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Abstract: This study aims to evaluate the accuracy and effectiveness of real-time personal monitoring
of exposure to PM concentrations using low-cost sensors, in comparison to conventional data
collection method based on fixed stations. PM2.5 data were measured every 5 min using a low-cost
sensor attached to a bag carried by 47 asthmatic children living in the Seoul Metropolitan area
between November 2019 and March 2020, along with the real-time GPS location, temperature, and
humidity. The mobile sensor data were then matched with station-based hourly PM2.5 data using
the time and location. Despite some uncertainty and inaccuracy of the sensor data, similar temporal
patterns were found between the two sources of PM2.5 data on an aggregate level. However, average
PM2.5 concentrations via personal monitoring tended to be lower than those from the fixed stations,
particularly when the subjects were indoors, during nighttime, and located farther from the fixed
station. On an individual level, a substantial discrepancy is observed between the two PM2.5 data
sources while staying indoors. This study provides guidance to policymakers and researchers on
improving the feasibility of personal monitoring via low-cost mobile sensors as an alternative or
supplement to the conventional station-based monitoring.

Keywords: personal monitoring; low-cost sensor; particulate matter; asthma

1. Introduction

Exposure to particulate matter (PM) has been identified as having an adverse impact
on human health [1]. It is associated not only with respiratory diseases but also other
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diseases such as heart disease, type 2 diabetes and dementia [2–4]. Most of these studies
emphasize the cumulative effects of PM exposure over an extended period time, which
emphasizes the importance of personalized continuous monitoring and the need for control
of indoor and outdoor PM levels in surrounding atmosphere of individuals who experience
relevant symptoms [5]. However, in many countries, air quality management and health
impact evaluation are still based on ambient air monitoring using the traditional station-
based system [6–8]. This monitoring system is typically equipped with high-performance
and expensive sensors with strong calibration stability, producing accurate data on outdoor
air quality measurements for surrounding environments [9]. The high construction and
maintenance cost of station-based monitoring system has prevented the development of
a sufficient number of air quality monitoring stations, which has resulted in coverage
gaps and a high measurement error rate in areas far from the monitoring locations [10].
Although a variety of GIS and spatial modeling techniques have been used to create an
interpolated surface of ambient PM exposure, their precision and accuracy levels are still
lacking [11,12].

PM measurements from stations are often inaccurate and insufficient to be used for
providing guidelines for asthmatic patients to avoid exacerbations of their symptoms since
the station-based data are limited. Therefore, they are unable to indicate the true level of
exposure for individuals, depending on their lifestyle, mobility and actual location. Most
people nowadays tend to stay indoors for longer periods of time and the impact of indoor
PM on their health is far more important than that of outdoor air pollution, especially due
to its long-term exposure at low concentration levels [7]. Thus, personalized PM monitoring
based on real-time locations has been proven itself to be a better alternative for exposure
assessment and is being actively researched due to the advances in IoT (Internet of Things)
devices and networks [13]. In particular, a growing number of researchers have attempted
to explore the potential of low-cost sensors for real-time personal exposure assessment as
a supplementary method tool for traditional ambient air monitoring [14–16]. However,
personal PM monitoring has not been widely implemented as a guideline for clinical
intervention and policy decision mainly due to various technical difficulties and financial
implications [17]. The existing empirical evidences from a long-term, large-scale study are
not sufficient to allow useful and general insights into the accuracy and effectiveness of
real-time personal monitoring in comparison to conventional station-based monitoring.

Despite the rapid improvement of low-cost PM sensors, several limitations have been
reported and attempts have been made to resolve them. First, reliability issues are still
preventing a broad exploitation of low-cost portable devices. The PM measurements are
heavily influenced by various factors such as aerosol size and meteorological variation [16],
and each device has different ways of retrieving the PM levels [18]. A handful of recent
studies have been conducted to adjust these factors [16,18,19], but there is still a long
way to go. Second, limited battery performance has been reported as a critical issue for
real-time monitoring since the battery for the portable IoT sensors may run out during the
day causing interruption of continuous monitoring unless recharged within a reasonable
time [20]. Third, most low-cost PM sensing devices require an internal calibration process
or modeling which might generate arbitrary errors or systemic biases [21]. A growing
number of studies have been dedicated to addressing these limitations [22,23], which
would ensure the wide and effective application of real-time mobile PM monitoring using
low-cost portable sensors.

In South Korea, most of the PM-related public health policies and clinical interventions
remain based on outdoor environments monitored by the conventional station-based
method due to the lack of efforts to promote a large-scale personalized monitoring [24,25].
Recently, a number of monitoring efforts have been undertaken including a feasibility
study to assess indoor PM exposure, but most of them focused on fixed IoT devices which
failed to capture the concurrent air pollution and environmental monitoring data from
their real-time locations [26,27]. Despite a handful of recent studies on real-time sensing of
indoor and outdoor PM exposure using a low-cost portable device in South Korea [28,29],
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personally monitored PM data were not thoroughly evaluated for feasibility and accuracy in
comparison to conventional data from station-based area monitoring. Therefore, this study
aims to evaluate the patterns of PM2.5 concentrations exposed to asthmatic children in South
Korea collected from their real-time locations (indoor vs. outdoor) in comparison with
the corresponding air quality data from the nearest monitoring station. It demonstrated
not only the potential role but also the limitations of personalized PM monitoring using
a low-cost mobile sensor as an alternative or supplement to the conventional station-
based ambient air monitoring. These findings would be useful for evidence-based policy
intervention and patient consultation as they provide guidance to policymakers, clinicians
and researchers on what efforts need to be made to improve the quality and feasibility of
the personal monitoring process and how large-scale ambient air monitoring data should
be used and adjusted for personalized care and intervention when personal monitoring
data are not available.

2. Materials and Methods
2.1. Study Participants

Study subjects were recruited between November 2019 and March 2020 from the
outpatient group visiting eight hospitals in Seoul’s metropolitan area. We sampled children
aged 5–15 years old who had asthma symptoms in the last 12 months and at least 12% of
bronchodilator response or PC20 methacholine ≤16 mg/mL or PD15 mannitol ≤635 m.
In total, 47 patients were included in the study. Their home locations, distributed around
Seoul Metropolitan Area, are shown as a triangle in Figure 1.
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2.2. Station-Based PM Monitoring via Air Korea

There are 522 atmospheric air quality monitoring stations across Korea, including
urban and roadside air quality stations, of which 154 are in the Seoul and Gyeonggi areas,
shown as circles in Figure 1. At each station, both PM10 and PM2.5 concentration data
were measured by the β-ray measurement method every 5 min and then transmitted to
the National Ambient Air Quality Monitoring Information System (NAMIS) along with
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other air pollutants such as SO2, CO, O3 and NO2. The data were then aggregated into
hourly averages through statistical processing and stored in a database called “Air Korea”
maintained by the Korea Environment Corporation [30]. The reported concentration values
were provided through application to the smartphone users based on data from the station
closest to their real-time location, along with user-friendly color grading on risk level (e.g.,
red as high risk, yellow as medium risk, and green as low risk) to help them to identify the
risk at their locations and take appropriate actions [31]. Moreover, the information from
the “Air Korea” data have been used as a guideline for various air quality interventions
and other public health policies [32,33]. This database was used to extract the PM2.5
concentrations measured at the fixed monitoring station nearest to the patients’ real-time
location measured via GPS during the study period, which was then integrated with the
PM2.5 data collected for each patient via personal monitoring.

However, several concerns have been raised about the accuracy and practical appli-
cability of the data. Most importantly, the lack of monitoring stations impedes accurate
assessment of dynamic trends of particulate matters within the region even in the urban ar-
eas. For instance, on average, one station covers about 15.5 km2 in Seoul, and over 108 km2

in other regions in South Korea [34], which leaves wide gaps between different monitoring
stations [10]. Moreover, some Air Korea stations were installed substantially higher than
the recommended height, creating a gap between the measured PM values and the actual
level of exposure in people living in and around the area [35]. Additionally, another valid
criticism is that the Air Korea data lack the metadata that describe a measuring instrument,
specifics for measurement and potential outliers [36].

2.3. Personal Real-Time Monitoring via Low-Cost Sensors

For real-time personal monitoring, we collected PM2.5 concentration data for the
47 study participants from December 2019 to March 2020 using a portable device with low-
cost sensors. The device monitors the concentrations of PM10 and PM2.5 measured by the
light scattering method as well as temperature, humidity together using each corresponding
sensor in real time (model name: PMM-130 (hereafter PICO), size: 48.0 × 48.0 × 20.6 mm,
weight: 45 g, power supply: 200 mA/h). On the date of the patient’s outpatient visit, we
handed out a device that was placed in a pouch and hung on a backpack, as shown in
Figure 2, and advised them to always carry it when outdoors and keep it in a specific
location when indoors. Patient caregivers were asked to upload the collected data to the
application server every evening and the data were monitored and managed by the clinical
research coordinator (CRC). The CRC kept in touch with the caregivers regularly to ensure
that the data were uploaded properly and on time.
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Reliable positioning was identified through the GPS positioning system (EHS GPS
Tracker, Mobile App), which allows consistent positioning during measurements. PICO
measures both PM10 and PM2.5 concentrations from 1 to 1000 µg/m3, temperature from
−40◦C to 125◦C and humidity from 0 to 100% relative humidity (RH) and the results
are stored at 5 min intervals (measured in 30 s after waiting 4 min). The device is pow-
ered by external power supply and equipped with a storage device that can record PM
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measurement data in real time. The measured data were transmitted to a server through
Bluetooth (BLE4.0) and Wi-Fi (2.4 GHz) while the device was being charged. The accuracy
of PICO has been approved by receiving a high level of performance certification from the
government-authorized agency, Korea Testing & Research Institute (KTR) and reported
as 86.2% in our recent paper [26]. The calibration of PICO was performed by comparing
the results from KTR with the same device used in the Air Korea monitoring stations. The
accuracy was calculated as follows:

Accuracy(%) =
The results o f PMs f rom PICO

The corresponding values f rom a re f erence device o f KTR
× 100

We selected this PM measuring device given its measurement reliability, weight,
portability, power consumption, and data transmission capabilities. In particular, the
calibration of measurements based on temperature and humidly was considered in device
selection since they tended to influence the measurements of portable devices with a
low-cost sensor [37].

To ensure validity and consistency in measurement across the devices prior to full
sampling, we collected PM data for eight days in September and November 2020 using
five PICO devices and a reference device (KTR) installed at the Korea Institute of Chemical
Convergence Test which has been used for official routine monitoring of outdoor air quality.
Figure 3 shows statistically significant consistency across the five PICOs (mean coefficient
of variation = 0.12) throughout the testing period.
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The results were used to derive a calibration formula for PM2.5 values from PICO
based on temperature and humidity by a robust multiple regression model as follows:

Calibrated PM2.5 = 49.19 + (0.45 × measured PM2.5) − (1.44 × temperature) − 0.006 × humidity (1)

Figure 4 compares the measurements of a reference device (KTR reference instruments)
with an average measurement from five PICO devices: (a) before and (b) after calibration. It
appears that the temporal trends of PM2.5 are overall similar between PICO and KTR even
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before calibration (Figure 4a), but the two measurements become more nearly identical
after calibration (Figure 4b).
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2.4. Data Integration and Analysis

Both Air Korea data and PICO data were matched to construct the integrated database
for all 47 study participants, which were used for a series of comparative data analyses
on PM2.5 measures from station-based monitoring (Air Korea) and personal monitoring
(PICO). Each data point from PICO was assigned to one of three spatial categories based
on each participant’s daily mobility pattern: indoor (home), indoor (other than home)
and outdoor, indicating where the respective PM2.5 reading from PICO took place. Their
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5-min moving distance was also calculated based on the GPS coordinates and used to
identify their location as indoors/outdoors, combined with their time information (e.g.,
identified as outdoors if their moving speed is above a certain threshold, identified as
indoors between midnight and 8am, etc.). The indoor-outdoor classification was verified
by patient caregivers. In comparison analysis, not only the location but also the time of
the measurements were used to evaluate the patterns of PM2.5 concentrations exposed
to each, and all participants collected from two different air quality monitoring sources:
PICO measurements at their real-time mobile locations and Air Korea measurements at the
nearest fixed monitoring station.

3. Results

Figure 5 was created to compare temporal trends of the average PM2.5 concentration
aggregated for all patients from the personal monitoring device (red lines) with that
from the “Air Korea” data (black lines) throughout the study period. Overall, similar
patterns were found between the two sources of PM2.5 data, although on average PM2.5
concentrations via personal monitoring tended to be lower with a larger variance across
the records, compared to those from fixed monitoring stations. However, the differences
between the two PM2.5 data vary by time and location. As shown in Table 1, the difference
in hourly PM2.5 concentrations between Air Korea and PICO data are larger while staying
indoors than outdoors, particularly in indoor environments other than home (p < 0.01),
which indicates that the personal PM2.5 monitoring data correspond well with the station-
based data when the individuals stayed outdoors but show a substantially smaller exposure
while indoors. While they were staying outdoors, the two PM2.5 data sources were a lot
better matched to each other during afternoon hours (noon to 8 p.m.) than morning (5 a.m.
to noon) and night hours (8 p.m. to 6 a.m.). We also checked if the difference in PM2.5
concentrations between Air Korea and PICO were substantially larger when they were
outdoor at real-time locations farther from the nearest Air Korea station. The gap was
found significantly bigger when they were beyond 500 m from the closest station (1.12 vs.
0.68), indicating the role of proximity to Air Korea stations in evaluating the similarities
between the personalized and station-based PM2.5 measures.

Table 1. Spatiotemporal comparison of PM2.5 statistics between station monitoring (Air Korea) and personal monitor-
ing PICO).

N Air Korea
Mean ± SD

PICO
Mean ± SD

Absolute
Difference T (p)

Locations of measurements

Indoor (home) 265,457 31.08 ± 18.50 27.31 ± 19.30 3.77

<0.01
Indoor (other
than home) 64,533 30.71 ± 17.93 25.60 ± 19.33 5.11

Outdoor 33,880 31.34 ± 18.49 30.33 ± 20.87 1.00

Time slots for
measurements
(outdoors only)

Morning
(6 a.m.–noon) 7695 32.27 ± 17.81 29.69 ± 16.70 2.58

<0.01
Afternoon

(noon–8 p.m.) 20,044 31.21 ± 19.04 31.51 ± 22.27 0.29

Night/overnight
(8 p.m.–6 a.m.) 6141 30.58 ± 17.45 27.32 ± 20.53 3.26

Distance from Air Korea
station (outdoors only)

Within 500 m 2220 30.52 ± 18.50 31.20 ± 22.41 0.68
<0.01

Beyond 500 m 31,660 31.39 ± 18.49 30.27 ± 20.76 1.12
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We then examined individual variation of PM2.5 concentrations for each of 47 patients.
The boxplot in Figure 6 shows a good amount of variation on the gap of PM2.5 measures
between station-based (Air Korea) and personal monitoring (PICO) among the patients. It
appears that the Air Korea measurements were generally bigger than personalized PICO
measurements for most of them, PICO measurements were found relatively higher for
some patients (1-003, 5-003, 6-002), indicating heterogeneity in their life and the role of
mobility patterns interacting with their neighboring environments.
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For an illustration purpose, Figure 7 show a scatterplot comparing hourly average
of PM2.5 measures between station monitoring (AK) and personal monitoring (PICO) for
two selected patients. For a majority of patients including these two, the two kinds of
PM2.5 measures are relatively well correlated with each other while staying outdoors with
a correlation coefficient ranging between 0.3 and 0.6, compared to 0.1–0.3 while indoors
at home. These results make sense when considering substantial variation in indoor
environments and activities across different individuals.
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Figure 8 also illustrates how the two PM2.5 measures correspond to each other over
time while indoors or outdoors, by comparing the data from the two monitoring sources
(Air Korea and PICO) collected for two selected patients throughout the course of a 24 h
time period, with the time of staying outdoors shaded in gray. Despite some fluctuations
and noise, it looks evident that PICO measures are quite similar to those from Air Korea
particularly when they stayed outdoors. However, a substantial discrepancy is observed
between the two PM2.5 data sources during indoors, implying that Air Korea measures
may not be used as a proxy for indoor PM2.5 exposure. Even if the indoor PM levels
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were reported to be generally lower from fixed sources than from personal monitoring
while the subjects were indoors (shown in Table 1), these two examples illustrate the exact
opposite, indicating some level of deviation from the overall trends depending on their
indoor environments and activities.
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4. Discussion

In this study, PM2.5 concentrations were measured from the portable device with a
low-cost sensor (“PICO”) for 47 asthmatic children living in Seoul’s metropolitan area
and compared with the station-based hourly ambient PM2.5 data (“Air Korea”) by the
time and location. On an aggregate level, relatively similar temporal patterns were found
between the two sources of PM2.5 data, but average PM2.5 concentrations via personal
monitoring tended to be lower than those from fixed monitoring stations, particularly when
the subjects were located indoors, during the evening or nighttime, and farther from the
fixed monitoring station. However, on an individual patient level, the two PM2.5 measures
did not correspond well to each other while staying indoors due to significant variations in
lifestyle, moving patterns and indoor environments across the subjects. These results not
only underline the potential limitations of station-based data to assess a person’s true PM2.5
exposure, but also highlight the role of personal monitoring via low-cost mobile sensors as
an important supplement or even alternative to the conventional station-based monitoring.
This is even more true since the COVID-19 pandemic began because people were forced or
willing to spend more time indoors and reduce outdoor activities to avoid the risk of virus
exposure [38]. It is beyond the scope of our study to identify the sources of elevated PM2.5
measures, both indoor and outdoor, but is worth exploring in the future study.

It is known that both genetic and environmental factors have a role in the incidence
or intensity of the symptoms of allergic diseases such as asthma [39]. However, primary
prevention of allergic diseases by controlling a single environmental risk factor such as
PM2.5 is far from being achieved mostly because of the complex dynamics of various
individual and ecological factors contributing to allergic diseases and other environmen-
tally related diseases. Instead, a personalized prevention and proactive intervention to
mitigate symptoms via exposure assessment and control could become more accurate and
effective if an evidence-based analytical tool is developed to predict patient-specific risks
for allergic diseases based on a close monitoring of a patient’s real-time exposure to indoor
and outdoor PM2.5. This approach has been widely recommended as part of a secondary
and tertiary prevention strategy for allergic disease [40].

Accurate large-scale monitoring of air pollutants often requires costly and high-
precision measurement equipment, which serve as barriers for personalized intervention



Atmosphere 2021, 12, 1192 12 of 14

tailored to individual characteristics and exposure pathway. Despite the outstanding chal-
lenges revealed in this study, there is a great potential for low-cost, real-time sensors to
be broadly implemented as a complementary PM monitoring platform to provide timely,
personalized alerts and advice for vulnerable populations. Aside from the efforts to fine-
tune the existing mobile sensors and devices, dedicated efforts should be made to develop
GPS-enabled wearable and patchable devices as a next-generation environmental and
health monitoring tool that assesses the true level of environmental exposure to the human
body at every second or minute interval [41,42]. The recent development of IoT technology
and deep learning algorithm could serve as promising tool for processing and analyzing
the real-time air pollution data [43,44] that underpins the backbone of evidence-based
personalized medicine and environmental exposure management.
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