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Abstract: In early 2020, the COVID-19 pandemic spread globally, and severe measures to control it
were implemented. This study investigates the impact of the lockdown on the air quality of three
provinces in the Valencia region, eastern Spain, in the years 2015–2020, focusing on particulate matter
(PM). A thorough statistical analysis using different approaches is conducted. Hourly patterns are
also assessed. In addition, the role of meteorological parameters on PM is explored. The results
indicate an overall PM10 reduction of 16.5% when comparing the lockdown in 2020 and the 2015–2019
period, while PM2.5 increased by 3.1%. As expected, urban zones experienced higher reductions than
suburban zones, which experienced a PM concentration increase. The impact of the drastic drops of
benzene, toluene and xylene (77.4%, 58.0% and 61.8%, respectively) on the PM values observed in
urban sites is discussed. Our study provides insights on the effect of activity changes over a wide
region covering a variety of air quality stations, urban, suburban and rural, and different emission
types. The results of this work are a valuable reference and suggest the need for considering different
factors when establishing scientific air pollution control strategies.

Keywords: COVID-19; PM2.5; PM10; BTX; cluster analysis; meteorology; AQC; air quality

1. Introduction

Negative effects of atmospheric particulate matter (PM) pollution on health have been
assessed in a large number of studies. Typically, PM10 and/or PM2.5 (PM finer than 10 and
2.5 µm, respectively) data are used in epidemiological studies to evaluate the effect of the
PM pollution on human health. PM causes respiratory and pulmonary diseases [1,2] and
also affects the cardiovascular system [3,4].

Despite successful legislation implemented in Europe to reduce air pollutants emis-
sions, the World Health Organization (WHO) [5] estimated that the exposure to PM2.5
particles caused nearly seven million people deaths, mainly related to respiratory system
illnesses. Urban population was exposed to high levels of PM10 in 2018 [6]: 15% above EU
standards and 48% above WHO air quality guideline value. Equally, the urban population
exposure to PM2.5 concentrations above standards were 4% and 74%, respectively.

The sources of particulate matter are very varied, and their relevance depends on the
environment. According to their origin, they can be distinguished between anthropogenic:
road traffic, industrial activities, biomass burning and domestic heating, and natural:
resuspension and transport of by wind, volcanic eruptions, seismic activity, specific events
such as Saharan dust intrusions, particularly relevant in the western Mediterranean [7,8].

Volatile organic compounds (VOCs) constitute another large group of air pollutants,
which include a mixture of hundreds of species with a well-known harmful effect on
human health [9,10] and on the environment, due to their implication on the production of
secondary pollutants such as tropospheric ozone and secondary organic aerosol [11–13].
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Among them, benzene, toluene and xylene (BTX) are the most common traffic-related
monoaromatic hydrocarbons in urban environments [14,15]. The continuous measurement
of VOCs is essential to estimate population exposure to hazardous gases and implement
effective control strategies.

The COVID-19 pandemic that began at the end of 2019 continues to spread globally
today, having so far caused millions of deaths around the world, and the situation remains
very serious. Spain was one of the countries hardest hit by the pandemic in the first half of
2020. At the end of March 2020, confirmed SARS-CoV-2 cases in Spain made it the most
affected country worldwide. On 11 March 2020, the WHO declared a global pandemic of
COVID-19. Following this, on 14 March 2020, the Spanish government, aiming to contain
the pandemic spread, announced the implementation of a series of drastic measures. These
included a lockdown, traffic restrictions, cancellation of national and international flights
and the cease of every nonessential activity. These measures came into force on 15 March for
two months, until 17 May, to curb the spread of infection by limiting people’s movement,
helping to maintain “social distancing”. The measures were gradually lifted until activity
returned to normal. By this point, the world had 6,234,322 confirmed cases of COVID-19
and 375,541 deaths [16].

The prevention and control measures mentioned above resulted in a diminution of
anthropogenic activity and therefore were closely related to the air quality. The unprece-
dented mobility and economy activity reduction measures implemented in response to
COVID-19 posed a unique opportunity to better understand the impact of natural versus
anthropogenic causes of air pollution, which will help to draft policies aimed at improving
the air quality. Within this framework, a number of studies have explored the impact of
lockdown on air quality. Rodriguez-Urrego et al. [17] reported an average PM2.5 decrease
of 12.5% over the 50 most polluted capital cities worldwide, although a discrete reduction
of only 5% was observed in European cities under study versus 22% on the American
continent and 16% on the Asian continent. Most of the cities experienced a reduction during
the COVID-19 lockdown, although a non-negligible figure of 14 out of the 50 cities reported
an increase of PM2.5, part of which was attributed to an isolated effect produced by winds
or fires. The reason for the results for other cities, such as Paris, with an increase of nearly
30%, was not evident in the study.

Nitrogen dioxide (NO2), nitrogen oxide (NO), PM2.5 and PM10 concentrations were
reduced in many countries and locales around the world during the COVID-19 lockdown.
However, this was not always the case for PM. For instance, in southern and in central
China, in situ measurements indicated a decrease of PM2.5 (10% to 60%) [18], while increases
were found in the north and east in a study using satellite data and models [19]. In that
study, the PM2.5 increase was also attributed to the higher relative humidity and to the
increased oxidation capacity of the atmosphere. Zhang et al. [20] and Mao et al. [21] also
suggested that complex aerosol chemistry and meteorological influence are the reasons for
this PM increase.

Traffic is a major source of primary aerosols. It contributes to the formation of sec-
ondary aerosols through the emission of SO2, VOCs and NOx, which are precursors of
aerosols. For this reason, the increase in aerosols despite the dramatic limitation in the
traffic activity is, to date, not well understood. Reduction in NOx emissions is known to
result in enhanced ozone concentration due to reduced titration [12]. Shen et al. [22] found
similar percentage decreases in urban and background sites in the Po Valley for NO2 and
NO (above 41% and 59%, respectively). They also found benzene and toluene concentration
reductions of 33 and 37%, respectively, while they reported only slight changes in PM2.5 and
PM10. Ciarelli et al. [23] observed a mild increase in PM2.5 levels in a modeling study at the
same sites investigated in the current study and in Swiss Plateau regions. They indicated
that the ozone enhancement increased the overall oxidizing capacity of the atmosphere,
i.e., OH· and NO3· radicals, which favored SOA formation. This lowered the overall lev-
els of particulate pollution, which suggests that emission sources other than traffic and
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processes have an important impact on particulate number and mass concentration, and
should be considered in control pollution strategies.

Sicard et al. [24] found overall reductions in PM2.5 and PM10 of 8% in urban stations of
the European cities studied, which is a much smaller reduction than in Wuhan (~42%). The
PM reduction due to the traffic and industrial activity limitation was, in part, caused by the
PM emissions from indoor activities during lockdown in some cities. Variability in PM10
reduction was observed in [25], which studied 11 cities in Spain, with one AQC from each
city, finding significant reductions in Barcelona, Valencia and Sevilla and no significant
reduction in the remaining eight cities.

Several approaches have been used to evaluate the effect of lockdown on air quality,
typically consisting of statistical studies comparing data from air quality cabins (AQCs)
during the lockdown period with (a) the period before [26] and (b) the same period in
previous years [24,27]. The same methods have been used based on satellite observations
rather than AQCs [28]. On the other hand, meteorology has a significant role in controlling
PM levels [29]. The processes of formation, removal and dispersion are influenced by
meteorological parameters such as temperature, radiation, relative humidity, precipitation,
wind speed and direction. This has led to numerous studies exploring this correlation
between meteorological variables and the behavior of different pollutants in order to get
a better understanding of their effect on climate change [30]. Authors of these studies state
that, while meteorology has a clearer correlation with pollutants such as ozone and NOx,
its correlation with PM remains uncertain in many scenarios due to the large variety of
PM components. Therefore, the closing of schools, industrial activities and businesses
had a clear impact on activity levels and air pollutant emissions and air quality during
the lockdown.

The aim of this study is to quantify the effect of the COVID-19 lockdown on air quality
(PM and BTX) by considering the reference period of March–May of 2015–2019 using
option (b) described in the previous paragraph and assessing the impact of meteorology.
The lockdown affected urban sites as well as industrial and rural sites, whose activity
was limited by direct legislative restrictions and by a general reduction in the demand of
products and the slowdown of the economy. Therefore, and unlike most of the studies
based on urban sites, this work has considered a network of AQCs, which includes cabins
in different environments: urban, rural, suburban, exposed to traffic, industrial and back-
ground emissions. This allows us to compare and discuss the effect of lockdown on the air
quality based on the site and type of emission.

2. Methodology
2.1. Data Sources and Study Area

The Valencia region is the fourth most populous autonomous community in Spain
with more than 5 million inhabitants and a surface of nearly 25,000 km2, consisting of
3 provinces: Alicante, Castellón and Valencia. Valencia is the homonymous capital of the
region and the third largest metropolitan area in the country, with 1,392,000 inhabitants
and an area of nearly 400 km2. It is also the third largest city in Spain with more than
800,000 inhabitants over an area of nearly 135 km2. The region is at the east of the country
by the Mediterranean coast, where there is very dense residential housing. Agriculture
plays an important role in the economy of the region, but in recent decades there has been
growth in the secondary sector with a strong industry, especially in Castellón, and in the
tertiary sector; tourism is the region’s major industry.

The regional air quality network of the Valencia region comprises 60 air quality
stations distributed through the territory of the aforementioned three provinces, with
47 of them measuring PM10 particles and 38 measuring PM2.5. In this study, the effect
of lockdown due to COVID-19 on the air quality of the Valencia region was investigated
by analyzing fine particulate matter (PM2.5), coarse particulate matter (PM10) and BTX.
Since meteorological conditions affect the dispersion of contaminants and therefore their
chemistry and removal [26,31], our study involved comparing data from the lockdown
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period with the same period in the years 2015–2019. The same season is compared to avoid
large meteorological variability of winter to spring. Therefore, hourly and daily data from
the lockdown period, i.e., from 15 March 2020 to 17 May 2020, were compared against the
reference period, consisting of the same period in the years 2015 to 2019, representing the
baseline conditions.

Hourly concentrations with >75% of validated data were used to calculate aggregated
daily values according to legislation. For statistical purposes, 21 AQCs were selected that
fulfilled the following criteria: (1) availability of spatial coverage to cover different types of
emission sources, location, etc.; (2) at least four years of available data reporting, including
2020; and (3) representativeness of an area and known not to be affected by artificial
external sources (e.g., installed in school yards and subject to resuspension of particles).
Figure 1 shows the geographical location of the different sampling sites in the western
Mediterranean area and Table S1 in the supplementary material summarizes the selected
air quality stations used in this study indicating the type of environment (URB = urban,
SUB = suburban and RUR = rural), type of emissions (TRA = traffic, IND = industrial,
BK = background) and site (INN = inner, COA = coast). Together with particulate matter,
meteorological parameters also collected by the air quality network were used in this
study: temperature (TEMP), relative humidity (RH), radiation (RAD), rainfall (PLU), wind
speed (WS) and wind direction (WD). Due to their role as precursors of particles, volatile
organic compounds (BTX: benzene = C6H6, toluene = C7H8 and xylene = C8H10) were
also considered.
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2.2. Saharan Dust Outbreaks Identification

In order to isolate the effect of the reduction in anthropogenic activity during the lock-
down period on aerosol concentrations, days with Saharan dust outbreaks (SDO) during
the considered period (2015 to 2020) were removed from the database. The assessment of Sa-
haran dust events that passed through the Mediterranean area during the study period was
retrieved from a Spanish governmental database [32]. In this database, the identification of
SDOs is carried out using dust forecast models (NAAPS, DREAM and SKIRON). Moreover,
a back-trajectory analysis by HYSPLIT model [33,34] is used to confirm the north African
origin of the air masses during the SDOs identified. Five-day back-trajectories ending at
different points of the study region at 750, 1500 and 2500 m above ground level (a.g.l.) at
12:00 UTC are also provided for these days. This procedure is based on a methodology for
the identification and quantification of the contribution of SDOs in Spain and Portugal [35].
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2.3. Statistical Analysis

Different approaches were used to evaluate the effects of lockdown on airborne PM.
An estimation of the changes between the two sets of series considered, the lockdown
period in 2020 and the equivalent time period over the 5 previous years, was conducted,
comparing the averages of PM concentrations. In addition, the variation of daily mean
concentrations expressed as percentages [24,26] was calculated for each day of the year
(DoY) according to Equation (1)

%Variation =
PMlockdown − PMre f erence

PMre f erence
·100 (1)

where PMlockdown is the particle concentration in 2020 and PMreference is the particle concen-
tration in the reference period (2015–2019). The deviation of daily mean concentrations
expressed as percentages was also calculated for each day of the year (DoY) within the
period under consideration. In order to ensure coherence when comparing both sets of
data, given the fact that human activity is generally lower on weekends than on working
days, the minimally required shift in days was introduced in the years 2015 to 2019 when
comparing baseline data to the days of the same period in 2020. By using this approach,
hourly data were also computed to assess the change of pattern between working days and
weekends due to the effect of the lockdown.

Box plots were computed to graphically compare the variability of distributions for
previous years with that for 2020. These box plots show a median of concentrations as
central markers and the edges of the boxes correspond to the 25th and 75th percentiles, also
called first quartile (Q1) and third quartile (Q3), respectively, being the interquartile range,
IQR = Q3 − Q1, the length of the box. The lockdown effect was assessed by aggregating
data from AQCs according to their typologies, i.e., considering the type of emissions they
are exposed to and the type of environment in which they are installed. The latter was
assessed by applying agglomerative hierarchical clustering analysis to the concentration
data using the Pearson correlation coefficient (R) distance [36]. For a better classification and
to consider all the variability among the AQCs, both PM2.5 and PM10 concentrations were
used. The average was applied to compute the distance between clusters. The dendrogram,
which graphically represents the cluster tree, is shown for easier interpretation [37]. Both
box plots and clusters were computed using MATLAB® version 2019a [38,39].

Another question raised in this study is whether meteorological parameters affect PM
concentrations. This was examined by calculating the corresponding Pearson’s correlation
coefficient, R, between the PM concentration profiles and the HR, PLU, RAD, WIND and
TEMP patterns. R varies between −1 < R < +1, with the signs + and − indicating positive
and negative correlations, respectively. The associated p-values were also calculated to
test the null hypothesis, when there is no relationship between the observed phenomena.
P-values range from 0 to 1, where those close to 0 correspond to a significant correlation in
R and a low probability of observing the null hypothesis. To test for statistical significance
between groups, we used the same approach as in ref. [24], and we used the non-parametric
Kruskal–Wallis test followed by a post hoc test using Fisher’s least significant difference and
p-values adjusted with the Holm correction. A p-value < 0.05 was considered statistically
significant and therefore as indicative of significant correlation.

3. Results and Discussion
3.1. Particulate Concentration Variation

Average concentrations of particulate matter were calculated as a first step to compare
concentrations during the lockdown with those of previous years. The results showed
that mean PM10 concentration was lower during the lockdown (9.1 µg·m−3) than in the
reference period (10.9 µg·m−3). Conversely, mean PM2.5 levels were slightly higher during
lockdown (6.7 µg·m−3) compared to the lockdown reference period (6.5 µg·m−3). Figure 2
presents percentage variations of PM10 and PM2.5 for each station. A summary of statistics
of PM10 and PM2.5 for each cabin for both reference and lockdown periods can be found
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in Tables S2 and S3 in the supplementary material. A general characterization of PM10,
PM2.5 and BTX data sets, grouping all stations in this study, is shown in Table S4 in the
supplementary material.
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An overall relative decrease in PM concentration was observed during the lockdown
period in 2020. In total, 14 of the 19 AQCs in this study recorded a reduction in PM10,
ranging from 1.6 to 62.7%, with an overall reduction of 16.5%. Despite the fact the 9 AQCs
experienced reductions varying from 6.4 to 44.2%, an overall increase in PM2.5 of 3.1% was
found. A study limited to several environments in the city of Valencia [40] obtained similar
results in two traffic stations common to this work (reductions of 56–53% and 60–41%
in PM10–PM2.5 in the FRA and PIST stations, respectively). However, in comparison to
our data, different PM percentage variations were found at other two common stations
(reductions of 33–30% and 37–13% in PM10–PM2.5 at MOLI and POLI stations, respectively).
A detailed review of the data explains that this difference is due to the fact that, unlike our
study, Donzelli et al. [40] considered a reference period based only on 2019 data.

Similar values for PM10 (14% decrease) and PM2.5 (6% increase) were found in the
United Kingdom [41]. The large fluctuation in PM2.5 variations in some European cities
during lockdown has been reported in [17]. The largest reductions were found in cabins in
urban sites and affected by traffic; in Valencia, reductions of 62.7% in PIST and 47.3% in
FRAN for PM10 and 36.2% and 44.2% for PM2.5 were recorded. Urban AQCs exposed to
industrial emissions reported deductions varying from 37.0% to 39.4% in PM10, although
reductions in PM2.5 were less significant (10%). This is also observed in the box plots
(Figure S1 in the supplementary material), where there is a notable variability in 2015–2019,
but not in 2020. Conversely, CEAS and CEME, categorized as SUB and exposed to industrial
emissions, presented increases of 32.9% and 30.3% for PM10 and 44.8% and 43.7% in PM2.5,
showing higher ranges of variability and higher medians in 2020.

The variability of the particulate concentrations in the considered time periods along
with the median is shown in the box plot in Figure S1a,b. The percentage reductions in PM10
and PM2.5 are supported by Figure S1, where the PM concentrations are presented in box
plots, showing a general higher variability in PM10 for the reference than for the lockdown
period. Nevertheless, the difference in the median values, 9.0 µg·m−3 for the reference and
8.0 µg·m−3 for the lockdown period, shows a smaller difference than the % of variation.
Regarding PM2.5, less variability was found in PM2.5 concentrations between both sets
of data, being the global median 5.0 µg·m−3 in the years 2015 to 2019 and 6.0 µg·m−3 in
2020. In general, suburban AQCs recorded an increase in PM2.5 and those which are both
suburban and industrial recorded an increase in PM10.
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Figure 3 shows PM percentage variations during lockdown compared to the reference
period calculated for the whole study network and the different cabin groups considered
using average observed PM concentrations (Table S5 in the supplementary material). Ac-
cording to the classification by type of environment, urban cabins showed the largest
decrease in concentrations of both PM10 and PM2.5 during the lockdown period; their
average concentrations decreased by 49.0% and 27.3%, respectively. Taking into account
that SDO was removed from the database, these notable decreases in PM concentrations
can be explained by the drastic reduction in anthropogenic activity resulting from lock-
down. A smaller but equally consistent PM10 concentration reduction (31%) was found in
Barcelona [26].
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PM10 or PM2.5 levels in rural and suburban areas were not as impacted by the
COVID-19 lockdown period. Whereas rural stations showed a similar pattern of larger
percentage reductions in PM10 concentrations than PM2.5 reductions, with more moderate
reductions in average concentration of 13.6% and 3.5%, respectively, suburban environ-
ments experienced the opposite behavior, recording overall percentage increases of 3.6%
and 20.2% in average PM10 and PM2.5 concentrations during lockdown.

According to the emission type classification (TRA/IND/BK), all cabin groups ex-
perienced a decrease in PM10 levels during lockdown. In Figure 3 it can be seen that the
traffic stations experienced the steepest decrease in the average concentration of both PM10
and PM2.5, with drops of 42.4% and 24.3%, respectively. As for urban cabins, these de-
creases in traffic PM concentrations were due to the limited anthropogenic activities (traffic,
works, etc.). A work in 11 metropolises in Spain with a different analysis approach found
slightly lower PM10 percentage reductions (−32% and −38% in the metropolitan and traffic
environments, respectively) and similar PM2.5 percentage decreases (−22% and −27% for
the same environments) in Valencia [42]. In ref. [24], very similar percentage decreases
in PM10 and PM2.5 results for traffic environments in European cities including Valencia
(52.3% and 29.3% respectively) during lockdown were recorded. A PM2.5 decrease of 29%
associated with reduced road traffic during lockdown in South Carolina was reported [27].
Accordingly, Figure 4 shows box plots with medians of 16.4 µg·m−3 of PM10 in the ref-
erence period versus 8.0 µg·m−3 in 2020 in urban AQCs. This is also observed in cabins
labelled as traffic (Figure 5), with decreases of 14.0 µg·m−3 and 8.0 µg·m−3, respectively. To
avoid smoothing as a result of calculating averages over the previous years, variability of
individual year distributions was plotted, showing that concentration variability of PM10
and PM2.5 for the urban and traffic stations during the lockdown was lower than each
reference year (Figures S2 and S3 in the supplementary material), which is more significant
in PM10.
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Figure 4. (a,b) Box plots by environment type. (a,b) represent PM10 and PM2.5 respectively in the
reference and the lockdown periods. The marker inside the boxplot is the median, and lower and
upper box boundaries are the 25th (Q1) and 75th (Q3) percentiles, respectively. Lower and upper
whiskers represent Q1 − 1.5·IQR and Q3 + 1.5·IQR, respectively. Dots are outliers.
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In contrast to the traffic stations, for those classified as IND and BK, PM10 concen-
tration decreased moderately and PM2.5 levels increased during lockdown, with PM2.5
medians of 4.0 µg·m−3 and 5.0 µg·m−3 for IND and BK sites, respectively, for PM2.5 in the
reference period and 6.0 µg·m−3 during the lockdown for both AQC types. Regarding
PM10, industrial cabins registered medians of 8.0 µg·m−3 in both periods and BK reduced
from 9.0 µg·m−3 in the reference period to 8.0 µg·m−3 in the lockdown, with similar vari-
ability in each individual year. PM10 levels at BK stations were reduced by 11.9%, while,
contrary to expectations, levels at industrial stations decreased by only 7.5%. PM2.5 at IND
and BK stations experienced overall increases of 14.3% and 6.4%, respectively, with small
variability and similar medians (Figure 5), and with particle concentrations of industrial
stations during lockdown were higher than averages recorded between 2016 and 2018. The
lower reduction and even increase of PM in nonurban stations during the lockdown, might
be partly due to the formation of particles resulting from the start of agricultural activity at
the end of the winter and coinciding with the initiation of the lockdown. The spreading of
fertilizers is known to be an important source of ammonium nitrate in European countries,
which together with NOx emitted by agriculture and industry, contributes to the forma-
tion of secondary PM2.5 [43]. Another reason that might have influenced the moderate
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variations of particles is the simultaneous action of activities and sources that did not
completely diminish during the lockdown, such as biomass burning and industry, which
did not experience a total or synchronized halt in activity. The lack of data on the chemical
composition of PM did not allow us to determine the evolution and the actual contribution
of PM from each source. Despite the similar medians found and box sizes delimited by
percentiles 25th and 75th, concentrations beyond the latter percentile, represented by dots,
can be observed in all the subgroups of AQCs in the reference period. This confirms its
generally higher variability compared to the lockdown. Box plots of individual years show
similar sizes throughout the period 2015–2020, although AQCs grouped as URB and TRA
clearly confirm the reduction of PM10 during the lockdown, which is not as significant
for PM2.5.

3.2. Hourly PM Pattern

Taking into account that the hourly pattern of particles is affected by activities carried
out by citizens, the hourly PM profiles have been calculated to observe whether the halt
of activity during the lockdown affected such PM patterns. Figure 6 shows an example of
urban AQCs, the most prone to be affected by changes in human activity, and distinguishes
between working days and weekends. Individual hourly patterns of each of the AQCs are
shown in the supplementary material (Figures S4–S7).
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Figure 6. Hourly PM10 (a) and PM2.5 (b) concentration profile of working days and weekends for the
reference and lockdown periods.

There was a reduction in particle concentrations during working days in 2020 com-
pared to the reference period, being more noticeable for PM10. Average concentrations
of 18.7 µg·m−3 and 8.3 µg·m−3 were found for PM10 and PM2.5, respectively, in 2020 and
8.9 µg·m−3 and 5.5 µg·m−3 during the reference period. A clear pattern in the working
days of the reference period with an increase of PM10 was observed at 8:00 a.m., reaching
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31.9 µg·m−3, coinciding with citizens commuting to work. This is also slightly reflected
in PM2.5 levels; hourly concentrations reached the highest values of 10.70 µg·m−3 and
6.47 µg·m−3 in the reference and lockdown periods, respectively. On weekends, the PM10
curve flattened and this peak dropped to 20.6 µg·m−3. Nevertheless, during the lock-
down, there was almost no distinction between the profiles of working days and weekends,
explained by the stoppage of human activities and reduction of traffic. Although this
effect was lower for PM2.5 at traffic stations, a reduction in hourly values and a smoothing
of the profile with respect to the reference period were still observed but with insignifi-
cant differences between weekdays and weekend profiles. Ref. [44] identified numerous
sources of PM in traffic-influenced urban environments, many of them non-vehicular and
with different contribution of PM10 and PM2.5. This supports the observed differences
between the reference and lockdown periods and the persistence of considerable levels of
PM during lockdown despite drastically reduced activity of the main emission sources in
this environment.

A moderate increase was also evident in the afternoon; the profile shows that the return
from work is steeper and starts at 7:00 p.m. The augmentation of particle concentrations at
the end of the day may be attributed to the traffic flows, emissions of the heating systems
and a descent in the planetary boundary layer height, as observed in other studies [45], the
latter being responsible for the levels observed during the first hours of the night. In 2020,
a reduction of concentration was maintained during the whole day, although the first peak
in the morning was lower and PM10 varied from 21.7 µg·m−3 to 14.0 µg·m−3, which is in
agreement with a reduction in traffic intensity.

Regarding rural and suburban sites (Figures S6 and S7), PM10 concentrations on
working days and weekends in 2020 were similar to the weekend profile and values during
the reference period. Concentration peaks at the same time as occurred in urban cabins,
although they were less perceptible, indicating that traffic emissions contributed to PM10
concentration for these AQCs. The hourly trends for rural and suburban sites showed
similar PM2.5 concentrations and hourly patterns to urban cabins in 2020 for both working
days and weekends, with negligible differences when comparing the reference and the
lockdown periods. This is because the contribution of PM2.5 in these environments mainly
occurs on a regional scale. Although anthropogenic mobility was drastically reduced, there
were still emissions of secondary aerosol precursors from activities such as agriculture,
farming, domestic heating and industry, which led to the formation and transport of PM2.5.

3.3. Cluster Analysis

The dendrogram combining the set of PM10 and PM2.5 concentrations of each AQC
considering the whole period of study (2015 to 2020) and using as distance 1 minus the
Pearson correlation coefficient resulted in clustering, as shown in Figure 7. To better explain
the agglomerations of AQCs, we introduced the COA/INN attribute, which denotes its
location in the coast or inland.

The first cluster includes most of the stations that were both BK and IND, even though
there were cabins that pertain to all three provinces. A central cluster enclosing most of the
AQCs that were both IND and COA is observed. It also includes ALM2 and BURR, which
are URB/IND/COA and RUR/IND/COA, respectively. RABA and ALC2 are not in this
cluster, but together in the third one. This may be because the first cluster is in Alicante,
where industrial activity is not as intense as in Castellón, which is the province where most
of the cabins in this cluster are located. Nevertheless, the reason why ALC2, which fulfills
the characteristics of this cluster, has not been included here is unclear. The fourth cluster
includes two out of the three traffic cabins, where traffic dominates the patterns of the PM
data. POLI is included here as well and, although classified as SUB due to its location, is
exposed to heavy traffic as it is on the way to the main university nuclei in Valencia and
on the way to the beach zone. Further, the chosen separation of clusters excludes PIST
from this cluster and gives rise to a new one consisting only of this station, which shares
similarities with the aforementioned cluster.
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The application of non-supervised cluster analysis confirmed similarities between
groups of AQCs according to the emissions to which they are exposed rather than to the
environment type classification.

3.4. Impact of Meteorological Parameters on PM

Meteorological parameters govern the main natural sources of PM, with sinks being
a key driving factor. For this reason, together with the effect of the intensity reduction of
anthropogenic sources, an assessment of the relationship between meteorology and PM
concentration evolution during the study period was completed. In the supplementary
material, Table S6 provides summary statistics on the meteorological parameters of the
11 AQCs that reported data for both the reference and lockdown periods. Mean temperature
and standard deviation values were very similar for all seasons in both periods. However,
compared to the reference period, the study region was characterized by less radiation and
higher values of precipitation and relative humidity during lockdown.

To assess the dependency of the PM concentration patterns with environmental pa-
rameters during the lockdown period and their possible role in the unexpected increase of
PM observed in some AQCs, the correlation of PM with TEMP, RH, RF, RAD and WS was
calculated along with the p-values (Tables S7 and S8). Although meteorological data were
not collected for all the cabins, these are available for 11 out of the total of 19 AQCs consid-
ered in this study, including those cabins reporting a relative increase of particulate matter
during the COVID-19 period. Radiation is a key factor in the formation of PM2.5. However,
as mentioned above, there was, in general, less intense radiation in the study area during
the lockdown compared to the reference period, leading to a nonsignificant correlation
between RAD and PM2.5 at all of the stations analyzed. Nevertheless, a notable dependence
between RH and WS for some of the cabins was found. As expected [30,46], there was
a positive correlation between RH and PM concentration, explained by RH facilitating
multiphase reactions that resulted in aerosol formation and growth [47]. In CEME, which
showed increases of 30.3% and 44.8% in PM10 and PM2.5, respectively, R values of 0.59 and
0.50 were found in the regression of PM10 and PM2.5 concentrations, respectively, versus
RH. The same behavior was observed in CEAS, which experienced similar variations,
with R values of 0.41 and 0.48 for PM10 and PM2.5, respectively. Conversely, there was
an anticorrelation with the wind speed, indicating that wind affects the cleanliness of the
environment, as reported in other studies [30,46,48–50]. The higher the wind speed, the
lower the concentration; therefore, PM levels were affected by the wind speed conditions,
which could explain the increase of particulate matter during the lockdown period. In
CEME, negative R values of 0.66 and 0.68 were found for PM10 and PM2.5, respectively.
The same behavior was observed in CEAS, with negative values of 0.58 and 0.63, and in
VILL, where the values were 0.65 and 0.66. In addition, the same pattern was observed in
PENY, though with more moderated correlation coefficients. Nevertheless, the observed



Atmosphere 2022, 13, 97 12 of 17

correlation with WS did not produce a rise in PM in ALM2. The combined effect of WS
and RH may partly explain the unexpected PM increases found in some cabins. Regarding
TARO, wind speed data were not collected, although an anticorrelation was found with
PLU, which may partly explain its increase of 33.8% in PM2.5. Therefore, these calculations
might explain the dependency of PM on environmental parameters, suggesting that the
main factor was the meteorological dependence rather than the source type. A character-
ization of the particle composition would be needed to further explain the PM patterns
found and elucidate to which extent meteorology played a role. In all the cases above
mentioned, p-values were found to be below the threshold 0.05, being therefore relevant
for the correlations.

Figure S8a–c in the supplementary material illustrates anticorrelation of the PM con-
centrations with the wind speed, as well as pluviometry (Figure S8a,b, respectively) and
correlation with RH (Figure S8c) during the lockdown. As can be clearly seen in Figure S8a,
at the ALM station the concentration levels of PM10 and PM2.5 decreased as daily wind
speed increased, reflecting efficient air renewal at wind speeds above 1 m·s−1. Figure S8b
shows how effective wet deposition is as a sink for suspended particulate matter. It can
be seen that on several occasions during the study period, precipitation led to a drastic
decrease in the levels of PM10 and PM2.5 particles at TARO station. In Figure S8c, the
correlation between PM and RH is easily observable at CEME station, reflecting a very
similar evolution over the whole measurement period.

3.5. VOCs Concentration Variation

This section aims to analyze the overall variation and daily evolution of BTXs in the
three urban traffic stations (PNAT, PIST and PLA) reporting these data during the lockdown.
Average concentrations of benzene, toluene and xylene were lower during lockdown than
in the 2015–2019 period. The lockdown period was characterized by a less dispersed
database and by considerably lower hourly percentile 95 and absolute maximum values for
every pollutant considered. As can be seen in Figure 8, for the set of stations, the general
variation in BTX levels was notable; levels of benzene, toluene and xylene decreased by
77.4%, 58.0% and 61.8%, respectively, in 2015–2019. Ref. [50] reported a similar percentage
drop (67%) in VOC levels from traffic during lockdown in China. Analyzing the stations
individually, the greatest reduction in BTX levels was recorded at the PLA station (Alicante),
accounting for a percentage concentration reduction of 86.0%, 87.1% and 90.8% in benzene,
toluene and xylene, respectively, in the lockdown period compared to the reference period.
However, there were also strong variations in each VOC measured for the other stations.
Benzene and xylene concentrations recorded average decreases of up to 78.5% and 49.4%
in PNAT (Castellón), while toluene recorded an average decrease of up to 49.2% at PIST
station (Valencia). The latter figure is in agreement with PM10 and PM2.5 reductions found
in this site as a result of the mobility restrictions that resulted in a traffic drop. Therefore,
apart from a decrease in primary particle emissions due to lower traffic flow, it is expected
that this reduction in BTX levels has contributed to the decline found in PM2.5 levels by
limiting the further photooxidative production of SOA.

Figure 9a–c shows the daily evolution of VOCs at the different stations. Benzene
showed a clear decrease in its daily concentrations in all stations throughout the period,
only showing slight increases at the end of the lockdown period with respect to the reference
period at the PNAT station. Although the same trend can be observed at the PLA station for
toluene and xylene, leading to the large overall percentage decreases previously highlighted,
it can also be seen that there have been non-negligible emissions at the other stations (PIST
and PNAT), resulting in similar and even higher daily concentrations than in the reference
period for some days. While particles can be both primary and secondary pollutants, at
these stations, BTXs are mainly primary, being largely contributed by vehicle exhaust.
This explains the higher variations in BTX than in PM, the latter being softened by other
emission sources and processes, as stated above.
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4. Conclusions

The COVID-19 pandemic led to an unprecedented reduction of anthropogenic activity.
This work evaluated the variation of PM10, PM2.5 and BTX concentrations due to the
COVID-19 lockdown. Unlike most of the studies in which AQCs in cities have been
considered, this work presents a study of the behavior of PM concentrations considering
a network of AQCs within a whole region, i.e., enclosing cabins exposed to different
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emissions (traffic, industrial, background), in different environments (urban, suburban,
rural) and locations (coast, inner). A thorough statistical analysis of PM was carried out.

Despite a halt in human activity, PM concentrations did not follow the expected
behavior in this lockdown. PM10 concentrations showed an overall percentage reduction
of 16.5% in 2020 while PM2.5 levels increased by 3.1%. This period also showed lower
variability of concentrations than the reference as observed in the box plots. Nonsupervised
cluster analysis confirmed that the main similarities in concentration trends in different
AQCs respond to the type of emissions they are exposed to. Urban and rural areas recorded
a reduction in PM10 and PM2.5 levels, while suburban areas experienced an increase in
both PM fractions. As expected, AQCs labelled as urban and exposed to traffic emissions
experienced the most drastic reductions, while in industrial areas the reductions were
more moderate for PM10, and an increase for PM2.5 was observed. The increase of the PM
concentration in some AQCs during the period studied in 2020 may, in part, be explained
by meteorological parameters, as a dependency has been found between PM and wind
speed, relative humidity and rainfall. Exhaustive statistical analysis has been carried out
by applying blind clusters to explore the behavior of the AQC network, confirming similar
performance in groups of cabins classified by their features.

Our study confirms that the stoppage of anthropogenic activities during the lockdown
has also affected the hourly pattern of particle concentration. In general, it has flattened the
profile and reduced the average values, especially in rural and traffic AQCs.

Reduction of the activity during the COVID-19 lockdown resulted in a diminution of
contaminants as observed in many observational and model studies worldwide. In this
study, we have found substantial drops in benzene, toluene and xylene by 77.4%, 58.0% and
61.8%, respectively. As stated above, for emission sources other than traffic, particles can be
both primary and secondary pollutants, e.g., heating systems and dispersed emissions from
surrounding industrial or farming areas. The chemistry of PM is non-linear and complex,
and the oxidative capacity of the atmosphere might have increased due to enhanced ozone
concentration resulting from less NO titration, leading to an increase of secondary aerosols.
This, together with meteorological aspects, might have compensated for and lessened the
overall reduction of aerosols.

Even though this lockdown allowed us to analyze a unique scenario, the brevity
of this period of study calls for the further characterization of the worldwide impact
of the reduction in anthropogenic activity on PM and other pollutants’ concentrations.
Accordingly, more research on PM chemical composition and emission sources is needed
to fully understand and explain the impact of lockdown on PM concentration and size
distribution. Our study supports the idea that the control of the air quality, especially of
particulate pollution, has to be evaluated considering different factors: emission sources,
secondary formation, effective oxidizing capacity of the atmosphere and meteorology.

The evaluation period has been a unique opportunity, and our study, by including
coverage of different scenarios and a thorough statistical analysis, presents valuable infor-
mation on the effect of the reduction and halt of anthropogenic activities over a network
of AQCs comprising different environments and affected by different types of emission
sources. Our findings may help to establish a basis for future scientific air pollution control
strategies and for improving air quality policies to counteract air pollution and to place
human health at the center of urban planning.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13010097/s1, Table S1. Summary of AQCs considered in
this work and environmental and pollutant data reported; Table S2: Statistics of PM10 data set of each
air quality cabin during reference and lockdown periods and their percentage variation; Table S3:
Statistics of PM2.5 data set of each air quality cabin during reference and lockdown periods and
their percentage variation; Table S4: Overall mean, standard deviation (Sd), median, 5th and 95th
percentiles (P05 and P95), minimum (Min) and maximum (Max) values for PM10, PM2.5 and BTX for
reference and lockdown periods considering all AQCs in this study; Table S5: Mean PM concentrations
and standard deviations for all air quality cabins grouped by type of environment and emission
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for both periods of study and PM percentage variation during lockdown compared to the reference
period; Table S6: Statistical summary of environmental parameters of each air quality cabin during
reference and lockdown periods; Table S7: Pearson’s correlation coefficient, R, between PM10 and
PM2.5 and meteorological variables; Table S8: p-values between PM10 and PM2.5 and meteorological
variables; Figure S1. Box plot of (a) PM10 and (b) PM2.5 concentration in the AQCs for reference and
lockdown periods; Figure S2. (a,b) Box plots by environment type. (a,b) represent PM10 and PM2.5
respectively in the reference, sorted by year, and the lockdown periods; Figure S3. (a,b) Box plots
by emission type. (a,b) represent PM10 and PM2.5 respectively in the reference, sorted by year, and
the lockdown periods. Figure S4: Hourly PM2.5 profile comparing reference and lockdown periods;
Figure S5: Hourly PM10 profile comparing reference and lockdown periods; Figure S6: Hourly PM10
concentration profile by environment type for reference and lockdown periods; Figure S7: Hourly
PM2.5 concentration profile by environment type for reference and lockdown periods; Figure S8. PM
and meteorological variables time series to illustrate anticorrelation in (a) ALM and (b) TARO and
correlation in (c) CEME stations during lockdown.

Author Contributions: Conceptualization, M.R., R.S., E.B., T.V., J.J.D. and A.M.; Methodology, M.R.,
R.S., E.B., T.V., J.J.D. and A.M.; Data curation, M.R. and R.S.; Formal analysis, M.R. and R.S.; Data
resources: J.J.D.; Investigation, M.R. and R.S.; Writing—original draft, M.R. and R.S.; Validation, E.B.;
Writing—review & editing, M.R., R.S., E.B., T.V. and A.M.; Supervision, A.M. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the projects CAPOX (RTI2018-097768-B-C21, Spanish Min-
istry of Science, Innovation and Universities) and IMAGINA_PROMETEO (PROMETEO/2019/110,
Generalitat Valenciana).

Data Availability Statement: Data presented in this study are available at the webpage of the AQ
Network of the Generalitat Valenciana. (http://agroambient.gva.es/es/web/calidad-ambiental/
datos-historicos). Last access date: 29 December 2021.

Acknowledgments: Fundación CEAM is partly supported by the Generalitat Valenciana, by the IMAG-
INA_PROMETEO (PROMETEO/2019/110) project and by the CAPOX project (RTI2018-097768-B-C21).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, R.; Kan, H.; Chen, B.; Huang, W.; Bai, Z.; Song, G.; Pan, G. Association of Particulate Air Pollution with Daily Mortality.

Am. J. Epidemiol. 2012, 175, 1173–1181. [CrossRef] [PubMed]
2. Chen, C.-H.; Wu, C.-D.; Chiang, H.-C.; Chu, D.; Lee, K.-Y.; Lin, W.-Y.; Yeh, J.-I.; Tsai, K.-W.; Guo, Y.L. The effects of fine and coarse

particulate matter on lung function among the elderly. Sci. Rep. 2019, 9, 14790. [CrossRef]
3. Dockery, D.W.; Stone, P.H. Cardiovascular Risks from Fine Particulate Air Pollution. N. Engl. J. Med. 2007, 356, 511–513. [CrossRef]
4. Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-Term Exposure to Air

Pollution and Incidence of Cardiovascular Events in Women. N. Engl. J. Med. 2007, 356, 447–458. [CrossRef]
5. World Health Organization. Ambient (Outdoor) Air Pollution. 2018. Available online: https://www.who.int/news-room/fact-

sheets/detail/ambient-(outdoor)-air-quality-and-health (accessed on 4 December 2021).
6. European Environment Agency. Excedance Of Air Quality Standards in Europe. 2021. Available online: https://www.eea.europa.

eu/ims/exceedance-of-air-quality-standards (accessed on 4 December 2021).
7. Querol, X.; Alastuey, A.; Rodriguez, S.; Plana, F.; Ruiz, C.; Cots, N.; Massagué, G.; Puig, O. PM10 and PM2.5 source apportionment

in the Barcelona Metropolitan Area, Catalonia, Spain. Atmos. Environ. 2001, 35, 6407–6419. [CrossRef]
8. Viana, M.; Kuhlbusch, T.A.J.; Querol, X.; Alastuey, A.; Harrison, R.M.; Hopke, P.K.; Winiwarter, W.; Vallius, M.; Szidat, S.;

Prévôt, A.S.H.; et al. Source apportionment of particulate matter in Europe: A review of methods and results. J. Aerosol Sci. 2008,
39, 827–849. [CrossRef]

9. Schnatter, A.R.; Glass, D.; Tang, G.; Irons, R.D.; Rushton, L. Myelodysplastic Syndrome and Benzene Exposure Among Petroleum
Workers: An International Pooled Analysis. J. Natl. Cancer Inst. 2012, 104, 1724–1737. [CrossRef]

10. Masih, A.; Anurag, L.; Taneja, A.; Singhvi, R. Inhalation exposure and related health risks of BTEX in ambient air at different
microenvironments of a terai zone in north India. Atmos. Environ. 2016, 147, 55–66. [CrossRef]

11. Carter, W.P.L. Development of Ozone Reactivity Scales for Volatile Organic Compounds. Air Waste 1994, 44, 881–899. [CrossRef]
12. Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken,

NJ, USA, 2006.
13. Henze, D.K.; Seinfeld, J.H.; Ng, N.L.; Kroll, J.H.; Fu, T.-M.; Jacob, D.J.; Heald, C.L. Global modeling of secondary organic aerosol

formation from aromatic hydrocarbons: High- vs. low-yield pathways. Atmos. Chem. Phys. Discuss. 2008, 8, 2405–2420. [CrossRef]

http://agroambient.gva.es/es/web/calidad-ambiental/datos-historicos
http://agroambient.gva.es/es/web/calidad-ambiental/datos-historicos
http://doi.org/10.1093/aje/kwr425
http://www.ncbi.nlm.nih.gov/pubmed/22510278
http://doi.org/10.1038/s41598-019-51307-5
http://doi.org/10.1056/NEJMe068274
http://doi.org/10.1056/NEJMoa054409
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.eea.europa.eu/ims/exceedance-of-air-quality-standards
https://www.eea.europa.eu/ims/exceedance-of-air-quality-standards
http://doi.org/10.1016/S1352-2310(01)00361-2
http://doi.org/10.1016/j.jaerosci.2008.05.007
http://doi.org/10.1093/jnci/djs411
http://doi.org/10.1016/j.atmosenv.2016.09.067
http://doi.org/10.1080/1073161X.1994.10467290
http://doi.org/10.5194/acp-8-2405-2008


Atmosphere 2022, 13, 97 16 of 17

14. Kerchich, Y.; Kerbachi, R. Measurement of BTEX (benzene, toluene, ethybenzene, and xylene) levels at urban and semirural areas
of Algiers City using passive air samplers. J. Air Waste Manag. Assoc. 2012, 62, 1370–1379. [CrossRef] [PubMed]

15. Buczynska, A.J.; Krata, A.; Stranger, M.; Godoi, A.F.L.; Kontozova-Deutsch, V.; Bencs, L.; Naveau, I.; Roekens, E.; Van Grieken, R.
Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmos. Environ. 2009, 43, 311–318. [CrossRef]

16. Our World in Data. Coronavirus Disease (COVID-19)—Statistics and Research. Oxford Martin School. Oxon. Global Change
Data Lab. 2021. Available online: https://ourworldindata.org/coronavirus/ (accessed on 31 November 2021).

17. Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Air quality during the COVID-19: PM2.5 analysis in the 50 most polluted capital
cities in the world. Environ. Pollut. 2020, 266, 115042. [CrossRef] [PubMed]

18. Yin, Z.; Zhang, Y.; Wang, H.; Li, Y. Evident PM2.5 drops in the east of China due to the COVID-19 quarantine measures in
February. Atmos. Chem. Phys. Discuss. 2021, 21, 1581–1592. [CrossRef]

19. Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions
during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [CrossRef] [PubMed]

20. Zhang, F.; Wang, Y.; Peng, J.; Chen, L.; Sun, Y.; Duan, L.; Ge, X.; Li, Y.; Zhao, J.; Liu, C.; et al. An unexpected catalyst dominates
formation and radiative forcing of regional haze. Proc. Natl. Acad. Sci. USA 2020, 117, 3960–3966. [CrossRef] [PubMed]

21. Mao, L.; Liu, R.; Liao, W.; Wang, X.; Shao, M.; Liu, S.C.; Zhang, Y. An observation-based perspective of winter haze days in four
major polluted regions of China. Natl. Sci. Rev. 2019, 6, 515–523. [CrossRef] [PubMed]

22. Shen, J.; Bigi, A.; Marinoni, A.; Lampilahti, J.; Kontkanen, J.; Ciarelli, G.; Putaud, J.P.; Nieminen, T.; Kulmala, M.;
Lehtipalo, K.; et al. Emerging Investigator Series: COVID-19 lockdown effects on aerosol particle size distributions in
northern Italy. Environ. Sci. Atmos. 2021, 1, 214–227. [CrossRef] [PubMed]

23. Ciarelli, G.; Jiang, J.; El Haddad, I.; Bigi, A.; Aksoyoglu, S.; Prévôt, A.S.H.; Marinoni, A.; Shen, J.; Yan, C.; Bianchi, F. Modeling the
effect of reduced traffic due to COVID-19 measures on air quality using a chemical transport model: Impacts on the Po Valley and
the Swiss Plateau regions. Environ. Sci. Atmos. 2021, 1, 228–240. [CrossRef] [PubMed]

24. Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution
in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [CrossRef] [PubMed]

25. Briz-Redón, Á.; Belenguer-Sapiña, C.; Serrano-Aroca, Á. Changes in air pollution during COVID-19 lockdown in Spain: A multi-
city study. J. Environ. Sci. 2021, 101, 16–26. [CrossRef]

26. Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during
the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [CrossRef]
[PubMed]

27. Parker, H.A.; Hasheminassab, S.; Crounse, J.D.; Roehl, C.M.; Wennberg, P.O. Impacts of Traffic Reductions Associated with
COVID-19 on Southern California Air Quality. Geophys. Res. Lett. 2020, 47, e2020GL090164. [CrossRef]

28. Ogen, Y. Assessing nitrogen dioxide (NO2) levels as a contributing factor to the coronavirus (COVID-19) fatality rate. Sci. Total.
Environ. 2020, 726, 138605. [CrossRef]

29. Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Van Der Gon, H.D.; Facchini, M.C.; Fowler, D.; Koren, I.; Langford, B.;
Lohmann, U.; et al. Particulate matter, air quality and climate: Lessons learned and future needs. Atmos. Chem. Phys. Discuss.
2015, 15, 8217–8299. [CrossRef]

30. Jacob, D.J.; Winner, D.A. Effect of climate change on air quality. Atmos. Environ. 2009, 43, 51–63. [CrossRef]
31. Petetin, H.; Bowdalo, D.; Soret, A.; Guevara, M.; Jorba, O.; Serradell, K.; García-Pando, C.P. Meteorology-normalized impact of

the COVID-19 lockdown upon NO2 pollution in Spain. Atmos. Chem. Phys. Discuss. 2020, 20, 11119–11141. [CrossRef]
32. Spanish Ministry Miteco Website. 2021. Available online: https://www.miteco.gob.es/ (accessed on 4 December 2021).
33. Draxler, R.R.; Rolph, G.D. HYSPLIT., Model Access Via NOAA ARL READY Website. 2015. Available online: http://ready.arl.

noaa.gov/HYSPLIT.php (accessed on 30 October 2012).
34. Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and

Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [CrossRef]
35. Querol, X.; Alastuey, A.; Pey, J.; Escudero, M.; Castillo, S.; Gonzalez, A.; Pallares, M.; Jiménez, S.; Cristobal, A.; Ferreira, F.; et al.

Spain and Portugal Methodology for the identification of natural African dust episodes in PM10 and PM2.5, and justification
with regards to the exceedances of the PM10 daily limit value. Environ. Sci. Pollut. Res. 2006, 35, 1151–1172.

36. Sarkar, M.; Das, A.; Mukhopadhyay, S. Assessing the immediate impact of COVID-19 lockdown on the air quality of Kolkata and
Howrah, West Bengal, India. Environ. Dev. Sustain. 2021, 23, 8613–8642. [CrossRef]

37. Núñez, D.; Pérez, L.V.; Manzoor, S.; Cáceres, J.O. Statistical Tools for Air Pollution Assessment: Multivariate and Spatial Analysis
Studies in the Madrid Region. J. Anal. Methods Chem. 2019, 2019, 975392.

38. Matlab. Statistics and Machine Learning Toolbox™, Version 2019a; The MathWorks, Inc.: Natick, MA, USA, 2019.
39. Morel, P. Gramm: Grammar of graphics plotting in Matlab. J. Open Source Softw. 2018, 3, 23–568. [CrossRef]
40. Donzelli, G.; Cioni, L.; Cancellieri, M.; Llopis-Morales, A.; Morales-Suárez-Varela, M. Relations between Air Quality and

COVID-19 Lockdown Measures in Valencia, Spain. Int. J. Environ. Res. Public Health 2021, 18, 2296. [CrossRef]
41. Wyche, K.; Nichols, M.; Parfitt, H.; Beckett, P.; Gregg, D.; Smallbone, K.; Monks, P. Changes in ambient air quality and atmospheric

composition and reactivity in the South East of the UK as a result of the COVID-19 lockdown. Sci. Total Environ. 2021, 755, 142526.
[CrossRef] [PubMed]

http://doi.org/10.1080/10962247.2012.712606
http://www.ncbi.nlm.nih.gov/pubmed/23362756
http://doi.org/10.1016/j.atmosenv.2008.09.071
https://ourworldindata.org/coronavirus/
http://doi.org/10.1016/j.envpol.2020.115042
http://www.ncbi.nlm.nih.gov/pubmed/32650158
http://doi.org/10.5194/acp-21-1581-2021
http://doi.org/10.1126/science.abb7431
http://www.ncbi.nlm.nih.gov/pubmed/32554754
http://doi.org/10.1073/pnas.1919343117
http://www.ncbi.nlm.nih.gov/pubmed/32041887
http://doi.org/10.1093/nsr/nwy118
http://www.ncbi.nlm.nih.gov/pubmed/34691900
http://doi.org/10.1039/D1EA00016K
http://www.ncbi.nlm.nih.gov/pubmed/34355190
http://doi.org/10.1039/D1EA00036E
http://www.ncbi.nlm.nih.gov/pubmed/34355191
http://doi.org/10.1016/j.scitotenv.2020.139542
http://www.ncbi.nlm.nih.gov/pubmed/32447070
http://doi.org/10.1016/j.jes.2020.07.029
http://doi.org/10.1016/j.scitotenv.2020.138540
http://www.ncbi.nlm.nih.gov/pubmed/32302810
http://doi.org/10.1029/2020GL090164
http://doi.org/10.1016/j.scitotenv.2020.138605
http://doi.org/10.5194/acp-15-8217-2015
http://doi.org/10.1016/j.atmosenv.2008.09.051
http://doi.org/10.5194/acp-20-11119-2020
https://www.miteco.gob.es/
http://ready.arl.noaa.gov/HYSPLIT.php
http://ready.arl.noaa.gov/HYSPLIT.php
http://doi.org/10.1175/BAMS-D-14-00110.1
http://doi.org/10.1007/s10668-020-00985-7
http://doi.org/10.21105/joss.00568
http://doi.org/10.3390/ijerph18052296
http://doi.org/10.1016/j.scitotenv.2020.142526
http://www.ncbi.nlm.nih.gov/pubmed/33045513


Atmosphere 2022, 13, 97 17 of 17

42. Querol, X.; Massagué, J.; Alastuey, A.; Moreno, T.; Gangoiti, G.; Mantilla, E.; Diéguez, J.J.; Escudero, M.; Monfort, E.;
Pérez García-Pando, C.; et al. Lessons from the COVID-19 air pollution decrease in Spain: Now what? Sci. Total Environ.
2021, 779, 146380. [CrossRef]

43. Menut, L.; Bessagnet, B.; Siour, G.; Mailler, S.; Pennel, R.; Cholakian, A. Impact of lockdown measures to combat COVID-19 on air
quality over western Europe. Sci. Total Environ. 2020, 741, 140426. [CrossRef]

44. Pio, C.; Alves, C.; Nunes, T.; Cerqueira, M.; Lucarelli, F.; Nava, S.; Calzolai, G.; Gianelle, V.; Colombi, C.; Amato, F.; et al. Source
apportionment of PM2.5 and PM10 by Ionic and Mass Balance (IMB) in a traffic-influenced urban atmosphere, in Portugal. Atmos.
Environ. 2020, 223, 117217. [CrossRef]

45. Salvador, P.; Pandolfi, M.; Tobías, A.; Gómez-Moreno, F.J.; Molero, F.; Barreiro, M.; Pérez, N.; Revuelta, M.A.; Marco, I.M.;
Querol, X.; et al. Impact of mixing layer height variations on air pollutant concentrations and health in a European urban area:
Madrid (Spain), a case study. Environ. Sci. Pollut. Res. 2020, 27, 41702–41716. [CrossRef]

46. Xu, Y.; Xue, W.; Lei, Y.; Zhao, Y.; Cheng, S.; Ren, Z.; Huang, Q. Impact of Meteorological Conditions on PM2.5 Pollution in China
during Winter. Atmosphere 2018, 9, 429. [CrossRef]

47. Tie, X.; Huang, R.-J.; Cao, J.; Zhang, Q.; Cheng, Y.; Su, H.; Chang, D.; Pöschl, U.; Hoffmann, T.; Dusek, U.; et al. Severe Pollution in
China Amplified by Atmospheric Moisture. Sci. Rep. 2017, 7, 15760. [CrossRef] [PubMed]

48. Keary, J.; Jennings, S.G.; O’Connor, T.C.; McManus, B.; Lee, M. PM10 Concentration Measurements in Dublin City. Environ. Monit.
Assess. 1998, 52, 3–18. [CrossRef]

49. Galindo, N.; Varea, M.; Gil-Moltó, J.; Yubero, E.; Nicolás, J. The Influence of Meteorology on Particulate Matter Concentrations at
an Urban Mediterranean Location. Water Air Soil Pollut. 2010, 215, 365–372. [CrossRef]

50. Wang, J. Impact of COVID-19 lockdown on ambient levels and sources of volatile organic compounds (VOCs) in Nanjing, China.
Sci. Total Environ. 2021, 757, 143823. [CrossRef] [PubMed]

http://doi.org/10.1016/j.scitotenv.2021.146380
http://doi.org/10.1016/j.scitotenv.2020.140426
http://doi.org/10.1016/j.atmosenv.2019.117217
http://doi.org/10.1007/s11356-020-10146-y
http://doi.org/10.3390/atmos9110429
http://doi.org/10.1038/s41598-017-15909-1
http://www.ncbi.nlm.nih.gov/pubmed/29150676
http://doi.org/10.1023/A:1005935411345
http://doi.org/10.1007/s11270-010-0484-z
http://doi.org/10.1016/j.scitotenv.2020.143823
http://www.ncbi.nlm.nih.gov/pubmed/33261875

	Introduction 
	Methodology 
	Data Sources and Study Area 
	Saharan Dust Outbreaks Identification 
	Statistical Analysis 

	Results and Discussion 
	Particulate Concentration Variation 
	Hourly PM Pattern 
	Cluster Analysis 
	Impact of Meteorological Parameters on PM 
	VOCs Concentration Variation 

	Conclusions 
	References

