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Abstract: Using observational data covering 1948–2020, the environmental factors controlling the
winter precipitation in California were investigated. Empirical orthogonal function (EOF) analysis
was applied to identify the dominant climate regimes contributing to the precipitation. The first
EOF mode described a consistent change, with 70.1% variance contribution, and the second mode
exhibited a south–east dipole change, with 11.7% contribution. For EOF1, the relationship was
positive between PC1(principal component) and SST (sea surface temperature) in the central Pacific
Ocean, while it was negative with SST in the southeast Indian Ocean. The Pacific–North America
mode, induced by the positive SST and precipitation in the central Pacific Ocean, leads to California
being occupied by southwesterlies, which would transport warm and wet flow from the ocean,
beneficial for precipitation. As for the negative relationship, California is controlled by biotrophically
high pressure, representing part of the Rossby wave train induced by the positive SST in the Indian
ocean, which is unfavorable for the precipitation. For EOF2, California is controlled by positive
vorticity at the upper level, whereas at the lower level, there is positive vorticity to the south
and negative vorticity to the north, the combination of which leads to the dipole mode change in
the precipitation.

Keywords: California precipitation; central Pacific Ocean; Indian Ocean; Rossby wave train

1. Introduction

The state of California is the largest agricultural producer of the United States (US) and
one of the major agricultural areas of the world [1,2]. According to the survey, it accounts
for a greater share of the population, cash farm receipts, and gross domestic product [3–5]
than other states in the US.

In recent decades, the frequency of floods and droughts in the US has increased [6].
For example, the persistent droughts in the summers of 2002 and 2007 posed a considerable
threat to water resources [7], and the record-breaking floods in Georgia in September
2009 destroyed thousands of homes and caused huge losses [8]. More recently, California
suffered a multiyear drought. For example, 2012–2014 featured the worst drought in the
region in the past 1200 years, with soil moisture persistently below average [9]. Although
global warming caused by human activities accounts for 5–18% of the abnormal droughts,
natural variability is still the main controlling factor for the precipitation anomaly [10,11].
Due to the important location of California and because the abnormal precipitation level
determines the extent of drought or flood disaster, which then influences the agriculture
and socioeconomics, it is critical to analyze the rainfall anomaly in California.
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A number of previous studies has investigated the precipitation in summer in the
US. For example, they proposed that convective heating over the subtropical western
Pacific Ocean could induce a wave train pattern, which spans the northern Pacific Ocean
and North America, affecting US precipitation [12–14]. Through further analysis, it was
pointed out that this wave train may stem from marginally unstable normal modes of
the summertime large-scale monsoon circulation [15]. During the great floods of 1993
in the US Midwest, pronounced sea surface temperature (SST) signals in the subtropical
North Pacific and tropical eastern Pacific Ocean were found [16,17]. In recent years, strong
tele-connection signals emanating from the subtropical northwestern Pacific Ocean through
the Aleutians to North America during the stronger Asian monsoon activity periods have
been emphasized [18–20]. Simultaneously, many studies have confirmed the important
role of remote forcing in causing precipitation anomalies over the US over a wide range of
time scales [21–25]. The literature suggests that the variability of the US summer rainfall
may not only be governed by the Pacific Ocean SST anomalies [16,21,26–30], but also be
attributable to Atlantic Ocean SST anomalies [31–35].

Some studies have also shown a close link between the US winter rainfall variability
and the Pacific Ocean–North America (PNA) teleconnection pattern [36–40]. Coleman and
Rogers (2003) [41] pointed out that the PNA pattern had significant negative correlations
with winter precipitation over the Ohio River Valley. During negative PNA winters,
moisture flux convergence extended much further north from the Gulf of Mexico and
brought more precipitation. Ge et al. (2009) [42] showed that the PNA pattern also
influenced snow conditions over portions of North America through its influence on both
winter temperature and precipitation.

Even though previous studies have mentioned the possible mechanism underlying
US precipitation, few have focused on winter precipitation in California to identify impact
factors in the leading time. In addition, to prepare for climate predictions, atmospheric
signals, with physical meanings, in the leading time are needed for precipitation forecasts.
The objective of the current study was to investigate the environmental factors controlling
precipitation in the winter in California. The remainder of this paper is organized as
follows: in Section 2, the data and analysis method are introduced. The basic mode of
California precipitation is shown in Section 3. The environmental factors affecting PC1 and
PC2 changes are described in Sections 4 and 5. Lastly, a summary and discussion are given
in Section 6.

2. Data and Method
2.1. Data

The primary datasets used in this study were (1) precipitation data from the Climate
Prediction Center (CPC) [43], (2) precipitation data from the NOAA’s Precipitation Re-
construction Dataset (PREC) [44], (3) sea surface temperature (SST) data from the Hadley
Center Global Sea Ice and Sea Surface Temperature dataset (HadISST) [45], and (4) hori-
zontal wind and geopotential height data from the National Centers for Environmental
Prediction (NECP)/National Center for Atmosphere Research (NCAR) reanalysis [46].
All the data were transformed into a monthly scale and analyzed during the period of
1948–2020. Other than the precipitation data from CPC, which had a horizontal resolution
of 0.5◦ latitude by 0.5◦ longitude, the data had a resolution of 2.5◦ by 2.5◦.

It is worth noting that the analyzed region of California was selected as 32–42◦ N,
126–114◦ W for the convenience of research. When calculating the seasonal anomalies,
the climatology was based on the time period of 1951–1990 over land and 1979–1998 over
oceans, due to the data restrictions.

2.2. Empirical Orthogonal Function (EOF) Analysis

The EOF analysis method was first proposed by Pearson and brought into meteoro-
logical analysis by Lorenz in 1956 [47]. The EOF method allows for the decomposition of
the original three-dimensional variable field into orthogonal spatial modes and time series,
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so that each mode contains the specific information of the original field. Its advantage is
that it can decompose the complex original field into several orthogonal modes that have
physical meaning and contain specific information about the original field.

The specific method is described below. Let us consider a meteorological variable X
composed of m space points and n time points to form an m × n matrix.

X =


x11 x12 . . . x1n
x21 x22 . . . x2n

...
...

...
...

xm1 xm2 . . . xmn

. (1)

The matrix, then, is decomposed into the product of the space mode and time series
by EOF decomposition, which is expressed as X = VT by the matrix, where V and T are the
space function and principal component matrix, respectively. V is an m × r matrix, T is
an r × n matrix, and r is the rank of the X matrix, i.e., the number of characteristic roots.
The τ-th observation value xiτ at the i-th lattice in the variable field can be regarded as a
linear combination of p space functions vik and the time series tiτ.

xiτ =
p

∑
k=1

viktiτ; i = 1, 2, . . . , m; τ = 1, 2, . . . , n; k = 1, 2, . . . , p. (2)

In this study, only the first two leading EOF modes were considered.

2.3. Regression Analysis

In order to identify the environmental factors controlling California precipitation,
a simple linear regression analysis method [48] was applied. While running a regression
analysis, the main purpose is to determine the relationship between two variables. In order
to predict the dependent variable, one variable is chosen that can help in predicting the
dependent variable. This helps in the process of validating whether the predictor variables
are good enough to help in predicting the dependent variable. An F-test [49] was applied
to verify whether the regression was significant.

2.4. Anomaly General Circulation Model

To investigate how atmospheric circulation responds to a specified heating source un-
der a given seasonal mean background state, an anomaly atmospheric general circulation
model (AGCM) was used. This model was developed by Tim Li using the Geophysical
Fluid Dynamics Laboratory (GFDL) global spectral dry AGCM [50]. The observed winter
(December, January, and February) mean state was specified as the model background state
in the present study, allowing us to examine how the atmosphere responds to a specific
anomalous heating in the presence of a realistic mean state. The perturbation equations
retained full nonlinearity. The prognostic equations were those for the momentum, temper-
ature, and log-surface pressure. Geopotential height and vertical velocity were calculated
from the hydrostatic balance and mass continuity equation. The basic equations can be
written as follows:

∂tV = −(ξ+ f)
→
k ×V− .

σ∂σV−∇(∅+ E) + RT∇lnPs − ε1V− ϑ1∇4V, (3)

∂tT = −V·∇T− .
σ∂σT + kT[(V− Ṽ)·∇lnPs +

.
σ

σ
−D] +

.
Q
Cp
− ε2T− ϑ2∇4T, (4)

∂tlnPs = −D̃− Ṽ·∇lnPs, (5)

∂σ∅ = −RT
σ

, (6)
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.
σ = −

∫ σ

0

{(
D− D̃

)
+
(

V− Ṽ
)
·∇lnPs

}
dσ, (7)

where V is the horizontal vector wind with the zonal component u and meridional compo-
nent v, whereas T, lnPs, D, ∅, and

.
σ are the temperature, log surface pressure, divergence,

geopotential height, and sigma coordinate vertical velocity, respectively, and
.

Q is the
diabatic heating rate. The tildes represent the vertical average. Here, ε1 and ε2 are the
Rayleigh friction and Newtonian cooling coefficients, respectively, and ϑ1 and ϑ2 are the
biharmonic diffusion coefficients for the momentum and temperature. All other notations
are standard. For a detailed description of this anomaly model, readers are referred to
Jiang and Li (2005) [51] and Li et al. (2006) [52].

In this study, our aim was to employ this model to examine the atmospheric response
to different heating (precipitation) centers in the presence of the 3D winter mean flow to
confirm our hypothesis.

3. Basic Evolution of Precipitation

Figure 1 shows the seasonal anomalies and standard deviation of the precipitation
in California. Due to the existence of California’s Sierra Nevada, precipitation is mostly
confined in the west side, regardless of the season. From the figure, we can see that the
average precipitation is positive in winter and spring, whereas it is negative in summer
and autumn. The main rainy season in California is winter, during which the average
precipitation is 1.43 mm/day. Simultaneously, the standard deviation is maximum in
winter, followed by spring. Considering that the strongest precipitation and precipitation
variability of California take place during winter, the key research focus of this paper was
the winter season.
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Figure 1. Seasonal anomalies (a–d; mm/day) and standard deviation (e–h) of precipitation in winter (a,e), spring (b,f),
summer (c,g), and autumn (d,h) during 1948–2020. The climatology is based on the time period of 1951–1990 over land and
1979–1998 over oceans. Shading denotes altitude (m). Box-averaged variables are shown above each panel.
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To identify the basic mode of precipitation evolution, empirical orthogonal function
(EOF) analysis was applied. Figure 2 shows the leading two patterns and corresponding
principal components (PCs). The first EOF pattern (EOF1) denoted a consistent evolution
across the whole region. The variance contribution was 70.1%, indicating that the changes
in California precipitation were mainly described by consistent changes. It is worth
noting that there was seemingly a negative trend in the first principal component (PC1),
indicating a general drying of California. In recent years, PC1has become more negative,
representing the drought of California, which is consistent with observation. From the
second EOF pattern (EOF2), a north–south dipole change in precipitation was shown,
with opposite evolution between the north and south. The variance contribution was 11.7%.
It is worth mentioning that there was an increasing trend in PC2, which may indicate
that the south of California is becoming wetter, while the north is getting drier. The first
two leading EOF modes were well separated from each other and the remaining modes,
according to the criteria of North et al. (1982) [53]. Results reveal that these two patterns
described two different processes and could be analyzed independently (figure not shown).
The combination of EOF1 and EOF2 could explain over 80% of the precipitation change.
Therefore, we only discuss the first two leading modes in this study.
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Figure 2. Patterns (a,b; mm/day) and principal components (c,d) of first (a,c) and second (b,d) EOF
modes of winter precipitation anomalies.

4. Environmental Factors Affecting PC1 Changes

Since EOF1 and EOF2 described two different processes, the changes in PC1 and PC2
were analyzed separately. Figure 3 shows the evolution of SST patterns regressed to PC1
from the preceding winter to the subsequent winter. In both winters, we can see an El Niño-
like pattern, which indicates that warm SST in the eastern Pacific Ocean corresponded to
positive precipitation in California, consistent with previous studies [54]. It is worth noting
that the positive relationship was continuous from the preceding winter to autumn. As the
predictions of drought and flood are often needed one season in advance, and the signal in
the preceding summer was most significant, the environmental factors were chosen in the
preceding summer, as shown in Figure 3c. There was a positive relationship between SST
in the central Pacific Ocean (red box; 20◦ S–20◦ N; 180–130◦ W) and California precipitation,
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as well as a negative relationship between SST in the southeast Indian Ocean (blue box;
40–10◦ S; 90–115◦ E) and California precipitation.
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4.1. Central Pacific Ocean

In order to investigate how the SST in the central Pacific Ocean influences California
precipitation, index 1 was defined as the average SST over the significantly positive related
region (red box in Figure 3c) in the preceding summer. Figure 4 shows the geopotential
height and horizontal velocity at 850 hPa and 200 hPa in the subsequent winter regressed
to index 1. From the figure, we can see that there was a Pacific Ocean–North America
(PNA)-type response, induced by the positive SST in the central Pacific Ocean [39,40] at
the lower level. There are four circulation centers from the north Pacific Ocean to the
Atlantic Ocean. The key region (California) is located at the southeast of the cyclone and
low-pressure anomaly centers. Accordingly, the region is occupied by southwesterly wind,
which would transport warm and humid air from the Pacific Ocean. These characteristics
could also be found at the upper level. In the mid-latitude region, the atmospheric systems
are almost quasi-barotropic. Therefore, this region is also located at the southeast of the
cyclone center and is occupied by southwesterly wind. The combination of the upper and
lower levels induces favorable conditions for precipitation.
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Figure 4. Geopotential height (shading; gpm) and horizontal velocity (vector; m/s) at 850 hPa (a)
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selected California area. Only wind exceeding the 90% confidence level is shown. Areas with dots
exceed the 90% confidence level.

From the above analysis, we can infer that the positive SST in the central Pacific Ocean
would cause positive precipitation in California. Next, we address how the signal in the
preceding summer affects precipitation in the subsequent winter. We hypothesize that it
is attributed to the slow change and persistence of SST. Figure 5 shows the precipitation
and SST in the preceding summer and the subsequent winter regressed to index 1. The SST
is positive in summer and changes slowly. According to air–sea interaction [55], induced
by positive SST, the precipitation in the central Pacific is positive, leading to the PNA-like
pattern response. Since the change in SST is slow, the SST is also positive in the subsequent
winter, which would also cause PNA pattern and positive precipitation in the California
region in the subsequent winter.
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Figure 5. Precipitation (shading; mm/day) and SST (contour; ◦C) in the preceding summer (a) and subsequent winter (b)
regressed to the box-averaged SST (red box). The green box represents the selected California area. (c) Time evolution of
box-averaged SST (◦C) from the preceding summer to subsequent spring. Areas with dots exceed the 90% confidence level.

4.2. Southeast Indian Ocean

The relationship between SST in the southeast Indian Ocean and precipitation in
California was negative. Using a similar method, index 2 was defined as the average SST
in the blue box in Figure 3c in the preceding summer. Figure 6 shows the geopotential
height and horizontal velocity at 850 hPa and 200 hPa in the concurrent winter regressed to
index 2. Regardless of whether the lower level or upper level was considered, the key region
was occupied by the significantly high pressure, leading to unfavorable conditions for
precipitation and a negative relationship between SST in the Indian Ocean and precipitation
in California, consistent with the above analysis. It is worth mentioning that the correlation
coefficient between index 1 and index 2 was not significant (0.16), indicating that the
Indian Ocean SST is an independent factor and has a negative contribution to California
precipitation. Where is the source of the anticyclone? Here, we use wave activity and wave
activity flux to describe this [56]. The definition of wave activity (W) is as follows:

W =
1

2
∣∣U∣∣

 u
(
ϕ′2x −ϕ′ϕ′xx

)
+ v

(
ϕ′ϕ′y −ϕ′ϕ′xy

)
u
(
ϕ′xϕ

′
y −ϕ′ϕ′xy

)
+ v

(
ϕ′2y −ϕ′ϕ′yy

) , (8)

where U is horizontal wind, u and v are zonal and meridional velocity, ϕ denotes the
stream function, U, u, and v represent the climatology horizonal, zonal, and meridional
velocity, and ϕ′ represents the anomalous stream function.

Figure 7 shows the wave activity flux. We can see that there is a Rossby wave source
in the southeast Indian Ocean. The Rossby wave train extends from the northern Indian
Ocean to the Atlantic Ocean. We can find an anticyclone and high-pressure anomaly in the
northern Indian Ocean. California is controlled by the high-pressure anomaly, leading to a
negative precipitation anomaly. In our opinion, the high-pressure anomaly and anticyclone
in the northern Indian Ocean represent key systems and the Rossby wave source; hence,
a positive SST in the southeast Indian Ocean could potentially lead to a cyclone at the lower
level and an anticyclone at the upper level in the northern Indian Ocean. An anomaly
GCM experiment was designed to address this possibility.
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Figure 7. Geopotential height (contour; gpm), wave activity (vector; m/s), and wave activity flux
(shading; s−1) at 200 hPa (bottom) in winter regressed to the box-averaged SST (blue box). The red
line highlights the wave train. The green box represents the selected California area. Only the
wave activity exceeding the 90% confidence level is shown. Areas with dots exceed the 90% confi-
dence level.
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Figure 8a shows the regressed precipitation pattern. We can see that there was a
positive precipitation anomaly in the east Indian Ocean. In order to determine the atmo-
spheric response to this heating, only the precipitation anomaly in the key region was
normalized and introduced into the AGCM, as shown in Figure 8b. From the model results
(Figure 8c,d), we can see that there was cyclone at the lower level and an anticyclone at
the upper level in the northern Indian ocean, consistent with the previous observation
(Figure 6), induced by positive heating in the southeast Indian Ocean. According to the
Gill response [57], even when the heating is asymmetric (such as a positive SST in the
southeast Indian Ocean), there is also a cyclonic Rossby wave gyre response in the west
at the lower level. In the tropics, the atmospheric system is baroclinic; thus, at the upper
level, there would be an anticyclone in the northern Indian ocean. This, then, induces the
Rossby wave train, resulting in an anticyclone and a high-pressure anomaly in California,
which would cause negative precipitation.
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Figure 8. (a) Precipitation (mm/day) in winter regressed to the box-averaged SST (blue box).
The green box represents the selected California area. Areas with dots exceed the 90% confidence
level. (b) Diabatic heating anomaly pattern introduced into the AGCM experiment. Atmospheric
response (m/s) at 850 hPa (c) and 200 hPa (d) in the model. “C” and “AC” represent the anomalous
cyclone and anticyclone induced.

5. Environmental Factors Affecting PC2 Changes

Figure 9 shows the evolution of SST patterns regressed to PC2 from the preceding
winter to the subsequent winter. In both winters, we can see an El Niño-like pattern,
which indicates that warm SST in the eastern Pacific Ocean corresponded to positive pre-
cipitation in California. Other than the decreased level of relevance, this characteristic was
similar to PC1; thus, the environmental factors in the Pacific Ocean are not discussed here.
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The situation was different in the Indian ocean. The relationship between PC2 and
SST in the Indian Ocean in the preceding summer was significantly positive. In order to
determine how the SST in the Indian Ocean influences California precipitation, index 3 was
defined as the average SST in the mostly positive related region (40◦ S–10◦ N; 50–100◦ E;
left red box in Figure 9c) in the preceding summer. Figure 10 shows the relative vorticity
and horizontal velocity at 850 hPa and 200 hPa in winter regressed to index 3. From the
figure, we can see that, at the upper level, the key region is controlled by positive vor-
ticity and a cyclone, whereas at the lower level, the situation is complex. In the south
of California, there is positive vorticity. Combined with circulation at the lower level,
such positive vorticity is beneficial for positive precipitation. On the other hand, in the
north of California, there is negative vorticity, which is unfavorable for precipitation. As a
result, the combination of upper and lower circulation is favorable for precipitation in the
south but unfavorable in the north, leading to a dipole mode of precipitation, which is
consistent with EOF2.
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Figure 10. Relative vorticity (shading; 10−7 s−1) and horizontal velocity (vector; m/s) at 850 hPa (a)
and 200 hPa (b) in winter regressed to the box-averaged SST (the left red box in Figure 9c). The green
box represents the selected California area. Areas with dots exceed the 90% confidence level.

6. Summary and Discussion

In this study, the environmental factors affecting precipitation in California during
1948–2020 were investigated. Considering the seasonal mean and standard deviation of
precipitation, this paper focused on winter as the main rainy season with the greatest
variation. According to the EOF analysis of winter precipitation, the first EOF mode
described a consistent change, with a variance contribution of 70.1%. The second EOF
mode exhibited a south–east dipole change with an 11.7% variance contribution.

For EOF1, the relationship was positive between SST in the central Pacific in the
preceding summer with PC1 in winter and negative between SST in the southeast Indian
Ocean in the preceding summer with PC1 in winter. Due to the slow change and continuity
of SST, the warm SST in the central Pacific Ocean would be maintained from summer to
winter. Thus, the positive precipitation induced would exist in the subsequent winter in
the central Pacific Ocean, thereby inducing a PNA-type wave train response to influence
the California precipitation. Regardless of whether the lower level or the upper level
was considered, the key region was located to the southeast of the anomalous cyclone
induced. The southwesterly wind would transport warm and wet flow from the ocean,
beneficial for precipitation. There is another possible process underlying how warm SST in
the central Pacific Ocean would affect California precipitation. California is located around
the boundary of the tropical belt, at the edge of the Hadley cell sinking phenomenon.
The edge of Hadley cells features a hot and dry climate. Yang et al. (2020) [58] proposed
that poleward shift of the meridional temperature gradients would cause expanding tropics.
Therefore, the El Nino-like pattern in EOF1 favors an equator contraction of the meridional
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temperature gradient, contributing to a narrower Hadley cell, which is then favorable for
California precipitation. For the Indian ocean, the positive SST would induce an anomalous
cyclone at the lower level and an anticyclone at the upper level in the northern Indian
Ocean according to the Gill response. This was confirmed by both the observation and the
AGCM model experiments. Following an anomalous heating in the eastern Indian Ocean
in the model, there was a cyclone anomaly response at the lower level and an anticyclone
anomaly response at the upper level in the northwest. The induced Rossby wave train
extends from the Indian Ocean to the Atlantic Ocean. The key region is controlled by the
biotrophically high pressure, which is unfavorable for precipitation.

As for PC2, the situation in Pacific Ocean was similar to that for PC1. There was a
positive relationship between SST in the central Pacific Ocean in the preceding summer
and California precipitation in winter. However, the circumstances were different in
the Indian Ocean, whereby the relationship between SST in the Indian Ocean in the
preceding summer and California precipitation in winter was also positive. Due to the
slow change and continuity of SST, the warm SST would be maintained from summer
to winter, which would induce a Rossby wave train from the Indian Ocean to California.
Since the key region of the Indian Ocean is shifted westward, the wave train is shifted
correspondingly. As a result, at the upper level, California is controlled by positive vorticity,
whereas at the lower level, there is positive vorticity in the south and negative vorticity in
the north. This combination of circulation at the upper and lower levels would lead to a
dipole mode of precipitation, positive in the south and negative in the north.

It is worth mentioning that, in this study, how the summer conditions affect winter
precipitation was mainly attributed to the slow change and continuity of SST. However,
other possibilities, such as human activities, should be considered. Furthermore, only the
effect of SST in the preceding summer was analyzed. Other environmental factors, such as
geopotential height, in other seasons, such as in the preceding autumn, should also be con-
sidered. In this study, we only used AGCM to confirm the physical processes. Other models,
such as ECHAM, should be applied. Further studies are needed to solve these questions.
Having now found the precursor signals, further studies are needed to determine whether
they can be adopted in precipitation forecasts.
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