modeled using conversion rate constants. For the other
pollutants (NOx, SO2, and NH3), AP3 analyzes their contribution to ambient secondary
PM2.5 by modeling the interactions among nitrate, sulfate, and ammonium in each receptor
county. The approach to modeling ammonium sulfate formation follows the same method
as in AP2. However, AP3 employs a regression-based method that estimates ammonium
nitrate formation from NOx emissions. As with AP2, NOx emissions are linked to ambient
gaseous nitrate using conversion rate constants and dispersion. Next, in each receptor
county, AP3 fits a polynomial to the process that links gaseous nitrate, and free ammonia,
to the formation of particulate ammonium nitrate. The polynomial controls for temperature
and humidity. The polynomial was fit to daily predictions from the CAMx chemical trans-
port model. References [24,25] report the quality of the PM2.5 predictions in AP3. The third
step uses population and mortality rate data (from the U.S. Census and the Centers for
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Disease Control and Prevention) by age-group and county to estimate exposures in 2014.
The fourth and final step employs peer-reviewed concentration-response functions, linking
exposure to changes in adult mortality rates to estimate the mortality risk consequences of
emissions [2,3]. The coefficients reported in [2] relate changes in annual average PM2.5 to
annual, adult, all-cause mortality risk. As a result the damages should not be interpreted
as due to transient reduction in pollution and the associated acute health effects.

With all these steps in place, the model determines the premature deaths per unit
of pollution (marginal damages). To do this, AP3 first determines baseline deaths due
to baseline emissions (as reported by the USEPA in the 2014 NEI). Then one (U.S. short)
ton of emissions of some pollutant, for example SO2, is added to baseline emissions at a
given source of pollution (county or power plant) and AP3 calculates the resulting change
in concentrations, exposure, and physical health effects. These changes occur in many
locations that receive pollution from the source, so that the marginal damages are the sum
over all these locations. A similar procedure is repeated for all sources and pollutants
covered by AP3.

The AP3 model accepts changes to annual emissions as inputs and produces changes
to annual average, county-level concentrations as outputs. Whether the emission changes
manifest within a particular month, or as an evenly distributed change throughout the
year does not affect the relationship between emissions and annual average concentrations
in the AP3 model. The ability of the AP3 model to reliably reproduce observed annual
average concentrations at USEPA’s monitoring across the contiguous United States has been
documented in prior work [24,31]. The approach to modeling the relationship between
emissions, annual average concentrations, and subsequent health impact calculations used
in the present study has been used in numerous studies [33], Chapter 5, page 10).

3. Results

The reduction in light-duty vehicle travel is summarized in Panel (a) in Figure 1 which
shows the seven-day moving average of the VMT-weighted average reduction across
counties for two groups: counties in states that had an early stay-at-home policy in place by
March 28 and counties in states that did not (some of which imposed a stay-at-home policy
at a later date) The robust standard errors for the confidence intervals are clustered at the
state level and account for serial correlation and correlations across counties within a state.
Before early March there is no reduction in VMT, but by the end of March, VMT fell by
approximately 40%. States with early stay-at-home policies reduced travel more than others,
however, there is a substantial reduction in travel in all the states. An F-test of an equal
reduction during the last week of our data is rejected at the 5% level. Data from individual
states are shown in Figure A1 in Appendix A Since early April, the VMT reduction seems
to have stabilized at around a 40% average reduction. We use the last week of data (from
11 April to 17 April) to calculate the reduction in light duty VMT for each county relative to
the baseline. Recent research by Tanzer-Gruener et al. [16] conducted using ground-level
field measurements of ambient local air pollution corroborates the connection between
urban air quality and changes in transportation emissions. They observe reductions in
constituents of nitrogen oxides (specifically nitrogen dioxide, NO2) of about 50% that match
well with the Unacast data in the Pittsburgh, Pennsylvania metropolitan area, which shows
that personal travel was reduced by 46% during the same time period.
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(a) Personal vehicle travel

(b) Electricity consumption

Figure 1. Effect of social distancing on travel and electricity consumption. Notes: Seven day moving
averages. Data from [26,29]. Early-policy states put a stay-at-home policy in place by 28 March 2020.
Shaded area indicates 95% confidence interval.

The fleet average emissions rates (in grams per mile) are shown in Table 1. Additionally
shown are the VMT-weighted mean deaths per mile across all counties in the contiguous
U.S. The table shows that NOx emissions are by far the most harmful pollutant from the
current vehicle fleet resulting in almost two expected deaths per billion miles traveled.
Conversely, the very low SO2 emission rates yield fewer deaths, per VMT, than NOx.
Combined, these four pollutants account for over three expected deaths per billion miles
traveled. Using the fleet average mpg and the carbon content of gasoline, we can also
calculate the average CO2 emissions per mile.
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Table 1. U.S. light duty vehicle fleet emissions rates and expected death rates.

Pollutant Emissions Deaths Per
(g/Mile) Billion Miles

SO2 0.003 0.031
PM2.5 0.013 0.469
NOx 0.384 1.944
VOC 0.386 0.632

Notes: Deaths are VMT weighted averages across all counties in the contiguous U.S.

To calculate the reduction in expected deaths through reduced travel in a county
because of social distancing, we multiply the county-level reduction in miles traveled
(summarized in Figure 1 by the county-specific estimates of expected deaths per billion
miles (summarized in Table 1. The reduction in expected deaths is mapped in Figure A4 in
Appendix A. The reductions in deaths are the greatest in California’s urban areas.

The estimated reductions in electricity consumption are shown in Panel b of Figure 1.
The figure shows the seven-day moving average of the load-weighted average coefficients
across the PCAs. The robust standard errors for the confidence intervals are clustered at
the PCA to account for serial correlation. The results show that there are not reductions
in electricity usage before early March but by mid-April reductions in electricity usage
average about 6%. Because PCAs can cross state boundaries, we do not break out the
reduction by state stay-at-home policy.

Table 2 shows the coefficients and standard errors from estimating Equation (1).
Results are reported for each pollutant individually, as well as in total. The East is the
dirtiest interconnection with three expected deaths per TWh of electricity consumption.
The bulk of the harm in the East comes from emissions of SO2. Marginal electricity
consumption is least harmful in the West with less than one expected death per TWh of
electricity consumption.

Table 2. Marginal expected deaths per TWh of electricity consumption.

Interconnection Total SO2 NOx PM2.5

East 3.106 2.119 0.554 0.433
(0.147) (0.134) (0.018) (0.008)

West 0.849 0.255 0.297 0.297
(0.026) (0.015) (0.011) (0.012)

Texas 1.698 1.225 0.254 0.219
(0.117) (0.106) (0.011) (0.009)

Notes: Newey–West standard errors (48 h lag) in parentheses. Regressions include month of sample by hour
fixed effects.

To calculate the reduction in expected deaths through reduced electricity consumption
from social distancing, we multiply the estimated reduction in electricity consumption
at a PCA (summarized in Figure 1 by the expected deaths per TWh in Table 2 for the
appropriate interconnection. The reduction in expected deaths is mapped in Figure A7 in
Appendix A. The reductions are the greatest in the Midwest and Southeast, but are much
smaller than from reduced travel.

Social distancing due to the COVID-19 outbreak led to reduced personal vehicle travel
and electricity consumption which, in turn, lowered emissions of pollution and expected
deaths. We measure the reduction in emissions by comparing the electricity consumption
and transportation in April 2020 to the February 2020 baseline and use the AP3 model to
map changes in emissions to changes in expected deaths per month of reduced emissions.
The overall effect of these changes, aggregated to the contiguous U.S., is shown in Table 3.
Our baseline estimated that the number of expected deaths per month from air pollution
from all light-duty vehicle travel is 666 expected deaths. Our estimated 40% average
reduction in travel implies that the expected deaths is reduced by 314 deaths per month
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due to reduced travel. This 47% reduction in deaths indicates that travel reductions
occurred disproportionately in high damage locations. The table breaks the reduction
in deaths into the precursor pollutant to which they can be attributed. Over half of the
reduction in deaths are due to reduced NOx emissions, but reductions in other pollutants,
such as VOCs and PM2.5, also contributed substantially. For electricity consumption, our
baseline estimated number of expected deaths per month from air pollution from electricity
consumption is 859 deaths. This is a higher baseline than for travel, but the 6% reduction
in electricity consumption implies that expected deaths are only reduced by 49 deaths
(about 15% of the reduction in deaths from travel). The primary reduction in deaths from
electricity consumption can be attributed to reduced SO2 emissions. Combining the results
for the reduction in travel and electricity usage gives a reduction of 363 expected deaths.

Table 3. Monthly reduction in deaths from reduced air pollution.

Travel Electricity Total

Baseline Expected
Deaths

665.9 859.0 1524.8

Average Percent
Reduction

41.0 6.2 n.a.

Reduction in
Expected Deaths

Total 313.8 48.8 362.6
from SO2 3.1 32.7 35.8
from NOx 195.8 8.9 204.8
from PM2.5 48.9 7.2 56.1
from VOC 66.0 66.0

Notes: Average percent reduction in travel is weighted by VMT. Average percent reduction in electricity is
weighted by average load in 2019. Deaths are expected deaths per month.

The preceding analysis focuses on the expected health benefits from local pollutants
of the reductions in personal vehicle travel and electricity consumption due to social
distancing. Additionally, these reductions imply reductions in CO2 emissions which we
can calculate using similar procedures. In particular, for travel we can use the carbon
content of gasoline and the fleet mpg together with our estimated reduction in VMT to
estimate the reduction in carbon emissions. Applying this methodology, we estimate that
CO2 emissions were reduced by 35.4 million metric tons from a month of social distancing.
For electricity consumption, we use the hourly power plant CO2 emissions from CEMS
to estimate the marginal CO2 emissions from electricity consumption. Applying these
estimates to our estimated reduction in electricity consumption in the various regions
implies an aggregate reduction in CO2 emissions from power plants of 10.5 million metric
tons from a month of social distancing. Combining the reductions in CO2 from travel and
electricity consumption implies that the month of social distancing reduced CO2 emissions
by 45.9 million metric tons. This is approximately 19% of the 242 million metric tons that
are emitted monthly from driving and using electricity.

Social distancing was not evenly distributed across the country as some states and
cities implemented stay-at-home policies while others did not. In addition, behavioral
changes differed across regions, and mortality risks (as specified by the AP3 model) differ
across counties. Table 4 shows the heterogeneity in the reduction in expected deaths
and CO2 emissions due to the reduction in travel for the top MSAs and states. Social
distancing in Los Angeles resulted in the largest reduction in expected deaths (77) and
carbon emissions (1.1 million metric tons). New York City had a larger percentage reduction
in travel but a smaller reduction in expected deaths (26) because of the lower number of
baseline deaths per mile traveled. Behavioral changes in other large cities also induced
substantial reductions in expected deaths and in CO2 emissions. At the state level, social
distancing in California led to the largest reduction in deaths (115) and in CO2 emissions
(4 million metric tons) from reduced travel.
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Table 4. Monthly reduction in deaths from travel by MSA and state.

Monthly Baseline Percent Reduction Reduced
VMT Expected Travel in Expected CO2

(Billions) Deaths Reduction Deaths Emissions

Total 216.46 665.86 41.01 313.81 35.38

Top MSAs

Los Angeles 5.83 157.37 48.68 76.61 1.13
New York
City

4.27 42.72 61.24 26.39 1.04

Chicago 3.80 24.95 48.38 12.28 0.73
San Diego 2.10 17.27 51.59 8.91 0.43
Santa Ana 2.01 16.54 50.92 8.43 0.41
Atlanta 4.17 15.44 44.65 7.41 0.74
Washington
DC

3.04 11.19 53.72 6.34 0.65

Philadelphia 1.80 9.91 54.88 5.45 0.39
Newark 1.39 9.19 56.21 5.31 0.31
Oakland
(CA)

1.62 10.53 50.30 5.25 0.32

Long Island 1.44 7.71 53.23 4.34 0.31
Minneapolis 2.30 8.33 49.97 4.31 0.46
Edison (NJ) 1.67 7.64 52.90 4.05 0.35
Tampa 1.98 8.38 46.60 4.03 0.37
San Jose 1.18 6.10 57.88 3.56 0.27

Top States

California 24.19 240.81 42.73 115.00 4.12
New York 9.88 46.32 50.85 27.52 2.00
New Jersey 5.56 32.85 52.76 17.95 1.17
Florida 14.43 34.45 47.27 16.97 2.72
Illinois 7.39 29.90 41.06 14.06 1.21
Pennsylvania 7.21 22.97 42.67 10.80 1.23
Ohio 9.13 25.61 38.76 10.43 1.41
Texas 17.76 25.61 37.48 10.29 2.65
Michigan 7.04 16.12 52.42 8.89 1.47
Georgia 7.81 19.43 38.89 8.69 1.21
Maryland 4.19 13.99 46.86 6.81 0.78
North
Carolina

7.83 15.41 36.23 5.85 1.13

Virginia 6.39 12.67 40.48 5.73 1.03
Massachusetts 4.12 9.91 50.78 5.12 0.83
Minnesota 4.12 9.83 44.42 4.87 0.73

Notes: Average travel reduction is weighted by VMT. Reduced CO2 emissions in millions of metric tons.

Because the PCAs do not map cleanly into states and MSAs, we aggregate them into
geographic areas based on independent system operators and NERC regions. The re-
ductions in expected deaths and CO2 emissions from electricity consumption in these
geographic areas are given in Table A4 in Appendix A. About half of the reductions in
expected deaths and CO2 emissions come from electricity consumption reductions in the
Southeast and the Midwest (reduction of 13 and 12 deaths and 2.5 and 2.4 million metric
tons of CO2 emissions). Although California had one of the larger percent reductions in
electricity consumption (an 8% reduction), this reduction led to smaller declines in expected
deaths and CO2 emissions due to cleaner electricity generation in the West.

4. Discussion

We note important caveats to our findings. The first set of caveats concern the mapping
from emissions to expected deaths using the AP3 model. First, AP3 uses concentration-
response functions from the epidemiological literature [2] that assume the incremental risk
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from exposure to PM2.5 is proportional to baseline mortality rates. Because of heightened
mortality risk from COVID-19, our calculated reduction in deaths may significantly under-
state actual reductions in PM2.5 exposure risk. See the Appendix for a further discussion of
this issue. Second, during the early stages of the pandemic, access to hospitals and health
care resources was limited. Thus, treatments for illnesses (other than COVID-19) and the
ability for hospitals to admit patients suffering from other maladies were attenuated due to
scarce capacity. As a result, rates of morbidities and mortality for health states exacerbated
by pollution exposure were likely higher during the pandemic. A final concern related
to our approach centers on exposures. The concentration-response function used herein
pertains to the context of populations enduring exposure to ambient PM2.5 according to
their usual mix of indoor and outdoor activity [2]. Clearly, behaviors changed during
the pandemic. One might contend that people stayed indoors more than during normal
times. Although this may be true with respect to labor market and retail activity, there
is survey evidence that people adapted to the lockdowns by finding other opportunities
to be outdoors (https://theharrispoll.com/a-behavioral-shift/, accessed on 13 October
2020. Another issue with exposures is that AP3 models dispersion and formation of sec-
ondary PM2.5 based on multi-year averages of weather conditions by county. So our results
should be interpreted as an approximation based on these averages. Thus, while it is
possible that exposure levels may have shifted, precisely estimating the extent to which
this is true is both beyond the scope of the present study and likely to take years of ad-
ditional follow-up research. We contend that a near-term estimate based on the existing
concentration-response function is unlikely to introduce significant bias into the health
benefit results and has immediate, policy-relevant value.

Other caveats include the fact that our econometric estimation of counterfactual
emissions and Unacast’s estimates of counterfactual mobility are uncertain. Additionally,
we are interpreting changes in cell phone mobility data as translating directly into changes
in VMT from light-duty vehicles, and we do not model intermodal substitution from public
transit to personal vehicle use. Finally, we cannot attribute the observed changes in travel
and electricity usage to any specific policy or set of policies but only to behavioral changes
as observed over this time frame.

Our work provides insight into the benefits and costs of policies related to social
distancing [34]. Of course, the primary inputs to a benefit-cost analysis of social distancing
would include avoided coronavirus infections, estimated in the trillions of dollars [12],
and reduced economic activity. Our work augments these central arguments with one of
the potentially many important non-market outcomes, such as health, education, and the
environment. Monetization facilitates inclusion of these health benefits directly into a
benefit-cost analysis of social distancing. For example, suppose we assume a value of a
statistical life (VSL) of $9 million and a social cost of carbon of $50 per ton. Multiplying the
reduction in expected deaths by the VSL and the reductions in CO2 emissions by the social
cost of carbon and then adding the results reveals that the national environmental benefit
of social distancing is $5.5 billion per month with about 60% of this benefit from reduced
deaths. These benefits accrue substantially from social distancing in large metropolitan
areas: about $750 million per month from Los Angeles and about $320 million per month
from New York City.

5. Conclusions

Social distancing, to control the spread of the novel coronavirus, resulted in unprece-
dented changes in society and in economic activity. Among these are substantial changes
in vehicle travel and in electricity usage. This paper quantifies reductions in travel and
electricity usage relative to counterfactuals using highly-resolved data. We find that, at the
county level, average vehicle travel fell by about 40% whereas electricity usage dropped
by about 6% during the months of March and April 2020. We then combine the estimated
reductions in travel and electricity usage with air pollution emissions rates and the AP3
model, which links emissions to ambient concentrations and expected deaths. We find

https://theharrispoll.com/a-behavioral-shift/
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that the reductions in emissions from travel and electricity usage reduced deaths by over
360 deaths per month. The bulk of this reduction is attributed to less personal vehicle
travel, and, in particular, reduced NOx emissions from this travel. Social distancing in
California accounted for about a third of the reduction in deaths with Los Angeles alone
contributing 20% of the national total. New York accounted for about 10% of the national
total. Furthermore, we estimate that social distancing resulted in approximately 46 million
metric tons less CO2 emissions per month. These results complement existing work on the
air pollution effects of the pandemic by explicitly relating changes in behavior to reductions
in pollution and corresponding reductions in mortality.

Our findings are specific to the unique circumstances of the initial period of the
COVID-19 pandemic in the United States. To conduct this analysis, we matched real-time
data sources covering mobility and electricity consumption to the EPA’s CEMS data on
power plant emissions and the AP3 integrated assessment model. With each of these data
sources in hand, the methodology we employ can be applied to analyze other economic
shocks in other contexts. Without access to these essential data inputs to model location-
specific shocks, however, we caution that it would be inappropriate to simply extrapolate
our findings to new situations.

Using observed behavioral changes, our paper demonstrates the degree to which
reduced reliance on fossil-fuel based transport and power generation yields public health
benefits. In the long run these findings are, perhaps, most interesting when interpreted in
the context of a post-COVID-19 economy in which remote working and retail delivery are
more common. In this state of the world as observed in early April 2020, power demand is
only marginally affected, whereas personal travel declines appreciably. The paper shows
significant local health benefits from this adjustment. The extent to which consumption
habits revert to their pre-COVID-19 levels remains to be seen.
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Appendix A

Appendix A.1. Emissions from All Sources

Table A1 shows the tonnage of emissions of relevant criteria pollutants from the two
broad source categories covered by this analysis. Electric power generation contributes
about 1.1 million tons of NOx while highway vehicles (inclusive of light duty cars and
heavy duty commercial trucks) emit another 3.3 million tons. Together these discharges
amount to 43% of the national total emissions. Power generation and vehicle emissions of
primary PM2.5 comprise just over 20% of total, national emissions. Releases of SO2 from
these two source categories total up to about 1.3 million tons, or about half of the national
total. For volatile organic compounds (VOCs), the total from power plants and vehicles is
1.6 million tons. This is 10% of national VOC emissions.
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Table A1. Overall air pollution emissions by source, 2018.

Source NOx PM2.5 SO2 VOC

Fuel Combustion: Electric Util. 1114 182 1306 38
Fuel Combustion: Industrial 1143 224 534 110
Fuel Combustion Other 541 343 116 372
Chemical & Allied Product Mfg 47 14 123 77
Metals Processing 70 44 105 29
Petroleum & Related Industries 717 29 104 3145
Other Industrial Processes 330 265 167 346
Solvent Utilization 1 4 0 3052
Storage & Transport 6 17 3 675
Waste Disposal & Recycling 110 230 32 233
Highway Vehicles 3300 100 27 1609
Off-Highway 2653 173 69 1622
Miscellaneous 294 3689 150 4669

Total 10,327 5315 2735 15,975
Notes: Units are thousands of U.S. Short Tons. Data from [35].

Appendix A.2. Additional Travel Data

In the main text, we applied the travel reduction percentages from Unacast to the
EPA’s MOVES estimates of VMT and aggregated the results by states that had early and
late policy dates. The results for each individual state are shown in Figure A1.

An alternative source of travel data comes from Streetlight [36]. They use cell phone
mobility data to directly estimate reductions in VMT. An analogous figure to Figure 1 made
using the Streetlight data is shown in Figure A2. The results from using the Streetlight
data to estimate the reduction in deaths from decreased air pollution are given in Table A2.
Compared to the results in the main text, the Streetlight data gives a greater decrease in
VMT and hence a greater reduction in deaths. However, the decrease in the Streetlight
VMT is larger than we would expect from the reduction in gasoline sales documented
in Figure A3, and the baseline estimate of total VMT in the Streetlight data is about 40%
greater than other estimates. For these reasons, we present the results from the Unacast
data in the main text.

Table A2. Reduction in deaths from reduced air pollution—StreetLight VMT Travel Data.

Travel Electricity Total

Baseline Lives Lost 665.6 859.0 1524.6
Average Percent
Reduction

66.9 6.2 n.a.

Reduction in Lives
Lost

Total 492.5 48.8 541.3
from SO2 4.9 32.7 37.6
from NOx 309.9 8.9 318.9
from PM2.5 75.7 7.2 82.9
from VOC 102.0 102.0

Notes: Average travel reduction is weighted by VMT. Baseline monthly deaths from travel is slightly lower than
in Table 3 because there are more counties with missing data.
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(a) Early Policy States Group A (b) Early Policy States Group B

(c) Late Policy States Group A (d) Late Policy States Group B
Figure A1. Personal vehicle travel by state. Notes: Seven day moving averages of VMT weighted county data in each
state [26]. Early policy states put a stay-at-home policy in place by 28 March 2020. Groups A and B distinction is arbitrary.
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Figure A2. lReduction in StreetLight VMT travel data. Notes: Data from [36]. Baseline is average daily VMT in January
2020. Seven day moving averages. Early-policy states put a stay-at-home policy in place by 28 March 2020. Shaded area
shows 95% confidence interval.

Figure A3. lU.S. product supplied of finished motor gasoline. Notes: Data from [37].
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Appendix A.3. Weekly Gasoline Sales

An alternative method for inferring changes in air pollution from vehicle travel would
be to use changes in gasoline sales. Neither the cell phone data nor gasoline sales data are
ideal. The data we use measure the location of all types of mobility each day. Gasoline
sales data, which can be obtained from providers such as OPIS, measure gasoline sales at a
gasoline station each week. On the one hand, the mobility data more accurately measure
where and when activity occurs. However, mobility data do not distinguish between
walking, public transport, and driving; they do not inform us on the fuel economy of the
vehicle being driven; and the method Unacast uses to measure the baseline is not publicly
available. On the other hand, the gasoline sales data more accurately measure the energy
use we are studying. However, the gasoline sales data do not provide the location of where
the gasoline is being consumed or when it is consumed. There may be a few weeks lag
between when gasoline is purchased and when it is used. This lag is a function of driving
behavior so it will attenuate the estimate that we are trying to capture at the start of the
social distancing responses. Another constraint with using the OPIS data is the cost of
acquiring these data. All other data in this paper are free and publicly available.

Figure A3 shows the sales of gasoline, across the entire U.S., by week from 2007–2019
and the beginning of 2020. Before 2020, the sales range between 8000 and 10,000 with an
average around 9000 and a small peak in summer consumption (units are thousands of
barrels per day). The first 11 weeks of 2020 are within this range, but starting with the
12th week (20 March) there is 40% drop down to about 5000. This decrease is well outside
the historical norm, but is consistent with the drop in travel from the Unacast data. Sales
remain depressed at this low level for the last three weeks of data (up to 17 April). Further
evidence comes from monthly gasoline sales at the state level from EIA [38]. Table A3
shows that there is generally good agreement between the decrease in gasoline sales by
state in March and April and the corresponding decrease in travel as measured by the
Unacast data.

Table A3. Comparison of travel data with gasoline sales data.

Month-Group Number Unacast Travel EIA Gas Sales Correlation
Observations Percent

Reduction
Percent

Reduction

March-Early 24 20.9 18.0 0.55
March-Late 25 16.7 11.9 0.38
April-Early 24 42.7 38.3 0.82
April-Late 25 38.2 34.4 0.68

Notes: EIA [38] gasoline sales are by state and month. Unacast [26] distance traveled are aggregated to the state
and month as well. For example, the March-Early cell contains data for the values of these variables in March for
the 24 states that had stay-at-home policies in place by 28 March. Gas sales reduction is 2020 sales as a percent of
average 2016–2019 sales by state and month.

Appendix A.4. Supplementary Information about Reductions in Expected Deaths

Figures A4 shows the reduction in deaths from reduced travel at the county level. The
spatial distribution of the reduction in deaths depends on reduced travel from COVID-19,
observed vehicle miles traveled, population exposure per ton of emissions, and demograph-
ics of the exposed population. The reduction in deaths for a given county corresponds
to the number deaths that were averted due to reduced driving in the county. This does
not mean that all, or even most, of the deaths would have occurred in that county. Due
to the dispersion of pollution, many other counties would have received the pollution,
and, therefore, received the deaths. Figure A5 shows the reduction in deaths received at
the county level. Figure A6 breaks down the reduction in deaths received by pollutant and
normalized by population to express the results in mortality rates.
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Figure A4. Reduction in deaths: travel. Notes: Figure shows monthly reduction in expected deaths from reduced travel in
each county.

Figure A5. Reduction in deaths received: travel. Notes: Figure shows monthly reduction in expected deaths received in
each county.
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(a) SO2 (b) NOx

(c) PM2.5 (d) VOC
Figure A6. Reduction in mortality rate: travel by pollutant. Notes: Reduction in expected deaths per million population in
a month.

Figure A7 shows the reduction in deaths from reduced electricity consumption at the
PCA level. The spatial distribution depends on the reduction in electricity usage from
COVID-19, the regional mix of fuels used to produce power, population exposure per ton
of emissions, and demographics of the exposed population. These figures also illustrate
that data are missing for a small number of counties. Table A4 shows the reduction in
deaths aggregated to geographic regions based on a combination of ISO and NERC regions.
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Table A4. Monthly reduction in deaths from electricity generation.

Monthly Baseline Percent Reduction Reduced
Consumption Expected Electricity in Expected CO2

(TWh) Deaths Reduction Deaths Emissions

Total 332.23 858.96 6.20 48.84 10.47

Southeast Utilities 54.98 170.77 8.91 13.13 2.55
Midwest Market 57.66 179.09 7.63 12.38 2.41
MidAtlantic Market 65.57 203.63 6.10 11.18 2.17
Southwest Market 22.54 69.99 6.11 3.92 0.76
Texas Market 31.97 54.30 6.66 3.29 0.92
New York Market 13.05 40.53 8.17 2.92 0.57
New England Market 9.77 30.34 5.32 1.43 0.28
California Market 18.17 15.42 7.61 1.02 0.56
Western Utilities 38.47 32.65 3.12 0.95 0.52
Florida Utilities 20.04 62.24 −1.97 −1.37 −0.27

Notes: California market is CAISO, Texas market is ERCOT, New England market is ISONE, Midwest market
is MISO, New York market is NYISO, Mid-Atlantic market is PJM, Southwest market is SPP. For the others
we aggregate PCAs by the NERC region: Florida (FRCC), Southeast (SERC), Western (WECC). Reduced CO2
emissions in millions of metric tons.

Figure A7. Reduction in deaths: electricity. Notes: Figure shows monthly reduction in expected deaths from reduced
electricity consumption in each PCA.

Appendix A.5. COVID-19 Deaths and Total Respiratory Deaths

There are aspects of PM2.5 and COVID-19 that require an important qualification,
or caveat, to our findings. The epidemiological literature that establishes the associa-
tion between PM2.5 and premature mortality repeatedly finds that risk from exposure is
proportional to baseline mortality rates [2,3]. Because of this, our benefit estimates may
significantly understate actual benefits. The estimated ambient pollution reductions have
occurred during a period of time when baseline risks are elevated. We modeled the link
between emissions and monetary damages with data from the most recent year compre-
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hensive economy-wide emissions data are available, the 2014 model year. If risk from
exposure is proportional to mortality rates in a given period, then it is quite likely that
exposure during a period when mortality rates are elevated will yield a larger relative risk.
Thus, damages will be higher in the elevated risk period.

To gauge how large this effect might be we gathered daily COVID-19 mortality
data. Figure A8 shows the monthly mortality rates for COVID-19 deaths and for total
respiratory deaths from 2018 (the most recent year for which month-by-county data are
available) across all counties in the contiguous U.S. It shows that risks are clearly elevated
during the COVID-19 period from March and April 2020 [39]. The population-weighted
average COVID-19 fatality rate in April of 2020 is approximately three-times larger than
the respiratory cause mortality rate, in April of 2018. However, severe COVID-19 outbreaks
are highly concentrated in a few counties. Figure A9 depicts these cases. The intent is to
convey how much baseline mortality rates have changed due to COVID-19, and what that
adjustment might mean for concurrent benefits from PM2.5 reductions. The top-left panel
shows the COVID-19 (April 2020) and respiratory (April 2018) rates for New York City.
The difference in baseline risk is clear and extreme. Therefore, reductions in ambient PM2.5
may be severely underestimated in this area. Detroit (top right) shows a more modest
(though still five fold) difference. These comparisons in Los Angeles and San Francisco
reveal much smaller differences.

Figure A8. COVID-19 (2020) and total respiratory deaths (2018). Notes: Red indicates deaths due to COVID, black indicates
all respiratory deaths. Each dot represents the deaths in a county for a given month. Source [39].
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Figure A9. COVID-19 (2020) and total respiratory deaths (2018) in selected cities. Notes: Red indicates deaths due to
COVID, black indicates all respiratory deaths. Source [39].
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