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Abstract: The errors contained in slant total electron content (STEC) have a strong impact on the image
generated by ionosphere tomography. This paper presents a method that rejects abnormal corrections
and rays (RACR) in the multiplicative algebraic reconstruction technique (MART) algorithm by
applying a correction threshold and a rejecting ratio threshold. The RACR algorithm was validated
using ionosonde observations, Swarm satellite measurements, independent STEC observations and a
vertical total electron content (TEC) map. Its performance was compared with the MART algorithm
on both geomagnetically quiet days and disturbed days. The results show that the RACA algorithm
is able to capture the main phase and the recovery phase of a storm and outperforms the MART
algorithm under both geomagnetic conditions. The average improvements over the MART algorithm
are 36.01%, 36.56%, 6.18%, 22.10% and 6.03% in the validation tests of the peak density of F2 layer,
peak height of F2 layer, the electron density of the topside ionosphere, STEC and VTEC, respectively.
The quality of the image produced by the RACR algorithm was controlled by the correction threshold
and the rejection threshold. Smaller threshold values tend to make the image smoother. The RACR
algorithm provides not only a way to produce a better tomographic image but also a means to detect
abnormal rays.

Keywords: inospheric tomography; ionosphere imaging; tomographic algorithm; abnormal ray;
multiplicative algebraic reconstruction technique

1. Introduction

The ionosphere is a highly dynamic medium in space and time. It has a strong
impact on electromagnetic wave propagation [1], such as causing group delay and phase
advance of the signals of global navigation and satellite systems (GNSS), which leads
to accuracy degradation in positioning solutions. Instruments such as ionosonde, radio
occultation systems, incoherent scatter radar and topside sounders onboard satellites have
been employed to obtain in situ measurements and remote sensing of vertical and slant
profiles of the ionosphere [2]. However, there are a limited number of observations to cover
the vast space, and, therefore, it is impossible to rely on these instruments to provide a large-
scale and three-dimensional description of the ionosphere with a high temporal resolution.
Ionosphere tomography, first introduced by Austen et al. [3], has the potential to fill the vast
spatial and temporal gap with more detailed information. Ionosphere tomography utilizes
the slant total electron content (STEC) along signal paths between GNSS satellites and
receivers as input to produce electron density for any given location in three-dimensional
space. As more ground monitoring stations and GNSS satellites are being established and
GNSS signals are becoming more ubiquitous and cost-effective, ionosphere tomography
has emerged as a promising technique in ionosphere research.
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Ionosphere tomography is basically an inversion problem in which the electron density
of the ionosphere is described by a set of discrete voxels, and its values can be solved from
a number of equations constrained by STEC measurements. Due to a limited number of
ground stations, the above equations are always under-determined or ill-posed, which
makes them difficult to be solved [1,4–6]. Many algorithms, including iterative algorithms
and non-iterative algorithms, have been developed in the past [7–9]. Non-iterative algo-
rithms, such as singular value decomposition (SVD) [10] and generalized singular value
decomposition [11], can remove any dependence from the initial background but become
very difficult to solve when a large-scale problem is encountered. Iterative algorithms,
such as the algebraic reconstruction technique (ART) [12] and the multiplicative algebraic
reconstruction technique (MART) [12], are free of this restriction but have the drawback
of relying on the initial background. To relieve the dependence of numerical algorithms
on the initial background, Wen et al. [7] used the output of the truncated singular value
decomposition (TSVD) method as the initial value of the ART algorithm. Jin and Li [5]
took the measurements of the critical frequency of the F2 layer (foF2) and the ratio of the
maximum usable frequency at a distance of 3000 km from the F2 layer critical frequency
(M(3000)F2) as inputs to the NeQuick and IRI models in order to produce a more accurate
background for the tomographic inversion. Prol et al. [13] utilized the ionosonde and
radio-occultation measurements to enhance the background for tomographic inversion.
Yao et al. [8] combined a voxel-based algorithm with a function-based algorithm by making
a least square fitting of spherical harmonics and an empirical orthogonal function on the
output of the voxel-based algorithm (i.e., MART). Despite these interesting innovations,
the challenge of the ill-posed problem remains since the number of observations is always
less than that of the unknowns.

One solution to alleviate the ill-posed problem is to use a hybrid voxel model, where
a large voxel resolution is employed in the topside ionosphere to reduce the number of
voxels (i.e., the number of unknowns) [6,13–16]. Another approach is to add extra obser-
vation data or simulation data, such as radio occultation measurements [13,17–19], low
Earth orbit satellites with onboard GNSS observations [20], satellite altimetry data [17],
ionosonde observations [21], incoherent scatter radar data [14], vertical electron density
content [13,18,22], AIS measurements [23] and virtual stations [9] into the tomographic
model. However, a more general solution is to include additional constraints in the tomo-
graphic model (to make it well-posed) [1]. Such constraints [24,25] can be the assumptions
of smoothing or similarity, functions to describe the horizontal and vertical ionosphere
and the prior knowledge derived or directly taken from a third method. For example,
Kondo et al. [26], Sui et al. [27] and Zhu et al. [28] treated the distribution of plasma in
the ionosphere to be smooth. Yu et al. [24] took the Chapman function as the vertical
distribution and assumed the four parameters of the Chapman function in horizontal
space to be smooth. Seemala et al. [15] assumed that the gradient in the horizontal di-
rection is smaller than that in the vertical direction. He and Heki [29] considered the
electron densities being similar among adjacent voxels. Razin and Voosoghi [30] and
Farzaneh and Forootan [31] treated the distribution of the horizontal ionosphere as the
combination of a few basic functions. Minkwitz et al. [32], Tang and Gao [33], Sui et al. [27]
and Zhu et al. [28] used the derived information, e.g., gradients, covariance, empirical
orthogonal functions (EOFs) or principal component, from a reference model to restrain
their models.

As shown above, much of the existing research has focused on making the tomographic
problem well-posed. However, STEC, the indispensable data for the tomographic model, may
contain errors of up to several total electron content units (TECU, 1 TECU = 1016 el m−2)
according to Ciraolo et al. [34] and Nie et al. [35]. Errors of this magnitude would take
more than one-half of the entire TEC budget in the nighttime and should be addressed
in the process of tomographic inversion. Otherwise, it would lead to poor images as
the electron density of the ionosphere is corrected iteratively by the STEC data. Kalman
filters used in the tomographic inversion, e.g., Ssessanga et al. [36], are able to reduce the
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errors originating from the STEC data, but it is confined to the four-dimensional scenario.
In the three-dimensional tomographic model, the errors can be reduced by taking the
weighted average of all corrections for each voxel, such as the simultaneous algebraic
reconstruction technique (SART) [37] and simultaneous multiplicative column-normalized
method (SMART) [38]. The objective of this paper is to present a new approach that can
reduce errors while rejecting abnormal corrections and abnormal rays (RACR). Comparing
the errors appearing in STEC data, the abnormal values are more damaging to the image
quality. The rejection of abnormal corrections and abnormal rays can make the image
smoother and hence improve the quality of the image. Since most of the tomographic
algorithms are developed based on the MART algorithm, the improved algorithm here is
also developed based on the MART algorithm. However, it is easy to extend it to other
algorithms, such as ART, with a slight modification.

The paper is organized as follows. Section 2 describes the existing and proposed
algorithms. Section 3 presents the data and method for validation and comparisons.
Section 4 shows the results and comparison with ionosonde observations, Swarm satellite
observations, independent GNSS STEC observations and vertical electron density content
(VTEC) maps. Section 5 discusses the impacts of the two thresholds in the proposed method
on the quality of the tomographic image. Finally, Section 6 draws conclusions and gives
some further plans for our research.

2. Tomographic Algorithms
2.1. Basics of Ionosphere Tomography

GNSS signals experience frequency-dependent group delay when they traverse the
ionosphere. By using a dual-frequency receiver, the ionosphere group delay can be mea-
sured, which can be used to deduce the STEC, which is the integration of electron density
along the satellite-receiver signal path:

STEC =
∫ SAT

REC
Ne(h, λ, ϕ) ds (1)

where Ne is the distribution of election density depending on the altitude h, longitude λ
and latitude ϕ and s is the signal ray path along which the corresponding STEC value is
measured. In the voxel-based tomography method, the distribution of election density is
described by many small voxels, each of which is filled with a constant value that represents
the average density of that voxel.

After discretization, the above equation is rewritten as:

ym×1 = Am×nxn×1 + ξn×1 (2)

where m is the number of rays, n is the number of voxels, y is a column vector of measured
STEC along each ray, x is a column vector of unknown electron density for each voxel, A is
a geometric matrix whose element is the length of a ray inside a voxel and can be computed
by the approach in Yu et al. [39] and ξ is a vector of errors. Usually, n is much larger than m,
which makes the inversion an ill-posed problem. The problem is to solve for x with a given
STEC measurement vector and an A matrix based on the ray path geometry.

MART is a popular algorithm for solving the problem [18,40,41]. In MART, a back-
ground electron density is required. Based on this, the electron density of each voxel is
iteratively updated by a correction factor, which can be performed by:

x(k+1)
j = x(k)j S(k+1)

i,j (3)

where x(k)j denotes the electron density of the jth voxel at the kth iteration and S(k+1)
i,j

indicates the correction factor for the jth voxel made by the ith ray at the kth iteration.
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The correction factor can be computed by the difference between the measured STEC
and the STEC estimated before the current iteration, which reads,

S(k+1)
i,j =

(
yi/ŷi

(k)
)λAi,j/Ai,max

(4)

where yi is the measured STEC of the ith ray, ŷi
(k) is the estimated STEC of the ith ray after k

iterations, which can be computed by ∑n
j=1 Ai,jx

(k)
j , Ai,max refers to the length of the longest

segment along the ith ray and λ is a control parameter.

2.2. Tomographic Algorithm of Rejecting Abnormal Corrections and Rays (RACR)

STEC errors may arise from the code multipath and the short-term variability of
receiver code biases [34,42] and also from the truncation of rays. There are numerous
studies on the cause and effects of multipath and code bias errors [35,42–44]. The ray
truncation error is specific to the tomographic problem and is illustrated in Figure 1a; only
the part of the ray between the bottom and top surfaces (EF) is responsible for tomographic
inversion. In reality, it is difficult to extract the contribution of the segment from the entire
STEC. Note that correction in the MART algorithm is performed on a ray-by-ray basis and
iterated multiple times until a termination condition is met. Based on the geometry of
rays and voxels, a voxel could be passed by several rays simultaneously. We shall refer
to voxels that are passed by a ray as the associated voxels of the ray and the ray as the
associated ray of these voxels. For example, voxel I is an associated voxel of the ray AC,
and ray AC is an associated ray of voxel I in Figure 1a. For the case of a voxel with several
associated rays (such as voxel III in Figure 1a), the electron density of the voxel will be
corrected for each associated ray. The error of STEC on a ray will produce errors in the
correction for its associated voxels. If an error was made for a voxel during the process of
correction by one of its associated rays, it will propagate to the next correction made by
its successive associated ray and hence lead to a compounded, accumulated effect after
multiple corrections and iterations (see Equations (3) and (4)).
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Figure 1. Causes of abnormal correction in a voxel. (a) Sketch of voxels, a bubble and rays in a
tomographic model. Usually, the whole STEC of the ray AC is adopted in tomographic inversion due
to the difficulty in removing the contribution of the plasmasphere (i.e., the part of CE). However, only
part of the EF should be responsible for the tomographic inversion. (b) Sketch of abnormal correction
in a particular ray. Suppose that the solid profile shown on the right is the current state of ray AD
shown on the left, and there is an abnormal correction on voxel III brought by ray BC. The abnormal
correction will certainly lead to the model STEC along ray AD being unusually larger or smaller,
which, in turn, may result in an abnormal correction for other associated voxels, e.g., voxel II.
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Even if the STEC measurement of a ray is accurate, errors may also arise in the process
of correction. Clearly, the electron density values of the associated voxels for an originally
error-free ray can be contaminated due to the corrections made by iterations of other rays
that contain errors. For example, voxel II is an associated voxel of the ray AD in Figure 1a.
The correction factor for voxel II depends not only on the accuracy of the observed STEC
along AD but also on that of the STEC model for the ray AD. However, the estimated
STEC of the ray AD could be contaminated by the underestimation or overestimation of
the election density of any of its associated voxels (e.g., voxel III in Figure 1a) due to the
error contained in the other associated rays of the voxel (e.g., ray BC in Figure 1a).

Since errors are unavoidable and detrimental to the tomographic image, it is important
to reduce them. Note that random, noise-like errors can be reduced by averaging operations.
Therefore, we replaced the correction factor in the MART algorithm with the weighted
average of correction factors, in the same way it is adopted in SART and SMART algorithms,
which can be described by:

x(k+1)
j = x(k)j ·

∑i Ai,jS
(k+1)
i,j

∑i Ai,j
(5)

where x(k+1)
j and x(k)j refer to the electron density of the jth voxel at the k+1th and kth

iteration, respectively, Ai,j is the length of the segment for the ith ray inside the jth voxel

and S(k+1)
i,j is given in Equation (4).

Generally, the majority of the measured STEC errors fall into a normal range. However,
some large errors may happen, probably due to large errors in receiver code biases or
ignorable errors in code multipath. The errors that fall outside the normal range are
considered abnormalities or outliers. Compared to errors, abnormalities may have more
adverse impacts on image quality. In the MART algorithm, all rays, including those with
abnormalities, are used to update the electron density of each voxel. To eliminate the large
adverse impact of the abnormal rays, we remove the abnormal rays and their corresponding
corrections from the updating process once we find them. This is performed by introducing
two thresholds into the MART algorithm.

Supposing that the errors of a measured STEC follow a normal distribution, the
normal range of a given sample can be decided by its mean (µ) and deviation (σ), e.g.,
[µ − kσ, µ + kσ], where k is a given constant that is related to the width of the normal range.
In the MART algorithm, corrections are made by a ray for its associated voxels. Here,
a correction is considered an abnormal correction if it is made by a ray that’s measured
STEC lies beyond the range of [µ − ζσ, µ + ζσ], where ζ is called a correction threshold in
this paper. According to Equation (4), an abnormal correction could be the result of an
abnormal ray. Despite this, it may be risky to identify an abnormal ray only based on a
single abnormal correction. We determine the abnormality of a ray by all its associated
voxels, i.e., a ray is considered abnormal only if its rejected ratio (τ) exceeds a preset
rejecting threshold γ. The rejected ratio (τ) of a ray is defined as:

τ =
m
n

(6)

where m stands for the times a ray produced an abnormal correction, and n refers to the
number of its associated voxels.

The RACR algorithm is summarized as follows:

(1) Compute the scaling factors (Si,j) for each voxel and ray according to Equation (4).

(2) Compute the mean and standard deviation of scaling factors. Remove any abnormal
corrections that lie beyond the normal range defined by ζ.

(3) Compute the electron density for each voxel by the normal corrections according
to Equation (5).
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(4) Compute the rejected ratio for each ray. Discard the ray if its rejected ratio exceeds γ
after all voxels and rays have been processed.

(5) Repeat steps 1 to 4 for the next iteration until a preset condition is reached.

3. Validation Data and Method
3.1. Validation Data

Six continuous days around the St. Patrick’s storm 2015 (from 15 to 20 March 2015)
were selected to perform the tomographic inversion. The area of inversion covers the
longitudes from 0◦ E to 24◦ E, the latitudes from 34◦ N to 60◦ N and the heights from
100 to 1200 km. In this area, 231 GNSS stations, 3 ionosonde stations and 53 continu-
ous Swarm profiles are available (see Figure 2). Among all the GNSS stations, 21 (about
10%, see Table 1) were selected for independent validation purposes and hence removed
from the inversion. The GNSS observation data were downloaded from the EUREF Per-
manent GNSS Network (http://www.epncb.oma.be/, accessed on 22 September 2022).
The observations of peak density, peak height, ionosonde profile, Swarm observation
and VTEC map were downloaded from the Lowell Global Ionosphere Radio Observatory
(GIRO) Data Center (http://giro.uml.edu, accessed on 22 September 2022), the NOAA
National Centers for Environmental Information (https://www.ngdc.noaa.gov/, accessed
on 22 September 2022), Europe Space Agency (ESA) (https://earth.esa.int/, accessed on
22 September 2022) and the International GNSS Service (IGS) center(www.igs.org, accessed
on 22 September 2022), respectively.

3.2. Validation Methods

The inversion of STEC was achieved by a tool provided by the Ionospheric Research
Group (www.ionolab.org, accessed on 22 November 2022) using a method described by
Sezen et al. (2013). In this tool, the differential code bias (DCB) of the receivers was
solved and removed jointly with the satellites’ DCBs, which were obtained from the Center
for Orbit Determination in Europe (CODE). A horizontal resolution of 1o and a vertical
resolution of 20 km were adopted to divide the ionosphere into 24 × 24 × 55 voxels.
Figure 3 shows the number of voxels that are traversed by the GNSS rays. As can be seen,
not all voxels have traversing GNSS rays, but voxels in the center area are mostly covered
by the rays.

The voxels in the model were filled with the initial electron density given by the
background obtained from the same epoch based on the International Reference Ionosphere
model 2016 (IRI2016) [45]. The two threshold values (ζ and γ) were set to be 2σ and 25%,
respectively, where σ stands for the standard deviation of the corrections. Other parameters
in the tomographic inversion are presented in Table 2.

Parameters derived from the reconstructed image were compared with those ob-
tained from ionosonde observations, Swarm satellite measurements, independent STEC
observations and VTEC map. To evaluate the quality of the tomographic image, the root
mean square error (RMS) between the constructed image and the various observations is
computed as:

RMS =

√
∑ (x − x0)

2

n
(7)

where x stands for the derived parameter, x0 refers to the truth-value and n represents the
number of samples.

To make a further comparison, the MART algorithm was also implemented under the
same condition as the RACR algorithm. The RMS (∆RMS) improvement for the RACR
algorithm over the MART algorithm was computed as:

∆RMS = RMS(R)− RMS(M) (8)

http://www.epncb.oma.be/
http://giro.uml.edu
https://www.ngdc.noaa.gov/
https://earth.esa.int/
www.igs.org
www.ionolab.org
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where RMS(R) refers to the RMS of the RACR algorithm, and RMS(M) represents the RMS
of the MART algorithm. Note that a negative value of RMS indicates an improvement in
the RACR algorithm over the MART algorithm.
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Figure 2. Distribution of GNSS stations, ionosonde stations and the trajectories of Swarm satellites
over the study period. Black dots and blue crosses are the GNSS stations for inversions and valida-
tions, respectively. Red stars are ionosonde stations. Blue, red and green lines are the trajectories of
Swarm satellites.

Table 1. The 4-Letter code of GNSS stations selected for independent STEC validation.

AQUI FATA JOZ2 POUS ZYWI

AUT1 GELL MARS PRAT
BCLN HOE2 MDOR SPT0
BZRG HOER MLVL TARS
DENT IRBE OSJE WARE
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Figure 3. Voxels covered by GNSS rays. (a) The number of voxels that are traversed by GNSS rays
in each vertical column (i.e., pixel) at 00:00 universal time (UT) on 15 March 2015 with white color
indicating that none of the voxels were crossed in that column. (b) The average number of associated
rays for the voxels in a vertical column during the whole study period. The value of each pixel is
computed by the sum of the associated ray number in each column divided by the number of voxels
in each column (i.e., 55 here), and then averaged over the whole period. (c) The average number of
associated rays at different heights for the voxels during the whole study period.

Table 2. Several parameters used in the tomographic inversions.

λ Times of Iteration Temporal Resolution Elevation Cut-Off

0.05 500 15 min 25o

4. Results
4.1. Validation with Ionosonde Vertical Profiles

The 2015 St. Patrick’s Day storm is one of the strongest within the solar cycle 24 with
a measured DST of −223 nT. Figure 4 depicts the temporal variations of the geomagnetic
indices (Kp index and storm disturbance index) over the study period. As shown, the
storm’s sudden commencement occurred at ~04:45 UT on 17 March 2015, with a decrease
in Dst. The Kp index reached a maximum value of 7 during the period of Dst reaching
minima. The main phase of the storm lasted for ~17 h and went into the recovery phase
after 17 March 2015, and then ended at ~00:00 UT on 18 March 2015. Figure 5 shows



Atmosphere 2022, 13, 1954 9 of 23

the temporal variations of the vertical density from ionosonde observation, RACR image,
MART image and IRI2016 model, respectively, at the three stations. Though some data
are missing from the ionosonde observation, the storm impact is still observable from its
temporal image. By contrast, the IRI model gives less information on the storm, as its
images seem to be very similar over the whole period. Compared to the image of the IRI
model, both MART images and RACR images are closer to the ionosonde image and are
able to display the two phases of the storm. However, MART images are much noisier than
RACR images, especially at station PQ052, where the main phase of the storm is difficult to
observe in the MART image. Compared to the MART images, RACR images are smoother,
and the two phases of the storm can be clearly observed.
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Figure 4. Kp and Dst indices with UT hour on 15–20 March 2015.

In the following analysis, we shall use profiles from station DB049 to illustrate the
performances of the various methods due to consideration of the length of the paper.
DB049 is selected because the MART algorithm has a better performance than PQ052 and
has a similar performance to JR055. Figure 6 shows example vertical profiles at DB049 at
four-hour intervals on March 15, a geomagnetically quiet day. As seen, the profiles of the
RACR algorithm are closer to the ionosonde observation than those of the MART algorithm.
In addition, the RACR algorithm-generated profiles are smoother and more realistic than
those from the MART algorithm. Profiles from both RACR and MART are offset from
the ionosonde observation at nighttime but exhibit a good agreement with the ionosonde
observation in the daytime. The offset issue will be further discussed later in Section V.
Figure 7 also shows vertical profiles at four-hour intervals at the same station on a disturbed
day (17 March). Compared to the quiet day, while both algorithms deviate more from the
ionosonde profiles on the disturbed day, the profiles of the RACR algorithm are closer to
the ionosonde observations and are smoother than that of the MART algorithm.



Atmosphere 2022, 13, 1954 10 of 23
Atmosphere 2022, 13, 1954 9 of 20 
 

 

 

 

 

Figure 5. Temporal variations in vertical density at ionosonde station (a) DB049, (b) JR055 and (c) 

PQ052 over the study period. The four rows (from top to bottom) in each subplot correspond to the 

results of ionosonde, RACR algorithm, MART algorithm and IRI2016 model, respectively. Pixels 

with no data are filled with white color. 

In the following analysis, we shall use profiles from station DB049 to illustrate the 

performances of the various methods due to consideration of the length of the paper. 

DB049 is selected because the MART algorithm has a better performance than PQ052 and 

has a similar performance to JR055. Figure 6 shows example vertical profiles at DB049 at 

four-hour intervals on March 15, a geomagnetically quiet day. As seen, the profiles of the 

RACR algorithm are closer to the ionosonde observation than those of the MART algo-

rithm. In addition, the RACR algorithm-generated profiles are smoother and more realis-

tic than those from the MART algorithm. Profiles from both RACR and MART are offset 

from the ionosonde observation at nighttime but exhibit a good agreement with the iono-

sonde observation in the daytime. The offset issue will be further discussed later in Section 

V. Figure 7 also shows vertical profiles at four-hour intervals at the same station on a dis-

turbed day (March 17). Compared to the quiet day, while both algorithms deviate more 

from the ionosonde profiles on the disturbed day, the profiles of the RACR algorithm are 

closer to the ionosonde observations and are smoother than that of the MART algorithm. 

Figure 5. Temporal variations in vertical density at ionosonde station (a) DB049, (b) JR055 and
(c) PQ052 over the study period. The four rows (from top to bottom) in each subplot correspond to
the results of ionosonde, RACR algorithm, MART algorithm and IRI2016 model, respectively. Pixels
with no data are filled with white color.
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Figure 6. Comparisons of electron density profile at station DB049 at four-hour intervals on
15 March 2015 starting at UT 00:00.

4.2. Validation with Ionosonde NmF2 and hmF2

The peak density (NmF2) and the peak height (hmF2) of the F2 layer are two important
parameters for determining the vertical structure of the ionosphere. Both are provided
in ionosonde observations. To validate these two parameters, we derived them from the
corresponding vertical profile based on the reconstructed image at each epoch and then
compared them to the observations to get the errors, which were used to derive the RMS
(both individual and overall) and then the ∆RMS. It is not easy to determine the exact
values of NmF2 and hmF2 from the image produced by the MART algorithm, as some of
the vertical profiles have large fluctuations. To overcome this issue, we derived the two
parameters by imposing a Chapman fitting on the corresponding profile that lies in the
vertical range of 150 to 600 km altitude with a least square method. If the fitting operation
fails, the maximum density and its corresponding height inside that vertical range are used
as substitutes for the estimations.



Atmosphere 2022, 13, 1954 12 of 23

Atmosphere 2022, 13, 1954 10 of 20 
 

 

  

  

  

Figure 6. Comparisons of electron density profile at station DB049 at four-hour intervals on 15 

March 2015 starting at UT 00:00. 

  

  

  

Figure 7. Comparisons of electron density profile at station DB049 at four-hour intervals on 17 

March 2015. 

  

Figure 7. Comparisons of electron density profile at station DB049 at four-hour intervals on
17 March 2015.

Figure 8 demonstrates the errors of both algorithms, as well as the ∆RMS, for the
NmF2 estimation at different sites. The errors of the RACR algorithm are smaller than those
of the MART algorithm, and the ∆RMSs are always negative, which suggests that the RACR
algorithm performs better than the MART algorithm. The superiority is most obvious
at station PQ052, which happens to be at the center of the research area (see Figure 3b),
where more associated GNSS rays are available for the voxels above the station compared
to the other two stations. Having more associated GNSS rays means that more data can
be used in the corrections of the voxels. Statistically, more data (i.e., STEC observations)
can produce a more accurate estimation if an averaging operation is employed. Compared
to the MART algorithm, the RACR algorithm makes full use of these data, removes the
abnormal values, and then makes a weighted averaging of these corrections, and hence
produces a more accurate result. Another reason for the better performance at PQ052 is
due to the poor performance of the MART algorithm itself. As can be seen from Figure 8,
the errors of the MART algorithm at PQ052 seem to be much larger than that at the other
two stations. This may be due to errors in the STEC data at this particular site. More data
means more errors are involved. In the MART algorithm, the errors of correction caused by
rays, especially the abnormal rays, can be accumulated through the process of iterations.
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By contrast, the abnormal corrections and rays are removed, and hence the propagation of
error is restrained in the RACR algorithm.
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Figure 8. The error (unit: 1011/m3) and the RMS (unit: 1011/m3) of the derived NmF2 at ionosonde
stations (a) DB049, (b) JR055 and (c) PQ052 with the ionosonde observations as the ground-truth. “M”
and “R” in the bracket refer to the MART algorithm and RACR algorithm, respectively. Each point
of the data for the error corresponds to an error in each epoch, and each column of the data for the
RMS corresponds to the statistic of the whole day. Notice that the scales of the error and the RMS for
(c) are several times that of the other two.
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Figure 9 depicts the errors of both algorithms, as well as the RMS, for hmF2 estimation
at the three sites. Like the results shown in NmF2 estimation, the errors of hmF2 estimation
for the RACR algorithm are smaller than that for the MART algorithm. All the RMS
are negative, which also suggests that the RACR algorithm works better than the MART
algorithm. Again, the improvement of RACR over MART is most prominent at the PQ052
station for the hmF2 estimation for the same reasons discussed above.
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Figure 9. The error (unit: km) and the RMS (unit: km) of the derived hmF2 at ionosonde stations
(a) DB049, (b) JR055 and (c) PQ052. “M” and “R” in the brackets refer to the MART algorithm and
RACR algorithm, respectively. Each point of the data for the error corresponds to an error at each
epoch, and each column of the data for the RMS corresponds to the statistic of the whole day. Notice
that the scale of RMS for (c) is four times that of the other two.
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Table 3 lists the overall RMS of the estimated NmF2 and hmF2 at the three stations for
both algorithms and the IRI2016 model. As for the estimated NmF2, the RACR algorithm
performs the best, followed by the MART algorithm and then the IRI2016 model. The
MART algorithm performance at the PQ052 station is the worst. The average improvement
of the RACR algorithm over the MART algorithm on NmF2 is 36.01% for all three stations.
As for the estimated hmF2, IRI2016 and the RACR algorithm are very close, while the
MART algorithm is significantly off. The average improvement of the RACR algorithm
over the MART algorithm on hmF2 is 36.56% for all three stations.

Table 3. The overall RMS of the estimated NmF2 (unit: 1011/m3) and hmF2 (km) for both algorithms
and the IRI2016 model over the study period.

Algorithm Ionosonde RMS (NmF2) RMS (hmF2)

RACR
DB049 1.59 36.22
JR055 1.46 37.89
PQ052 1.62 28.92

MART
DB049 1.80 43.32
JR055 1.78 49.79
PQ052 7.50 94.44

IRI2016
DB049 1.96 36.04
JR055 1.90 32.42
PQ052 1.94 27.76

4.3. Validation with Swarm Satellites

The ground-based ionosonde can measure only the bottom side of the ionosphere
up to the height of the F2-layer peak. However, Swarm satellites, which were launched
by the European Space Agency (ESA) at the end of 2013, provide measurements of elec-
tron density for the topside ionosphere. The mission consists of three satellites (Alpha (A),
Bravo (B) and Charlie (C)), among which A and C are placed at an orbit of about
450 km and B at about 510 km. All of them measure the ionosphere at a rate of 2 Hz,
which produces a much denser sampling than the tomographic inversion. To make the
result comparable, we interpolated the electron density of the tomographic image according
to the sampling points of the Swarm measurements and calculated the difference between
the reconstructed image and the Swarm measurements. An RMS value is computed for
each continuous profile, and an overall RMS is evaluated for each day. The overall RMS is
then used to produce the RMS each day.

Figure 10 depicts the individual RMS and its corresponding ∆RMS. The results of
MART and RACR are very close. Their accuracies are about 1 × 1011/m3 on quiet days and
about 2 × 1011/m3 on disturbed days. The RACR algorithm exhibits a slight improvement
over the MART algorithm, as indicated by the dominantly negative RMS values. The
overall RMS during the entire period, which is presented in Table 4, also confirms this
conclusion. The RACR algorithm achieves the best performance for all three satellites. The
MART algorithm performs better than the IRI2016 model on Swarms A and B but slightly
worse on Swarm C. The average improvement in the RACR algorithm over the MART
algorithm is 6.18% for all three satellites.
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Figure 10. The individual RMS (unit: 1010/m3) and its corresponding RMS (unit: 1010/m3) of the
reconstructed electron density with the Swarm measurements as the truth-value. “M”, “R”, “A”,
“B” and “C” in the brackets refer to the MART algorithm, RACR algorithm, Swarm A, Swarm B and
Swarm C, respectively. Each point of the data for the RMS corresponds to the statistic of a continuous
profile, and each column of the data for the RMS corresponds to the statistic of the whole day.

Table 4. The overall RMS of the reconstructed electron density (unit: 1010/m3) by the RACR algorithm,
MART algorithm and IRI2016 model over the study period.

Algorithm Swarm A Swarm B Swarm C

RACR 9.39 6.79 9.18
MART 9.69 7.47 9.80
IRI2016 10.11 7.79 9.76

4.4. Validation with Independent STEC

By taking independent GNSS observations as the ground-truth references, the STEC
error along each GNSS ray was computed for both algorithms. The errors in the same
epoch were then used to compute the RMS for 15-min intervals. The differences in the RMS,
i.e., RMS between the two algorithms, were calculated. Figure 11 shows the RMS for the
MART and RACR and their RMSs. Nearly all the RACR RMS values are lower than those
of the MART. However, the improvement of RMS for the RACR algorithm varies over time.
The improvement on 20 March is very limited. However, for the remaining days, including
two disturbed days, the improvement reaches about 1 TECU on average. Table 5 presents
the overall RMS over the entire period for the two algorithms and the IRI2016 model. It is
clear that the RACR algorithm outperforms the MART algorithm and the IRI2016 model,
and the MART algorithm performs better than the IRI2016 model. The improvement in the
overall RMS for the RACR algorithm over the MART algorithm is 22.10%.
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Figure 11. The individual RMS (unit: TECU) and its corresponding ∆RMS (unit: TECU) of the
derived STEC with the GNSS observation as the ground-truth. “M” and “R” in the brackets refer to
the MART and RACR algorithms, respectively. Each point of data corresponds to an epoch.

Table 5. The overall RMS (unit: TECU) of the derived VTEC by the RACR algorithm, MART algorithm
and IRI2016 model over the whole study period.

RACR MART IRI2016

RMS 2.75 3.53 9.26

4.5. Validations with VTEC Map

The VTEC products provided by IGS were also used to validate the RACR and MART
algorithms. Figure 12 shows the VTEC maps produced by IGS, MART and RACR on a
quiet geomagnetic day and a geomagnetically disturbed day, respectively. The two maps
produced by RACR and MART are similar to those provided by IGS in those pixels with
many passing rays (see Figure 3) but differ a lot in those pixels with very few passing rays,
where they are the same as the background. Despite this, the maps produced by RACR are
less noisy than those by MART. The reason is that abnormal rays, which are responsible for
the noises, are rejected in RACR. Table 6 gives the overall RMS of the VTEC by taking IGS
as the truth. As seen, RACR outperforms MART and IRI-2016. The improvement of RACR
over MART on the VTEC map is 6.03% during the whole period.
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Figure 12. VTEC maps produced by IGS (left panels), MART (middle panels) and RACR (right
panels) at UT 12:00 March 15, 2015 (top panels) and at UT 12:00 March 117 (bottom panels).

Table 6. The overall RMS (unit: TECU) of the derived VTEC by the RACR algorithm, MART algorithm
and IRI2016 model over the whole study period.

RACR MART IRI-2016

RMS 4.99 5.31 7.51

5. Discussions
5.1. Night Time Vertical Profiles Offset

In Figures 6 and 7, both RACR and MART algorithms show an apparent offset from
the ionosonde observation at nighttime but exhibit a good agreement with the ionosonde
observation in the daytime. This is likely due to the contribution of the plasmasphere to
the observed STEC, which is ignored in this study. The plasmasphere’s contribution to
the overall STEC is more significant in the nighttime than in the daytime. To confirm it,
we performed an additional test by removing the topside STEC derived by the IRI-Plus
model [46] from the observed STEC. Figure 13 shows that the estimated profile is visibly
improved after using the corrected STEC value in the nighttime. However, the correction
appears to have degraded the daytime results, as shown in the right panel of Figure 13.
The correction can, on the one hand, remove the bias caused by the topside ionosphere,
but, on the other hand, may also introduce an additional error brought by the empirical
model. Therefore, the topside STEC should be removed during inversion at nighttime as it
may significantly improve the image quality. However, it is not advisable to remove it as it
contributes very little in the daytime, and the additional errors introduced by the empirical
model may have an important impact on the reconstructed image.
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Figure 13. Comparisons of electron density profile at station DB049 on 15 March 2015 for the
result after STEC correction against those without STEC correction. The curve with a suffix of “_c”
corresponds to the result with STEC correction, and vice versa. The epochs for the left and right
panels are UT 01:00 and UT 12:00, respectively.

5.2. Determinations of Thresholds

In the RACR algorithm, an abnormal correction is determined if the value lies outside
a normal range defined by ζ. However, such a decision could be a wrong one. The impact
of a wrong decision could be very limited for a voxel with many associated rays, as there
are many other corrections still available that can keep the correction process under check.
A smaller ζ tends to confine the corrections of a voxel to a limited range, which would lead
to a smoother image, and vice versa. If a ray is rejected by a voxel but it does not contain
an abnormal value on STEC, the ray should not be removed from successive iterations.
However, it is difficult for a single voxel to distinguish a normal STEC from an abnormal
one. In the RACR algorithm, a ray with a rejected ratio that exceeds γ is considered to be
an abnormal ray. Therefore, a larger γ would decrease the probability of making a wrong
decision regarding the abnormal ray (false alarms), but at the same time would increase the
risk of a missed detection of an abnormal ray, and vice versa. Figure 14 compares several
vertical profiles with different ζ and γ for a quiet day (left panel) and a disturbed day (right
panel). As seen, profiles with smaller ζ and γ tend to be smoother. It should be noted that
smoothness does not indicate accuracy. In the case of Figure 14a,b, the smoother curves are
indeed more accurate. However, that is not the case for Figure 14c,d, where normal rays
were rejected due to a wrong decision. However, smoother profiles are associated with
better performances, especially for the cases where rays contain many errors.

Figure 15 presents the percentage of rays that are rejected by the RACR algorithm in
each epoch. Smaller ζ and γ tend to reject more rays. As more abnormal rays are rejected,
the images would be smoother. This is also confirmed by Figure 14, where profiles with
smaller ζ and γ (e.g., ζ = 2σ,γ = 20% versus ζ = 3σ,γ = 50%) and more rejected rays
(e.g., ζ = 2σ, γ = 50% versus ζ = 3σ, γ = 25%) tend to be smoother.
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To examine whether the rejected rays are indeed abnormal ones, Figure 16 shows the
vertical profiles produced by the MART algorithm employing only rays where outliers had
been removed based on the RACR algorithm and all available rays. As shown, the results
from using rays without outliers are closer to the ionosonde observations and are smoother
than the results from the ones obtained using all available rays. Therefore, we can infer that
the rejected rays are mostly abnormal rays, and the rejection of abnormal rays improves
the quality of the tomographic image.
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Figure 16. Comparisons of vertical profiles produced by the MART algorithm employing only rays
where outliers had been removed based on the RACR algorithm and all available rays at ζ = 2 σ,
γ = 25%. Both figures were generated by the MART algorithm on 18 March 2015. The left panel is
for DB049, and the right panel is for PQ052.

6. Conclusions

STEC data obtained from GNSS observations often contain errors that may lead to
abnormal corrections for those voxels in which the corresponding rays traverse for the
tomographic inversion. Multiple iterations of correction will result in an accumulation of
errors in the imaging results. To prevent the abnormal corrections from contaminating an
image, a correction threshold is introduced to define a normal range of correction for each
voxel in this paper. A correction that is outside of this range is considered an abnormal
correction and is then removed from the averaging correction for that voxel. The abnormal
correction information is then extended to calculate the rejected ratio of a ray, which is used
to decide whether it is an abnormal ray based on a given threshold of the rejected ratio.
Abnormal rays are finally removed from subsequent iterations to make the reconstructed
image smoother and more accurate.

The proposed algorithm is validated with ionosonde stations, Swarm satellite mea-
surements, independent STEC observations and the VTEC map are also compared with
the MART algorithm during a period of six continuous days when a geomagnetic storm
occurred. The proposed algorithm RACR is able to capture the main and recovery phases of
the storm very clearly in the inverted image. The results show that the removal of abnormal
rays improves image quality. RACR outperforms the MART algorithm under both quiet
and stormy geomagnetic conditions. The RACR’s average improvement over the MART
algorithm is 36.01%, 36.56%, 6.18%, 22.10% and 6.03% in the validation tests of NmF2,
hmF2, topside electron density, STEC and VTEC, respectively. The quality of the produced
image using RACR is controlled by two thresholds, i.e., ζ and γ. The results show that a
smaller threshold value tends to make the image smoother.

The RACR algorithm provides not only a way to produce a better tomographic image
but also a possible solution to detect an abnormal ray. Despite this, several things still need
to be performed to make the algorithm more robust. For example, how to decide on an
optimal value for the two thresholds remains challenging. Our future work will focus on
the further validation of the rejected rays by comparing them with other observation data,
the optimization of the threshold values and after the incorporation of other strategies,
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such as additional constraints and regularization, into our tomographic model to make the
image even better.
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