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Abstract: Due to heightening concern about radiation hazards protection, activity concentrations of
226Ra, 232Th, 40K in forty soil samples collected from Shoubra El Kheima in the South Nile Delta were
measured using gamma-ray spectrometry. The mean activity concentrations of 226Ra and 40K were
higher in 20% of the considered samples than the world average values. A comprehensive comparison
with up-to-date data was carried out. Spatial distribution maps of the measured radionuclides and
radiological parameters were generated. The distributions of natural radionuclides were influenced
by the soil organic matter, clay content, and scavenger metals oxides, as well as differences in the
physical and chemical attributes and solubility of these radionuclides. The results revealed that
industrial activity and agricultural practices in the study area caused an incremental increase in
226Ra and 40K activity concentrations. It can be deduced that although there are intensive industrial
activities in this area, the natural radiation that comes from the soil is normal and does not pose a
significant radiological hazard to the public. The natural radioactivity of soil in this area needs to be
monitored periodically to prevent unnecessary radiation exposure to inhabitants.

Keywords: soil radioactivity; radium; thorium; radiation hazards; excess lifetime cancer risk;
Nile Delta

1. Introduction

There is a growing consensus among scientists, international organizations, decision-
makers, and laypersons that human exposure to external and internal (inhalation and
ingestion) radiation is a critical and inevitable environmental issue. Even though all living
organisms are exposed to natural (cosmic sources and background terrestrial radiation) and
artificial ionizing radiation sources, most radiation absorbed by the world’s population is
from natural sources [1–3]. The primordial radioactive isotopes 238U and 232Th, their decay
products, and 40K are present at different concentrations in all environmental compartments
and produce significant human exposure [1,4,5]. These radioactive elements naturally make
their way into the soil, surface water, and groundwater through different earth surface
processes [2,6]. Their concentrations increase above normal levels in association with
anthropogenic activities, such as the testing of nuclear weapons [2], mining, the production
of industrial minerals and materials [7–11], fossil fuel production and combustion [12–14],
and the use of phosphate and potassium sulfate fertilizers [15–17].

Soil represents the prime source of continuous radiation outdoor exposure to humans.
Although soil radionuclide contents are directly linked to those of the parent rock [9,18–20],
soil formation processes could contribute to changes in the soil’s radionuclide contents by
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addition, loss, and translocation [3,18,21]. Soil physicochemical attributes such as texture,
pH, organic matter content (OM%), and concentration of the scavenger metals Fe and
Mn have a remarkable influence on the distribution and mobility of radionuclides in the
soil [16,18,22–24].

Once present in the soil, natural radionuclides are transferred to biological systems
and the food chain [25–27]. Therefore, the soil in common is a significant indicator of radio-
logical contamination and allows researchers to uncover areas of possible radiotoxicity [28].
Continuous measurement of radiation levels in soil and associated radiological hazards can
be used to discover and reliably predict negative changes in environmental radioactivity
inadvertently caused by human activities [1].

Fast population growth in Egypt, especially in the Nile Delta region, has undoubtedly
led to an increase in industrial and commercial activities. Unorganized urbanization and
industrialization over the fertile soil of the Nile Delta have exacerbated the creation of envi-
ronmental and public health problems of vast proportions [29,30]. Therefore, the specific
aims of the present work are: (i) Measuring the activity concentration and distribution
of natural radionuclides (226Ra, 232Th, and 40K) in soil with various land uses in a highly
industrialized area of the South Nile Delta; (ii) Identifying soil attributes that influence
the distribution of these radionuclides; (iii) Assessing the human radiation doses and
concomitant cancer risk.

2. Materials and Methods
2.1. Study Area

Shoubra El Kheima is located in the southeast of the Nile Delta between longitude
31◦14′7.7′ ′–31◦17′45′ ′ E and latitude 30◦6′22.4′ ′–30◦9′37.5′ ′ N (Figure 1). It belongs to
Qalyobia governorate and occupies an area of about 30 km2. Besides agricultural activity,
this area suffers from intensified industrial activities such as glass, crystal, ceramic, and
brick production, as well as chemical, textile, and ferrous and nonferrous metallurgical
industries, in addition to two large power plants.
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2.2. Sampling

Forty surface soil samples (up to a depth of 25 cm) were collected from different land-
use types (agricultural, urban, and industrial) using a clean stainless-steel shovel. After
manual elimination of pebble stones, gravel, and any plant debris, a 2 kg soil sample was
collected from each site in a separate, neat, dust-free, labeled, and sealed polyethylene bag.

2.3. Sample Treatment and Analysis

Samples were air-dried for 10 days with continuous rotation in a controlled environ-
ment to avoid cross-contamination; representative sub-samples were obtained by coning
and quartering. Soil samples were taken and passed through a 2 mm sieve to remove
large particles.

The pH values were determined with a glass electrode in an aqueous suspension of
distilled water (1:2.5) using a pH meter (HANA). Soil organic matter content was measured
by loss on ignition following the procedure adopted by Van Reeuwijk [31]. Soil texture
classes were measured using wet and dry sieving; pipette analysis followed the procedure
adopted by Lewis and McConchie [32].

Clay mineralogical composition was identified using X-ray diffraction analysis accom-
plished by using a BRUKER-D8 Advance diffractometer with Ni filter, Cu-Kα radiation
available at the Central Metallurgical Research and Development Institute, Egypt. Instru-
ment settings were 40 Kv and 40 mA potential, scanning speed of 0.02◦/S, and the 2θ
ranged between 4 to 60◦.

The XRF analysis was carried out for the powder (<74 µm) samples using X-ray
fluorescence equipment PW 2404 with five analyzing crystals. The concentrations of the
analyzed major elements (oxides %) were calculated using the software Super Q and Semi
Q programs, with an accuracy of 99.99% and a confidence limit of 96.7%.

Homogenized soil samples were weighed and sieved (125 µm mesh size). The meshed
samples were transformed into a standard Marinelli container (100 mL) and sealed for a
period of about 4 weeks before analysis. This typically allows the in-growth of uranium
and thorium decay products to prevent the escape of the radiogenic gases 222Rn and 220Rn
and allows secular equilibrium between 226Ra, 232Th, and their daughter products [33].

The 226Ra, 232Th, and 40K-specific activity concentrations in the collected soil samples
were measured by gamma-ray spectrometry. A properly calibrated gamma-ray spectrom-
eter of a 3” × 3” NaI (Tl) scintillation detector was used. The detector was adequately
protected by a 0.6 cm thickness of cylindrical copper for protection against induced X-rays,
and a chamber of lead bricks for isolation from the environmental radiations, with a 5 cm
thick lead protection cover. The detector was connected to a Tennelec high-voltage power
supply with HV digital display and a Nuclear Enterprises main shaping amplifier. It was
also connected to a Nuclease PCA-8000 computer-based (8192) multichannel analyzer
with high-level technical operation functionality and color graphical display of spectra.
Energy calibration of the detector was performed using standard point sources (137Cs and
60Co). Each sample was counted for 1000 s. Further details for precisely calculating activity
concentration can be obtained elsewhere [9,34–36].

2.4. Radiation Hazard Indices Calculation

To objectively assess the external radiation hazards due to the activity concentration
of the examined radionuclides in the study area soils, the quantities such as Radium
Equivalent Activity Index (Raeq) (Equation (1)), External Hazard Index (Hex) (Equation (2)),
Absorbed Dose Rate (D) (Equation (3)), and Annual Effective Dose (AEDE) (Equation (4))
were calculated from the activity concentrations of 226Ra, 232Th, and 40K. Excess Lifetime
Cancer Risk (ELCR) (Equation (5)) was also calculated to derive a more reasonable and
safe conclusion. The descriptions and adopted formulas of the calculated external hazard
indices are summarized in Table 1.
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Table 1. Summary of the external hazard radiological parameters.

S/N Radiological Parameters Units Safety Criterion References

1 Radium Equivalent Activity Index (Raeq)
Raeq= CRa +1.43 CTh+0.77 CK

(1) Bq kg−1 <370 Bq kg−1 [1,37]

2 External Radiation Hazard Index (Hex)
Hex = CRa

370 + CTh
259 + CK

4810
(2) - <1 [1,38]

3 Air Absorbed Dose Rate (D)
D = 0.462 CRa+0.604 CTh+0.0417 CK

(3) nGy h−1 <57 nGy h−1 [1]

4 Annual Effective Dose Equivalent (AEDE)
AEDE = D × T × DCF × FO ×10−6 (4) mSv year−1 <0.07 mSv year−1 [1]

5 Excess Lifetime Cancer Risk (ELCR)
ELCR = AEDE × DL × RF (5) - <0.29 × 10−3 [4,39]

CRa, CTh, and CK are the activity concentrations of 226Ra, 232Th, and 40K in (Bq kg−1), respectively. T is the time
being 8760 h y−1, DCF is the dose conversion factor of 0.7 SvGy−1, FO is the outdoor occupancy factor of 0.2
for inhabitants [1]. DL is the duration of lifetime (70 years), and RF is the cancer risk factor used for public as
0.05 Sv−1 [40].

2.5. Data Treatment and Statistical Analysis

The geographic information system (GIS) technique was utilized to construct sampling
locations and spatial distribution maps of the measured radionuclides using Arc GIS
(version 10.3; 2014) with a natural neighbor as a raster interpolation technique. Descriptive
statistics and boxplots were presented by OriginLab (version OriginPro; 2021). Soil samples
were classified using the USDA classification ternary chart [41]. Bivariate X-Y plots with
the coefficient of determination R2 of linear fit were calculated and illustrated by OriginLab.
Multivariate Pearson’s correlation coefficient matrix (PCC) was carried out with IBM SPSS
(version 20; 2012). All statistical evaluations were calculated to define correlation between
the examined radionuclides and soil properties and their controlling factors.

3. Results and Discussion
3.1. Soil Characteristics

The physicochemical properties of the considered soil samples are presented in Table 2.
These soil samples fall in moderately alkaline soil (7:9). Organic matter content (OM%)
varies from 1.20% to 8.88%, with mean values of 6.05%, 3.64%, and 4.03% for agricultural,
urban, and industrial soil, respectively. The textural properties of the considered soil
samples show a marked variation in clay content and soil class. Most of the agricultural
soil samples are classified as clay, while urban and industrial soil samples are varied in
their classification from clayey to loamy sand (Figure 2). The texture of the agricultural soil
reflects its origin as Nile Delta soil [42], while urban and industrial soils were affected to
a large extent by industrialization and urbanization, and transportation or mixing with
external particles [30].

There was no observed significant variation in the major oxides’ concentrations be-
tween different soil types, except for SiO2, which is higher in urban and industrial than
agricultural soil, reflecting the sandy texture of these soils. Otherwise, the highest Al2O3
contents were recorded in the agricultural soil samples, indicative of their high clay content.

Representative samples with high clay content were examined qualitatively using
X-ray Diffractometry. The examined clay fractions are dominated by montmorillonite and
kaolinite minerals. Illite mineral is also recorded in some samples (Figure 3).

3.2. Activity Concentrations

In general, the activity concentrations of urban and industrial soils have the order
40K > 226Ra > 232Th. Conversely, the activity concentrations in the agricultural soil have the
order 40K > 232Th > 226Ra. As seen in Table 2, the agricultural soil samples contain higher
activity concentrations of 226Ra, 232Th, and 40K than the urban and industrial soil samples
(Figure 4).
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Table 2. Descriptive statistics of soil physicochemical parameters and oxides (%) and measured
radionuclides (Bq Kg−1) in different land-use soil samples.

Soil Land Use pH OM Sand Silt Clay SiO2 Al2O3 Fe2O3 MnO MgO CaO 226Ra 232Th 40K

Agricultural
N = 16

Min 7.92 4.23 2.70 20.60 8.70 41.50 15.40 7.50 0.10 1.80 3.10 UDL 20.20 103.29
Max 8.78 8.88 37.33 43.90 61.00 50.50 21.90 9.50 0.24 2.60 6.50 33.30 32.32 635.39

Mean 8.42 6.05 12.98 27.43 48.85 45.44 18.23 8.21 0.17 2.14 4.77 18.73 26.01 337.06
Std.
D. 0.22 1.23 7.66 5.85 11.92 2.40 2.20 0.54 0.03 0.19 0.83 11.26 4.89 141.61

Urban
N = 10

Min 8.18 1.43 6.94 7.98 6.44 49.50 8.89 2.58 0.03 0.88 3.20 11.10 8.08 71.99
Max 8.78 5.46 72.52 39.99 55.00 73.80 17.80 8.60 0.13 2.10 6.29 44.40 24.24 422.55

Mean 8.45 3.64 35.26 26.84 29.86 56.30 14.03 7.27 0.10 1.62 4.95 21.09 14.95 233.19
Std.
D. 0.22 1.27 23.29 11.11 17.28 7.67 3.46 1.77 0.04 0.33 0.96 9.72 4.68 116.86

Industrial
N = 14

Min 7.65 1.20 19.19 2.39 8.70 47.60 8.10 3.20 0.01 0.50 3.50 UDL UDL 9.39
Max 8.96 6.63 84.25 35.97 41.80 76.20 21.00 10.40 0.26 2.75 6.50 33.30 28.28 697.99

Mean 8.32 4.03 50.57 22.05 18.46 55.91 13.41 7.60 0.15 1.71 5.17 20.61 15.01 240.12
Std.
D. 0.34 1.47 17.96 11.36 8.89 7.93 3.68 1.91 0.08 0.58 0.80 9.60 8.74 202.92

All Samples
N = 40

Min 7.65 1.20 2.70 2.39 6.44 41.50 8.10 2.58 0.01 0.50 3.10 UDL UDL 9.39
Max 8.96 8.88 84.25 43.90 61.00 76.20 21.90 10.40 0.26 2.75 6.50 44.40 32.32 697.99

Mean 8.39 4.74 31.71 25.40 33.47 51.82 15.49 7.76 0.14 1.86 4.96 19.98 19.39 277.16
Std.
D. 0.27 1.69 23.03 9.53 18.20 8.04 3.79 1.49 0.06 0.45 0.85 10.12 8.34 164.47

UDL = Under detection limit.
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The GIS-based frequency distribution maps of 226Ra, 232Th, and 40K are presented in
Figure 5. The 232Th high activity concentration values are recorded in the northern parts
of the study area. 226Ra and 40K activity concentrations increase in the eastern parts near
industrial complexes.
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The mean activity concentrations of 226Ra and 40K are higher in 20% of the studied
samples than the world’s average values (32, 45, and 412 Bq kg−1, respectively) [4] (Figure 4).
This indicates that the activity concentrations of 226Ra and 40K were affected to varying
degrees by the anthropogenic activities. Conversely, 232Th activity concentrations are lower
than those of the world average.

232Th naturally exists in soil, and its activity concentration in phosphatic fertilizers is
extremely small [43]; its relatively low concentration in the studied soil could be attributed
to soil parent materials [12,16]. In slightly and moderately alkaline soils, 226Ra is mostly
present as an available form and easily leached by waters [44]. On the contrary, 232Th
remains part of the resistance to weathering mineral constituents [12,21,45]. It is understood
that 40K in the earth’s crust and soil is an order of magnitude higher than that of 226Ra and
232Th [3,26,46]. The long-continuous application of phosphate and/or potassium sulfate
fertilizers can redistribute and raise 226Ra and 40K concentrations in soils [17,47].

Results obtained for the activity concentration of primordial radionuclides (226Ra,
232Th, and 40K) in the present study have been comprehensively compared with available
up-to-date data for many regions in Egypt and many countries around the world in the
literature (Table 3).

Table 3. Comparison of 226Ra, 232Th, and 40K mean activity concentration in soil samples reported
for different regions in Egypt and worldwide.

Location Samples 226Ra 232Th 40K References

Egypt

South Nile Delta (Shoubra) N = 40 19.98 19.39 277.16 Present study
Middle Nile Delta (Dakahlia) N = 25 43.00 54.00 183.00 [25]

Southeastern Nile Delta N = 36 35.50 23.60 266.40 [16]
Mediterranean Sea coast N = 38 25.18 11.22 159.16 [28]

Upper Egypt (Assiut) N = 15 49.45 59.11 137.85 [9]
Upper Egypt (EL Minya) N = 174 17.53 10.16 183.08 [24]

Upper Egypt (Qena) N = 32 13.70 12.30 1233.00 [22]

Worldwide

Antarctica (Larsemann) N = 20 33.00 199.00 1150.00 [5]
Armenia (Yerevan) N = 51 45.69 37.25 423.68 [20]

Bangladesh (Chittagong) N = 10 45.00 51.00 423.00 [12]
Bosnia and Herzegovina (Tuzla and

Lukavac) N = 31 32.00 32.00 331.00 [48]

Brazil (Fernando de Noronha) N = 70 62.00 82.00 179.00 [21]
China (Guangyao) N = 30 26.80 8.87 453.81 [46]

Cyprus N = 37 83.70 53.60 593.90 [35]
Georgia (Mtskheta–Mtianeti) N = 17 24.00 26.90 464.00 [44]

India (Karnataka) N = 25 28.07 21.58 237.68 [36]
Iraq (The-Qar) N = 33 12.89 15.54 297.22 [14]

Jordan (Amman) N = 40 29.00 35.50 265.70 [49]
Korea (Jeju Island) N = 16 32.40 35.60 314.00 [3]

Malaysia (Kelantan) N = 36 82.00 123.00 643.00 [50]
Nigeria (Zamfara) N = 18 19.00 23.00 269.00 [10]

Pakistan (Rawalpindi) N = 14 19.04 30.52 303.09 [17]
Saudi Arabia (Abha) N = 13 38.67 23.49 217.87 [34]

Tanzania (Iringa) N = 12 163.00 143.00 583.00 [47]
Turky (Istanbul) N = 22 30.40 36.60 524.50 [51]

Yemen (Delta Abyan) N = 28 33.15 77.25 1220.59 [26]

The mean activity concentrations of 226Ra (19.98 Bq kg−1) and 232Th (19.39 Bq kg−1)
are lower than those from various regions in Egypt, with the exception of 226Ra, which
showed high activity concentrations compared with those from El Minya [24] and Qena [22];
and 232Th, which showed high activity concentrations compared with those from the
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Mediterranean Sea coast [28], El Minya [24], and Qena [22]. On the other hand, the mean
activity concentration of 40K (277.16 Bq kg−1) is higher than all recorded values in Egypt,
except those from Qena [22].

Compared to the mean values recorded in other countries worldwide, the mean
activity concentrations of 226Ra (19.98 Bq kg−1) are lower than those from worldwide
locations, with exceptions from Iraq [14], Nigeria [10], and Pakistan [17]. Likewise, 232Th
(19.39 Bq kg−1) is higher than those from China [46] and Iraq [14]. On the other side, 40K
(277.16 Bq kg−1) is higher than those from Brazil [21], India [36], Jordan [49], Nigeria [10],
and Saudi Arabia [34].

3.3. Statistical Analysis

Statistical PCC analyses among variables are presented in Table 4. 232Th and 40K have
positive correlations with OM content (r = 0.550 and r = 0.370; respectively), clay content
(r = 0.652 and r = 0.403; respectively), and with each other (r = 0.536) (Figure 6). In addition,
they exhibit a positive correlation with Al2O3 and MgO, which are mainly related to the
aforementioned positive relation with clay content, which is dominated by montmorillonite
and kaolinite. The observed positive relation between these two radionuclides and Fe2O3
and MnO can be attributed to the nature of Fe and Mn oxides as scavenger metals (Figure 7).
232Th is similarly strongly absorbed by clay minerals and oxyhydroxides (Abedin et al.
2019). These relations sufficiently indicate that OM and clay content play a significant role
in 232Th and 40K distribution [12,22].

Table 4. Pearson’s correlation coefficient for the studied variables (n = 40).

Sand Silt Clay SiO2 Al2O3 Fe2O3 MnO MgO CaO 226Ra 232Th 40K

OM−0.717 ** 0.360 * 0.615 ** −0.743 ** 0.513 ** 0.479 ** 0.454 ** 0.521 ** 0.042 0.032 0.550 ** 0.370 *
Sand 1 −0.582 ** −0.897 ** 0.761 ** −0.570 ** −0.419 ** −0.402 * −0.617 ** 0.088 −0.072 −0.715 ** −0.463 **
Silt 1 0.172 −0.548 ** 0.395 * 0.329 * 0.241 0.506 ** 0.165 0.038 0.395 * 0.286
Clay 1 −0.584 ** 0.469 ** 0.295 0.324 * 0.446 ** −0.234 0.064 0.652 ** 0.403 **
SiO2 1 −0.795 ** −0.692 ** −0.573 ** −0.699 ** −0.175 −0.076 −0.683 ** −0.470 **
Al2O3 1 0.395 * 0.309 0.383 * −0.075 0.046 0.660 ** 0.407 **
Fe2O3 1 0.443 ** 0.368 * 0.312 −0.053 0.349 * 0.358 *
MnO 1 0.657 ** 0.227 0.196 0.403 ** 0.392 *
MgO 1 0.185 0.094 0.532 ** 0.394 *
CaO 1 0.127 −0.163 −0.124
226Ra 1 −0.049 0.269
232Th 1 0.536 **
40K 1

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

On the other hand, 226Ra shows no relation with soil characteristics or 232Th and 40K;
similar results were recorded by Ribeiro et al. [21] and Gad et al. [16]. The notable lack of
significant correlation or association between 226Ra and each of 232Th and 40K suggests that
these radionuclides originated from different sources, and 226Ra might have originated
from the industrial activity in the area and accumulated by atmospheric deposition [16].

3.4. Radiation Hazard

Table 5 shows the calculated results of the radiological parameters for the considered
samples. Raeq was introduced to define uniformity with respect to radiation exposure due
to these naturally occurring radionuclides [1,37]. The calculated Raeq values vary from
22.902 to 121.708 Bq kg−1 (mean 69.052 Bq kg−1). These values are far lower than the
recommended maximum value of 370 Bq kg−1 [1,37]. The Hex radiation hazard due to
emitted gamma-rays ranges from 0.062 to 0.329 (0.186). In this study, all calculated values
of Hex are lower than the safety limit of one [38], which is considered negligible.
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Table 5. Calculated radiological parameters.

Raeq Hex D AEDE ELCR × 10–3

All
Samples
N = 40

Min 22.902 0.062 10.831 0.013 0.046
Max 121.708 0.329 59.132 0.073 0.254

Mean 69.052 0.186 32.501 0.039 0.139
Std. D. 24.984 0.067 12.094 0.015 0.052

D values range from 10.831 to 59.132 nGy h−1 (mean 32.501 nGy h−1). At only one
site, the recorded D value is above the worldwide average of 57 nGy h−1 for external
outdoor exposures [1]. Figure 8 shows the contributions of 226Ra, 232Th, and 40K activity
concentrations to the calculated D values in each soil sample site. It is evident that the
contribution of these radionuclides varies from one site to another.
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Figure 8. The contributions of 226Ra, 232Th, and 40K to D values.

AEDE with outdoor occupation factors of 0.2 (4.8 h d−1) for inhabitants ranges from
0.013 to 0.073 mSv year−1 (mean 0.039 mSv year−1). The AEDE calculated values surpass
the worldwide average of 0.07 mSv year−1 [1] in only one sampling site. ELCR calculated
values range from 0.046 × 10−3 to 0.254 × 10−3 (mean 0.139 × 10−3). These values are
lower than the world’s average of 0.29 × 10−3 [4,39].

The GIS-based spatial maps of the calculated radiological parameters are presented
in Figure 9. High values of these parameters are recorded in the northeastern part of the
study area over the agricultural land and near the intensive industrial activity.
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4. Conclusions

The activity concentrations of naturally occurring radionuclides (226Ra, 232Th, and
40K) in forty soil samples from Shoubra El Kheima in the South Nile Delta have been
determined using gamma-ray spectrometry. The measured activity concentrations of
natural radionuclides are in the order 40K > 226Ra > 232Th in urban and industrial soil,
and 40K > 232Th > 226Ra in agricultural soil. The obtained results for mean values of
226Ra and 40K are higher than the world average in 20% of the samples. 232Th and 40K
distributions are influenced by the soil OM and clay content and scavenger metals’ oxides.
226Ra has no relation to soil characteristics or 232Th and 40K. The industrial activity and
agricultural practices in the study area have caused a small increase in 226Ra and 40K
activity concentrations.

The selected soils are considered radiologically safe based on the calculated radio-
logical hazard parameters that show either comparable or lower values than the world’s
average values or the relevant safety criteria. It can be deduced that despite the intensive
industrial activities within the area, the spontaneous natural radiation coming from the
soil is normal and does not cause any significant radiological hazard to the public. It is
recommended that the natural radioactivity of soil in this area be monitored periodically to
avoid unnecessary radiation exposure to the public.
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43. Tabar, E.; Yakut, H.; Saç, M.M.; Taşköprü, C.; İçhedef, M.; Kuş, A. Natural radioactivity levels and related risk assessment in soil

samples from Sakarya, Turkey. J. Radioanal. Nucl. Chem. 2017, 313, 249–259. [CrossRef]
44. Kekelidze, N.; Jakhutashvili, T.; Tutberidze, B.; Tulashvili, F.; Akhalkatsishvili, M.; Mtsariashvili, L. Radioactivity of soils in

Mtskheta-Mtianeti region (Georgia). Ann. Agrar. Sci. 2017, 15, 304–311. [CrossRef]
45. IAEA (International Atomic Energy Agency). The Environmental Behaviour of Radium, revised ed.; IAEA-TRS 476; IAEA: Vienna,

Austria, 2014.
46. Wang, Z.; Ye, Y. Assessment of soil radioactivity levels and radiation hazards in Guangyao Village, South China. J. Radioanal.

Nucl. Chem. 2021, 329, 679–693. [CrossRef]

http://doi.org/10.3390/ijerph121012324
http://doi.org/10.3390/ijerph18052709
http://doi.org/10.1016/j.chemosphere.2020.129173
http://doi.org/10.1007/s10967-016-5059-z
http://doi.org/10.1016/j.jenvrad.2005.04.007
http://doi.org/10.1007/s10661-009-0812-1
http://www.ncbi.nlm.nih.gov/pubmed/19242808
http://doi.org/10.1007/s12665-020-08946-z
http://doi.org/10.1093/rpd/nct039
http://doi.org/10.1080/16878507.2019.1646523
http://doi.org/10.1007/s42250-021-00244-w
http://doi.org/10.1007/s12665-020-09131-y
http://doi.org/10.1080/15320383.2018.1498445
http://doi.org/10.21608/ejchem.2021.55038.3149
http://doi.org/10.1016/j.rinp.2018.09.013
http://doi.org/10.1007/s10967-020-07069-w
http://doi.org/10.1007/s10967-021-07920-8
http://doi.org/10.1097/00004032-198501000-00007
http://doi.org/10.1016/j.jenvrad.2008.10.012
http://www.ncbi.nlm.nih.gov/pubmed/19038480
http://doi.org/10.1007/s10967-017-5266-2
http://doi.org/10.1016/j.aasci.2017.07.003
http://doi.org/10.1007/s10967-021-07818-5


Atmosphere 2022, 13, 98 16 of 16

47. Mohammed, N.; Chanai, E.; Alkhorayef, M. The impact of the extensive use of phosphate fertilizers on radioactivity levels in
farm soil and vegetables in Tanzania. J. Radioanal. Nucl. Chem. 2016, 307, 2373–2379. [CrossRef]
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