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Abstract: Located in the interior of Eurasia, the Mongolian Plateau (MP) is extremely sensitive
to global warming and become a critical area for studying precipitation patterns. Based on the
monthly data of 135 meteorological stations during 1976–2017, we analyze the spatiotemporal
change in precipitation and discuss its response to atmospheric circulation. The results show that:
(1) Precipitation shows increasing trends in spring, autumn, and winter, but a decreasing trend at a
rate of 5.3 mm/decade in summer. The annual precipitation also shows an overall slight decreasing
trend. (2) The spatial distribution is uneven, the annual precipitation in the northern Great Khingan
Mountains is more, but it gradually decreases at the rate of 10–30 mm/decade, showing a trend of
“wet gets dry”; while there is less in the southwest Gobi Desert region, but it gradually increases
with the rate of 10–20 mm/decade, showing a trend of “dry gets wet”. (3) Over decades, the East
Asian summer monsoon (EASM) and westerly circulation show a seesaw change in MP. Affected
by the weakening of the EASM, the area of arid regions has gradually expanded. The results
also demonstrate that the EASM has a higher impact on the annual precipitation change pattern,
particularly in the southeastern MP. The conclusion indicated that the variation in the position and
orientation between EASM and the westerly circulation may be an explanation for the spatiotemporal
precipitation pattern, providing a new viewpoint to the question of circulation mechanisms behind
climate change in MP in recent 40 years.

Keywords: climatic change; arid Gobi desert; East Asian summer monsoon; westerly

1. Introduction

Global warming has become one of the most important environmental problems
of the 21st century, and arid climate conditions will have a significant impact on the
restriction of hydrology and agricultural production. Drought often results in substantial
production reduction or even no harvest, which has attracted increasing attention from the
international community as well as the governments of various countries [1]. Therefore,
it is of great practical significance to further study the regularity and characteristics of
precipitation in exploiting the agricultural production potential in arid and semi-arid areas.
Since the 1950s, almost all regions of the world have experienced warming [2,3], especially
marked in the middle and high latitudes of the Northern Hemisphere, for example, in
the Arctic [4–7]. It may accelerate the marine–continental hydrological cycle, resulting
in differences in the spatiotemporal distribution of water resources and the patterns of
precipitation change rate [8–12]. The land will become drier or wetter in arid areas, which
has become a hot topic in the scientific community. On a large scale, about 75% of the
global land area cannot detect strong dry and wet changes [13–15]. In the remaining 25%
of the land, among them only 10.8% of the region has experienced the process of “dry gets
drier, wet gets wetter” (DDWW), but 13.8% of the area has a trend of “dry to wet, wet
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to dry” (DWWD) [16,17]. The drought situation has become more serious based on the
calculation of multiple drought indexes in Central Asia [8,18], and due to the influence
of atmospheric circulation, the precipitation has decreased rapidly, showing a trend of
dry gets drier [15,19–22]. Even a partly humid region of Asia, the western Mediterranean,
and eastern Australia show a pattern of wet gets dry [14,23–27]. On the contrary, a part of
inland Asia such as Xinjiang and Northwest China shows a trend of dry gets wet, with a
gradual increase in precipitation [28,29]. It shows that precipitation pattern and distribution
appeared significantly changes in the world, especially in arid regions. Temperature and
precipitation have various response relationships at different time scales, and there are
obvious regional differences [30,31].

This difference of precipitation variation is particularly pronounced in the Mongolian
Plateau (MP) due to the influence of the East Asian summer monsoon (EASM), westerly and
plateau topography [32–35]. MP plays an important role in the climate and environmental
system of the Northern Hemisphere and is a representative of arid and semi-arid areas [36,37].
The annual precipitation does not change significantly in the central plateau, but the
difference is obvious in the eastern and western MP [38–40]. There is a decreasing trend
with the rate of 2.3 mm/decade in the east MP such as Horqin Sandy Land [41]. It increases
in the northwest and southwest, and has a slight trend of precipitation increasing [38,39].
There is different evolution process at different spatiotemporal scales, while the causes
of precipitation in different regions are still unclear, especially the changes in dry and
wet conditions and their impact mechanisms are more complex and many problems need
further scientific discussions.

The temperature increased significantly with a rate of 0.36 ◦C/decade in the southern
MP over the past decades [42], a similar warming rate to that of Tehran in the Middle East
(0.37 ◦C/decade) [43], it is unequivocally warming at a rate almost twice as fast as the global
means (0.2 ◦C/decade), and is also higher than the average temperature increasing rate of
0.23 ◦C/decade in mainland China [6] and 0.34 ◦C/decade in the Tibetan Plateau [44,45]
during the same period. The rising temperature may cause large-scale circulation anomalies
and differences in precipitation patterns and distribution [46]. Due to located in the mid-
latitude region, MP is one of the key regions for water vapor transmission between low and
high latitudes in the world [32]. The climate is mainly controlled by the westerly circulation,
which is dominated by summer precipitation, and the perennial water vapor mainly comes
from the transport of mid-latitude westerly circulation [33,47]. A significant characteristic of
precipitation is that it increases in northern China and decreases in southern China [48,49].
In addition, the western Pacific subtropical high (WPSH), which is an important component
of the EASM circulation system, plays a major role in precipitation [50].

Although previous studies mainly focused on determining the change characteristics
of precipitation on annual and seasonal timescales [38–40], the spatial resolution of the
station is low, and there is still a lack of corresponding research on the mechanism of change
in this region. The changing trends and spatial distribution characteristics of precipitation
and the factors need to be further explored. Therefore, in this paper, we try to (1) discuss
the spatiotemporal distribution pattern of precipitation and (2) analyze its relationship
with the circulation characteristics of the EASM and westerly.

2. Materials and Methods
2.1. Study Area

MP is located in inland Eurasia. The east–west length and north–south width are
about 2500 and 1700 km, respectively, covering a total area of approximately 2.74× 106 km2

in MP (Figure 1a). Its boundaries are determined by the Greater Khingan Mountains in the
east, and the west extends to the Altai Mountains, and the northern boundary is from the
Sayan Mountains to the Khentii Mountains, and the south border extends to the YinShan
Mountains [51]. There are 454 lakes with an area of more than 1 km2; most of the rivers
are in northern and western Mongolia. The main rivers include the Ural River, the Selenga
River, and the Klulun River. The total length of the rivers is 6.7 × 104 km, and the drainage
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area is 3.2 × 105 km2 in Mongolia [52]. The elevation gradually decreases from west to east,
with an average elevation of about 1500 m [53], high mountains in the northwest, Gobi and
deserts in the southwest, and grasslands over the MP.

It has the typical temperate continental climate types, and water resources shortage is
easy to cause the contradiction between supply and demand, restricting the development
of the eco-environment and social system. Affected by the EASM in summer (Figure 1b), it
is hot and rainy. In winter, the climate is dry and cold with the influence of the Mongolian–
Siberian High, and it also leads to natural disasters such as snowstorms and sandstorms.
Total annual precipitation is about 500 mm in the northeast, and it is less than 150 mm in the
Gobi and desert area of the west (Figure 1a). Under the influence of precipitation, forests,
steppe, and the Gobi Desert are distributed from northeast to southwest. The plateau has
more than 60% of the total desert in China, such as the Tengger Desert, Ulan Buh Desert,
Badain Jaran Desert, Otindag Sandy Land, Mu Us Sandy Land in Inner Mongolia, and the
Southern Gobi Desert in Mongolia, the total area is approximately 7 × 105 km2 [41,54].

Total population of Inner Mongolia and Mongolia are approximately 24.1 and 3.4 million,
respectively. The population density is about 21 and 2 persons/km2, respectively [55]. In
addition, it is a key green ecological barrier in the north of China and is also an important
region of the China–Mongolia–Russia economic corridor in “One Belt and One Road” [33,56].
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Figure 1. The Mongolian Plateau (a) the distribution of meteorological stations and annual average
precipitation and (b) atmospheric circulation system [57].

2.2. Data

The monthly precipitation data were obtained from the Mongolian National University
(68 stations) and China Meteorological Data Sharing Service Network (67 stations) during
1976–2017 (http://data.cma.cn)(accessed on 12 December 2022). This paper refers to
the quality control methods of data sets [58], including station extreme values, internal
consistency, and spatial consistency checks, and the missing values are extended to get a
complete time series. Station extreme value test: We checked whether the precipitation
element exceeded the historical extreme value range. If the value of the element tested did
not exceed 5 times the standard deviation of the average value, the element was considered
credible. Uniformity test: We selected stations with a correlation coefficient greater than 0.5,
and used F-test to check that there was no inhomogeneity and the data quality was good.
The spatial difference method was used to check the consistency of the data space. There
were a total of 135 meteorological stations; most were densely distributed in the east, and
sparsely distributed in the west. There were 121 stations with an altitude of 1000–1500 m,
accounting for 90% of all stations (p < 0.01) (Table S1). The relative elevation difference was
500 m, which excluded the influence of altitude and topography. The results show that all
stations meet the requirements. Eleven stations lacked measured data during 2011–2014 in
western Mongolia, and the average precipitation data of the adjacent station in the same
period were used for interpolation. The accuracy of the Inverse Distance Weight (IDW)
method was better than that of the Kriging method (Tables S2 and S3). The effect between

http://data.cma.cn


Atmosphere 2022, 13, 2132 4 of 17

data points decreased with the increase in distance. However, the interpolation process
does not consider the maximum and minimum values, and the results are easily affected
by the non-uniform distribution of data points. The data processing results before and after
interpolation were compared, and the difference was very small (p < 0.01), indicating that
the interpolation method did not have a significant impact on the result.

The East Asian Summer Monsoon Index (EASMI) [59] is IEAM= (u ′+v′)/21/2, where
u and v are the normalized wind speeds along the latitudinal circle at 850 hPa, respec-
tively, and the area is calculated in 110◦~125◦ E, 20◦~40◦ N. The westerly index (WI) is
H35◦ =

1
36 ∑36

λ=1 Hλ(35◦)− 1
36 ∑36

λ=1 Hλ(55◦), where λ is a geopotential height value taken
every 10 longitudes along the latitude circle. The WI is the difference between the mean
sea level pressure at 35◦ N and 55◦ N, reflecting the strength of the westerly in the
Northern Hemisphere, which comes from a 74-item circulation index provided by the
National Climate Center (https://cmdp.ncc-cma.net/cn/download.htm) (accessed on
12 December 2022). In addition, we cite other circulation indices as follow: The North
Atlantic Oscillation (NAO) refers to the inverse relationship, the sea level pressure be-
tween the Azores high and Icelandic low are seesaw; El Niño/Southern Oscillation (ENSO)
refers to a phenomenon that affects the world’s continuous but irregular atmospheric and
oceanic circulation changes (https://cmdp.ncc-cma.net/cn/prediction.htm#phenomena)
(accessed on 12 December 2022); the high pressure located in the subtropical regions
of the northern and southern hemispheres, referred to as the Subtropical High (SH)
(https://cmdp.ncc-cma.net/cn/prediction.htm#pred) (accessed on 12 December 2022);
Arctic Oscillation (AO) is the first principal mode of empirical orthogonal decomposi-
tion (EOF) of the sea surface pressure in Northern Hemisphere, and the AO index is
one of the most important climate change indices in the Northern Hemisphere; Pacific
Decadal Oscillation (PDO) is the North Pacific Ocean north of 20◦ N, and the monthly
average sea surface temperature anomaly after removing the global average is used to
perform EOF, and the obtained first modal time series is used as the PDO index; the
Southern Oscillation (SO) is a seesaw phenomenon that describes the opposite phase
changes of the pressure fields in the tropical eastern Pacific and the tropical Indian
Ocean. AO, SO, PDO, and NAO indices are all derived from NOAA’s National Cli-
matic Data Center (https://www.ncdc.noaa.gov/teleconnections/, accessed on 12 De-
cember 2022). The atmospheric circulation index mainly selects NCEP/NCAR reanalysis
data with a horizontal resolution of 2.5◦ × 2.5◦, including 500 hPa wind field data and
water vapor flux data (https://psl.noaa.gov/data/gridded/data.necp.reanalysis.html,
accessed on 12 December 2022).

2.3. Methods
2.3.1. Sen’s Slope

Sen’s slope was used to determine the magnitude of long-term trends in precipitation
for in situ meteorological data. This slope is the median over all combinations of record
pairs for the entire dataset and is thereby resistant to the effect of extreme values in the
observed data [60]. It is estimated by

β = Median
(

xi−xj

i− j

)
, 1 ≤ j < i ≤ n (1)

A positive value of β indicates an increasing trend. Otherwise, it is a downward trend.
An amount of 10 times β is taken as the climate tendency rate, which in this paper

refers to the variation amplitude of precipitation.

2.3.2. Innovative Trend Analysis

The innovative trend analysis divides a time series into two equal parts (xi and yi),
and it sorts both sub-series in ascending order. If the xi and yi are equal, which indicates
that it is not trend, the points in the scatter plot are collected on the 1:1 (45◦) line. If the
points fall above the line, it has been considered the time series exhibits an increasing trend.

https://cmdp.ncc-cma.net/cn/download.htm
https://cmdp.ncc-cma.net/cn/prediction.htm#phenomena
https://cmdp.ncc-cma.net/cn/prediction.htm#pred
https://www.ncdc.noaa.gov/teleconnections/
https://psl.noaa.gov/data/gridded/data.necp.reanalysis.html
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Otherwise, it shows a downward trend [61]. As the detection of change is based on the
first subseries, the trend indicator is derived from the average difference divided by the
average of the first sub-series. Then, the innovative trend analysis indicator is expressed as
follows [62]:

D =
1
n ∑n

i=1
10(y i−xi)

x
(2)

where D is the trend indicator, and a positive value indicates an upward trend, otherwise,
it is a downward trend; n is the number of observations in each sub-series and x is the
average of the first subseries. It is widely used in precipitation changes.

2.3.3. Mann–Kendall (MK) Test

MK test is a non-parametric statistical test [63,64]. A time series x with n sample
construct a sequence:

Sk =
k

∑
i=1

ri, ri =

{
1, xi> xj
0, xi ≤ xj

, (j = 1, 2 . . . i; k = 2, 3 . . . n) (3)

UFK =
[S k−E(S k)]√

Var(S k)
(k = 1, 2 . . . n) (4)

where UF1 = 0, E(Sk), Var(Sk) are the average and variance of the Sk, they can be calculated
by the following formula:

E(SK) =
n(n− 1)

4
(5)

Var(SK)= n(n− 1) (2n + 5)/72 (6)

Given the significance level α, if |UFi|>Uα, then indicates that the sequence has an
obvious trend change. According to the time series x in reverse order xn, xn−1 ... x1, and
make UBk = −UFk, k = n, n−1 ... 1, UB = 0.

If the intersection points of UFk and UBk curves are between the critical lines, then
this moment is the time when the mutation occurs [65].

2.3.4. Inspection Methods

Because it is difficult to evaluate the accuracy of spatial interpolation, the crossover
method is usually used to verify it. In this paper, mean absolute error (MAE) and root of
mean square error (RMSE) are used to reflect the spatial interpolation ability of IDW and
Kriging interpolation. Smaller MAE and RMSE values indicate better interpolation results;
otherwise, the interpolation results are worse. The calculation formula is:

MAE =
1
n ∑n

i=1(|Oi−Ei|) (7)

RMSE =

√
∑n

i=1 (O i−Ei)
2

n
(8)

Oi represents the measured precipitation; Ei represents the predicted precipitation; n
indicates the number of stations used for checking.

In addition, the univariate linear regression was used to analyze the variation trends
of precipitation. The IDW model interpolates the stations to analyze the spatial distribution
of precipitation.

3. Results
3.1. Interannual Variability of Precipitation

On a regional scale, based on the records of all meteorological stations on the MP during
1976–2017, the annual average precipitation is 239.4 mm by calculating, and the maximum and
minimum values are 314.5 (1998) and 187.2 mm (2005), respectively (Table 1), and the difference
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of extreme values reaches 40.5%. The standard deviation (SD) and coefficient of variation (CV)
are 33.4 mm and 14%, respectively, indicating that there is a major interannual fluctuation
and uneven temporal distribution. The abrupt change years are identified according to
the Mann–Kendall test (Figure S1), there are obvious four stages of 1976–1982, 1983–1998,
1999–2010, and 2011–2017 (Table S4), and their average precipitation are 230.6, 255.1, 212.6,
and 258.4 mm, respectively. The changing rate is −0.6 mm/decade (Figure 2a). In Figure 3a,
71.4% of the points are located in the lower triangle area of the 45◦line, further indicating that
the precipitation has a slightly downward trend.

Table 1. The annual and seasonal average precipitation change during 1976–2017 in the Mongolian
Plateau.

Season Average (mm) CV (%) SD (mm) Max (mm) Min (mm) Range (%)

Annual 239.4 13.9 33.4 314.5 187.2 40.5
Spring 33.1 26.1 8.6 55.7 20.5 63.2

Summer 160.1 18.1 28.9 221.9 110.1 50.4
Autumn 39.3 26.6 10.4 67.8 23.4 65.4
Winter 6.6 25.8 1.7 10.1 2.6 73.8
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the Mongolian Plateau ((a) Annual, (b) Spring, (c) Summer, (d) Autumn, (e) Winter). A solid red line
indicates no trend, a dotted blue line indicates 95% significance, and a dotted yellow line indicates
90% significance).

On a seasonal scale, the average precipitation in spring, summer, autumn, and winter
are 33.1, 160.1, 39.3, and 6.6 mm, respectively (Table 1). The largest and smallest CV are
26.6% (autumn) and 18.1% (summer), respectively, and the maximum and minimum SD are
28.9 mm (summer) and 1.7 mm (winter), respectively, indicating that the precipitation fluc-
tuation in summer is the largest. The changing rates are 1.6, −5.3, 2.6, and 0.4 mm/decade,
respectively (Figure 2b–e), and their proportion to annual precipitation are 14%, 66.7%,
16.2%, and 3.1%, respectively (Figure 2f). The proportion of summer precipitation is the
largest and experiences a decreasing process (Figure 3c), especially there is an obvious
downward trend after the abrupt change in 1998 (Figure 2c). However, spring, autumn and
winter precipitation all show a significant increasing trend (Figure 3b,d,e). The decrease in
summer precipitation leads to the precipitation, showing a slightly downward trend at the
regional scale.

3.2. Spatial Distribution of Precipitation

The annual average precipitation gradually declines from northeast to southwest
(Figure 4a). Spatial distribution is uneven, and precipitation can reach about 500 mm
in eastern MP such as Greater Khingan Mountains, while it does not exceed 150 mm
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in western Inner Mongolia and the Gobi regions of southern Mongolia such as Tengger,
Ulan Buh, and Badain Jaran desert. However, the change rate of precipitation showed
a positive trend in the west and a negative in the east (Figure 4b). Although 41% of the
stations showed a stable change trend in central MP, it appeared obviously dry and wet
in semi-wet and semi-arid regions, respectively. Stations with a positive trend accounted
for 29% (Table S5), among them, 4% of the stations increased significantly in western Inner
Mongolia. However, stations with the negative trend accounted for 30%, and it dropped
significantly in eastern MP (p < 0.05) (Figure 4b). It seems to appear a pattern of “wet gets
dry” in the east and “dry gets wet” in the west.
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Figure 4. Spatial distribution of annual average precipitation and trend magnitude of 135 stations
during 1976–2017 in the Mongolian Plateau ((a) annual average precipitation, (b) trend magnitude in
annual precipitation).

The spatial distribution of seasonal precipitation is consistent with that of annual
precipitation (Figure 5a–d). Stations with positive trend accounted for 64%, 55%, and 56%
in spring, autumn, and winter, respectively, of which 17%, 19%, and 23% are significant
(p < 0.05), while only 5%, 7% and 13% showed a negative trend, respectively (Table S5).
However, stations with negative trend accounted for 54% in summer, and only 13% of
stations showed a positive trend (Figure 6b).

In summary, there is only a positive trend of 10.7% and a negative of 25.3% in semi-
arid (200–400 mm) and semi-wet areas (400–600 mm), respectively. However, the dry
(100–200 mm) and extremely dry areas (≤100 mm) appear 19.2% positive and 4% negative,
respectively (Table S6).

3.3. The Correlation between Precipitation and Atmospheric Circulation Factors

Precipitation is affected by multiple atmospheric circulation factors (Table S7), particu-
larly by the EASM and westerly circulation system, and the NAO may change the westerly
circulation which affect climate change in arid areas [66,67].

When the EASMI is large (small), the precipitation is relatively more (less), and
its positive relationship is significant in a part of semi-arid area (Figure 7a). On the
interannual scale, the corresponding relationship between annual average precipitation
and EASMI well synchronized over almost all of MP during 1983–1998 and 2011–2017
(Figure 8a,b). However, the negative correlation area appears in the southwest extremely
dry area. In summer, most of the regions are positively correlated, of which the significantly
relevant areas are mainly distributed in the east, the correlation coefficient can reach 0.43
(Figure 7b), except for the Horqin Sandy Land in the east and the extremely dry areas
in the southwest. In winter, the EASM declines, so it has little positive correlation with
precipitation (Figure 7c). There is no detailed analysis in spring and autumn (Figure S2).
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The annual precipitation and WI show a positive correlation relationship of 0.21–0.41,
except for part of the central and eastern and the extremely dry region in south MP, while the
rest of the region is negatively correlated with −0.26–−0.34 (Figure 7d) during 1983–1998
and 2011–2017 (Figure 8a,c). In summer, the negative correlation is −0.26 in the west
(Figure 7e). However, the correlation was positive in most areas except for the eastern MP
(Figure 7f), indicating that as the EASM retreated southward, westerly gradually dominated
the western part of the MP.

At a long time scale, the EASMI and WI show a characteristic of opposite change
(Figure 8b,c). That is, when the EASMI is increasing, the WI is decreasing in MP. In total,
28 years (66.7% of the total records) showed opposite signs. The positive and negative
anomaly of EASMI and WI are only 21.4% and 11.9%, respectively (Figure 8d). It also
shows an obvious characteristic of a seesaw.
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4. Discussion

The EASM and westerly circulations are two extremely important wind air systems,
which are closely related and jointly affect the regional precipitation and climate environ-
ment changes in the middle latitudes in the Northern Hemisphere [36,68,69].

In the spatiotemporal scale, 2015, 1998, and 2005 are selected as ordinary, abundant
and less precipitation years to analyze the spatiotemporal variation mechanism. In ordinary
year, the cyclone center appeared in the southeastern margin of the MP (Figure 9a), the
overall intensity of the WPSH was strong, and the ridge position was westward. The
gradual strengthening of the EASM, moisture from the westerly circulation is not easy to
develop eastward, resulting in the weakening of the westerly circulation. However, the
inconsistent location of the Mongolian–Siberian High during different degrees of movement
of WPSH events may lead to weakened divergence, which results in a weakly defined
anticyclone over the MP. Moisture from the Pacific Ocean is mainly transported along the
eastern side of the China and reaches the Yangtze River basin and its southern regions,
while the water vapor transportation from north to Northeast China is weak (Figure 9b),
resulting in insignificant precipitation variation over the MP. At this time, the correlation
between precipitation and the EASMI is positive with 0.63 in most areas except for the
northeast (Figure S3a), while the negative correlation between precipitation and the WI
is −0.63 in western MP (Figure S3b), which further indicates that the seesaw relationship
between the EASM and westerly is marked by precipitation in MP [32,36,70].
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The vector is the water vapor transport anomaly, unit kg/(s·m), the shaded area is the water vapor
transport convergent divergent anomaly, unit 10−5 kg/(s·m2) ((b) 2015, (d) 1998, (f) 2005) (the pink,
purple, and green arrows indicate the directions of the India-Pacific, Pacific, and Arctic Ocean water
vapor to the arid region).

In 1998, the middle latitude atmospheric circulation formed an anomalous cyclone
covering the North China (Figure 9c), and appeared a strong convergence center in the
eastern Inner Mongolia. At the same time, it formed an anomalous anticyclone in the
Indian and Pacific oceans, and the anticyclonic divergence of water vapor was transported
through the warm airflow from the Indian and Pacific Ocean to North China (Figure 9d).
As a result, the rising water vapor is strengthened and the WPSH is gradually extended
westward and northward. The EASM gradually interacts with the westerly circulation
through the WPSH. The airflow strengthens the low-level anticyclone and is not conducive
to the development of westerly circulation. In the plateau scale, precipitation and EASM
were significantly positively correlated to distribution mainly in the east (p < 0.05), and the
negative correlation appeared in the desert area of the southwest (Figure S3c). However,
there was a positive correlation with westerly in the southeast and a negative correlation
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in the north (Figure S3d). This indicates that when the EASM breaks out, the upper-level
westerly weakens, and MP is mainly controlled by the EASM [32,33,47,57]. As a result, it is
conducive to the northward transport of water vapor and the northward shift of the rain
belt, which increases the precipitation in the eastern part of MP [33,71].

On the contrary, the center of the cyclone gradually moved westward over Central
Asia and left the MP in a drought year in 2005 (Figure 9e), resulting in water vapor in the
Indian and Pacific Ocean far away from the cyclone (Figure 9f). The position of the WPSH
continues to decline abnormally southward and westward, and strengthen the ridge of
high pressure and the divergence, together with enhanced anticyclonic activity over the MP.
Precipitation and EASM showed a positive correlation only in the northwest and northeast,
but a negative correlation in Horqin Sandy Land and western desert regions (Figure S3e).
However, it is negatively correlated with westerly in the west and south, and positively
correlated in the northwest (Figure S3f). This is a sign of the weakening of the EASM and
slight strengthening of westerly circulation. The westerly circulation gradually developed
eastward, and the precipitation was slightly increased in the western Gobi Desert area,
showing a sign of dry to wet. The southward retreat of EASM could lead to reducing water
vapor transport into inland regions, causing the rainfall deficit. There is an obvious drying
trend in the central and eastern parts of the MP, especially in the Horqin Sandy Land,
which also has the trend of wet to dry. During the same period, the rate of aridification
accelerated in Northern China [69,72], the summer precipitation was significantly reduced
in the semi-arid areas, and the arid and semi-arid areas expanded, and its boundary tended
to move west and north [73–76].

Although the location of cyclones varies in different periods, the precipitation dif-
ferences are greatly due to the influence of the outbreak time, intensity, and path of
EASM [77,78]. The East Asian Winter monsoon (EAWM) inevitably affects the precipitation
through water vapor from the Mongolian–Siberian High and western Pacific Ocean [24,79].
However, the winter precipitation accounts for only 3% of the annual precipitation, the
EAWM has far less impact on precipitation than EASM in Mongolia. Therefore, the EASM
is the most critical factor for the summer precipitation in MP.

In addition to atmospheric circulation, topographical factors (slope, aspect, elevation)
are also the most important factors affecting the distribution of precipitation in the Eurasia
hinterland [34,40,76]. The eastern and western parts have high mountains, and the reasons
for the precipitation in the eastern and western parts of the plateau are different. The
piedmont can lift the airflow to form orographic rain, and the foehn is formed due to the
sinking of the mountain airflow on the leeward slope [80]. For example, the existence of
the terrain of the Greater Khingan Mountains increases the summer precipitation from the
east to the Songnen Plain by 1.09 mm/day and reduces the summer precipitation in the
eastern Mongolia to the west by 0.69 mm/day based on a regional numerical model [9,81].
In addition, the Altai Mountains also have a significant impact on the westerly system [82].
The existence of highland terrain will cause the westerly airflow to circulate when passing
through the terrain, which plays an important role in the formation of vortices [83]. Even
if the western part is affected by the westerly wind, the amount of precipitation is still
relatively small in the Altai Mountains [34], so the local topography plays an important
role in the formation of regional climate.

5. Conclusions

This study tries to analysis the spatiotemporal patterns of the annual and seasonal
average precipitation over MP and compares atmospheric circulation factors with the
precipitation variations.

(1) The annual average precipitation has a slightly decreasing trend in the MP dur-
ing 1976–2017, particularly, the summer precipitation decreased significantly at a rate
of 5.3 mm/decade. The global warming significantly affects the change in precipitation
patterns, it will further cause water resources shortage and aggravate the contradiction
between supply and demand.
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(2) Specifically, the change rate of annual average precipitation has a significant
negative trend in the semi-wet and semi-arid area, while positive trend appears in arid and
extreme arid area, showing a pattern of wet gets dry in the east and dry gets wet in the
west. However, the precipitation is increased with the rate of only 0.22–3.4 mm/decade in
the arid region, which was not enough to prove the characteristics of wetter.

(3) The EASM and westerly basically show the characteristics of seesaw changes in
parts of the MP, the EASM weakened and the westerly circulation slightly increased, weak-
ening water vapor transport leads to a slightly decrease in precipitation in MP. Precipitation
pattern change is the result of a comprehensive configuration of multiple influencing factors.
It is not only influenced by atmospheric circulation, but also by human activities such as
land use/cover, urbanization, and regional factors. The driving factors are very complex
and therefore require further research.
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//www.mdpi.com/article/10.3390/atmos13122132/s1, Table S1: Altitude statistics of Mongolian
Plateau stations, Table S2 The forecasted annual average precipitation using different interpolation
methods during 1976-2017, Table S3 The interpolation analysis of the mean annual precipitation
during 1976-2017, Table S4 Annual precipitation in different stages and its correlation with EASMI
and WI, Table S5 Precipitation change rate at 135 stations during 1976-2017 in the Mongolian Plateau,
Table S6 Precipitation change rate at 135 stations during 1976-2017 in the Mongolian Plateau, Table S7.
Analysis of Partial between precipitation and atmospheric circulation factors during 1976–2017 in the
Mongolian Plateau., Figure S1. MK test of precipitation in Mongolian Plateau during 1976 to 2017
((a) Annual, (b) Spring, (c) Summer, (d) Autumn, (e) Winter). Figure S2. The spatial distribution of the
correlation between precipitation and East Asian Summer Monsoon Index ((a) Spring, (c) Autumn),
the correlation between precipitation and Westerly Index ((b) Spring, (d) Autumn) (Shaded indicates
p < 0.05)., Figure S3. The spatial distribution of the correlation between precipitation and East
Asian Summer Monsoon Index ((a) 2015, (c)1998, (e) 2005), the correlation between precipitation and
Westerly Index ((b) 2015, (d) 1998, (f) 2005) (Shaded indicates p < 0.05).
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