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Abstract: Precipitation nowcasting has been gaining importance in the operational weather fore-
cast, being essential for economic and social development. Conventional methods of precipitation
nowcasting are mainly focused on the task of radar echo extrapolation. In recent years, deep learn-
ing methods have been used in this task. Nevertheless, raising the accuracy and extending the
lead time of prediction remains as a challenging problem. To address the problem, we proposed
a Multi-Scale Criss-Cross Attention Context Sensing Long Short-Term Memory (MCCS-LSTM). In
this model, Context Sensing framework (CS framework) focuses on contextual correlations, and
Multi-Scale Spatiotemporal block (MS block) with criss-cross attention is designed to extract multi-
scale spatiotemporal feature and full-image dependency. To validate the effectiveness of our model,
we conduct experiments on CIKM AnalytiCup 2017 data sets and Guangdong Province of China
radar data sets. By comparing with existing deep learning models, the results demonstrate that the
MCCS-LSTM has the best prediction performance, especially for predicting accuracy with longer
lead times.

Keywords: radar echo extrapolation; deep learning; multi-scale spatiotemporal feature

1. Introduction

The precipitation brought by strong convective weather has the characteristics of
abruptness, intensity and unpredictability. Presently, precipitation nowcasting mainly
refers to the prediction of rainfall intensity within a relatively short period (e.g., 0–6 h) in
the future based on radar observation. The extrapolation of radar echo map has become one
of the key methods for precipitation nowcasting [1]. One of the techniques for forecasting
the evolution and the intensity of convective systems that has become especially interesting
is the technique of radar echo extrapolation based on the historical sequences. Another one
is based on the solution of a spatiotemporal sequences prediction problem. The process of
radar extrapolation can be expressed by the following equation:

χ̃t+1, . . . , χ̃t+K = arg max
χt+1,...,χt+K

p(χt+1, . . . , χt+K | χ̂t−J+1, χ̂t−J+2, . . . , χ̂t) (1)

where χ represents the observation tensor at any time, and χ̂t−J+1, χ̂t−J+2, . . . , χ̂t represent
a sequence of tensors when we record the observations periodically. Through this equation,
the task of radar echo extrapolation is to predict the most likely length-K sequence in the
future based on the previous J observation sequences [2]. Once the extrapolated results is
obtained, the precipitation distribution can be easily calculated with Z-R relationship [3].
Besides, accurate radar echo extrapolation result is the foundation of some forcasting
algorithms [4,5], buliding an effective response to severe convective weather.

Radar echo sequences contain obvious spatiotemporal features. It is vital but diffi-
cult to overcome the uncertainty between adjacent frames, which makes the radar echo
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extrapolation problem challenging. Besides, there is a nonlinear relationship between
meteorological factors. Traditional methods are not good at modeling the spatiotemporal
relationships. To address this problem, more and more researchers try to adopt neural
networks to deal with this complex relationship. Recently, radar echo extrapolation tech-
nology based on deep learning [6] has made significant progress. Many researchers have
proposed a series of models based on convolutional neural network and recurrent neural
network to extract the spatiotemporal characteristics of radar echo sequences. To take the
spatiotemporal correlations of radar echo into consideration, Shi et al. proposed Convolu-
tional Long Short-Term Memory (ConvLSTM) [2] by stacking several ConvLSTM layers to
build an end-to-end model, andfurthermore the precipitation nowcasting is modeled as the
spatiotemporal sequences prediction problem. Wang et al. proposed a novel convolutional
LSTM unit to build a Predictive RNN (PredRNN) [7] network for radar extrapolations.
Wang et al. further improved the PredRNN network and thus proposed PredRNN++ [8] by
introducing a Casual LSTM unit and a gradient Highway Unit. Specifically, the application
of the spatiotemporal long short-term memory(LSTM) and the Casual LSTM enable models
to capture spatiotemporal correlation better. Wu et al. used a combination of 3D Convolu-
tional Neural Networks (3DCNN) and LSTM [9] to predict the precipitation in a specific
area, and achieved stable operation on the weather station platform. Wang et al. developed
a predictive network that can capture non-stationary and approximately stationary proper-
ties in radar echo extrapolation, and proposed the Memory In Memory (MIM) network [10].
Luo et al. proposed an LSTM model with Interaction Dual Attention (IDA-LSTM) [11]
which can solve the problem of underestimating the high echo value areas is solved by
developing an interaction framework and dual attention for ConvRNN unit.

Nevertheless, most of the previously given techniques only focus on the global spa-
tiotemporal flows of given frames in the hidden states, ignoring the multi-scale variations
between adjacent frames and the correlation between the current input and upper context.
Especially, in the task of radar echo extrapolation, the current input and upper context
refer to the radar echo image of the current time and the last time, respectively. As the
prediction time increases, the radar echo predicted image gradually becomes blurred and
the radar echo region with higher reflectivity has the tendency to disappear, which impact
the accuracy.

In order to overcome the limitations of previous works, in this paper, we propose
Muti-Scale Criss-Cross Attention Context Sensing Long Short-term Memory (MCCS-LSTM),
as an extension structure of ConvLSTM. Specifically, (1) Multi-Scale Spatiotemporal block
with criss-cross attention (MS block) is designed to capture full-image dependencies and
abundant spatiotemporal flows in different scales between sequences, building the short-
term dependency adaptively. (2) Context Sensing block (CS block) is designed to capture
the input and context correlations, maintaining the spatiotemporal consistency among
long sequences and building the long-term dependency adaptively. In summary, our main
contributions are as follows:

1. We introduce two model structures, namely Multi-Scale Spatiotemporal block with
criss-cross attention (MS block) and Context Sensing framework (CS framework).
MS block can extract multi-scale spatiotemporal feature and develop full-image de-
pendency. CS Framework can capture correlations between the current input and
upper context.

2. Our MCCS-LSTM innovatively adopts a criss-cross attention mechanism and
context-sensing structure, and experimental results show MCCS-LSTM is superior
to previous model.

2. Related Work
2.1. ConvLSTM

In the past few years, recurrent neural network and LSTM have been widely used in
spatiotemporal sequence forecasting problem. Among them, the improved model based on
convolutional LSTM is one of the important branches. PredRNN and PredRNN++ achieved
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better prediction effects by introducing spatiotemporal memory units. MIM updated
memory units in LSTM into spatiotemporal expression calculation of non-stationary and
stationary information. IDA-LSTM combine ConvLSTM with dual attention to recall
the forgotten information. In conclusion, spatiotemporal feature extraction through the
combination of LSTM and convolutional neural network is an effective solution for radar
echo extrapolation. Therefore, the new model proposed in this paper is improved on the
basis of convolutional LSTM structure.

Unlike the LSTM model structure used for one-dimensional time series data, this
model combines convolution with LSTM so that this structure can capture spatial and
temporal features. The structure of ConvLSTM is shown in Figure 1, where the three
gate structures of ConvLSTM are forget gate ft, input gate it and output gate ot. Ct is a
memory cell. The memory cell does not only retains the current input characteristics, but
also controls whether the information at the previous moment continues to be transmitted.
The information transmission relationship is expressed by equation:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ∗ Ct−1 + bi)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ∗ Ct−1 + b f )

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ht−1 + bo)

Ht = ot ◦ tanh(Ct)

(2)

where σ, ◦, ∗ denotes sigmoid activation function, matrix multiplication, convolution
operation, respectively. Xt is the input, Ct is the memory cell, Ht is the hidden state, it is
the input gate, ft is the forget gate, and ot is the output gate. Specifically, the convolution
operation is used to extract the features, and the information is selected through the gate
structure. The forget gate controls which information will be forgotten in the previous
state Xt and Ht−1, and then the information flows into the input gate which determines
which information will be updated through sigmoid function, and the update operation
will be done through tanh activation function. The final ouput Ht will be obtained from the
multiplication product of the information from the output gate and the information flows
from that layer [2].

Figure 1. Structure of ConvLSTM.
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2.2. Contextual Information Aggregation

In the spatiotemporal sequence forecasting problem, the previous models ignore the
relationship between the current input and the context, which are independent of each
other. With the increase of model’s complexity, the correlation between the current input
and the context will decrease with the information flows among layers.

In semantic segmentation, for purpose of augmenting the feature representation,
the current models normally adopt the method of aggregating contextual information.
Deeplabv2 [12] proposed Atrous Spatial Pyramid Pooling (ASPP), which can capture con-
text information through different expansion convolution. Chen et al. [13] applied the
attention mechanism to fuse different feature maps and aggregate contextual informa-
tion. Huang et al. [14] proposed a new attention mechanism called criss-cross attention to
capture full-image contextual information. The criss-cross attention is demonstrated in
Figure 2.

Figure 2. The mechanism of criss-cross attention.

From this module, the contextual information is added to feature map, obtaining a
wide contextual view. Therefore, it can aggregates contexts and enhance feature representa-
tions. Therefore this new attention mechanism is used in our new model to settle the issue
of radar echo extrapolation.

3. Methods

In this section, we will present the MCCS-LSTM model in detail. Firstly, the context
sensing framework is given, and then we elaborate multi-scale spatiotemporal block with
criss-cross attention and portray how to embed CS framework and MS block into our
model. Finally, we will present the whole structure of the proposed MCCS-LSTM model.

3.1. Context Sensing Framework

In previous LSTM based models such as PredRNN, the current input Xt and the
previous hidden state Ht−1 independently enter into LSTM layers. Therefore, with the
increasing depth of the model, correlations between the current input and upper context
tend to disappear. In fact, there is a certain correlation between the current input and upper
context. In pursuit of extracting this correlation, we introduce context sensing framework
with the inspiration of the previous work [15]. As shown in Figure 3, we exploit this
framework to extract abundant correlational information.
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Figure 3. The structure of context sensing framework.

Equations of the context sensing framework can be presented as follows:

X̂t = σ(WH ∗ Ht−1 + bH) ◦ Xt

Ĥt−1 = σ(WX ∗ X̂t + bX) ◦ Ht−1
(3)

where Xt denotes current input, Ht−1 denotes the previous state, σ is the element-wise
sigmoid function, ◦ stands for matrix product. Xt and Ht−1 are fed into context sensing
framework, and then X̂t and Ĥt−1 can be obtained through several context sensing blocks.
In our model, we set the number of context sensing block as four. Specifically, Ht−1 is fed
into 5 × 5 convolution layers and multiply with Xt to obtain the X̂t Similarly, after 5 × 5
convolution operation, X̂t multipy with Ht−1 to obtain Ĥt−1. Finally, X̂t and Ĥt−1 represent
current input and the previous state after context sensing framework, respectively.

3.2. Multi-Scale Spatiotemporal Block with Criss-Cross Attention

During the evolution of radar echo, when sudden changes occur, pixel-level changes
between adjacent frames occasionally happen in specific regions. So it is essential to model
video dynamics in different spatiotemporal scales. Inspired by previous work [16,17], we
proposed MS block to extract more implicit features in spatiotemporal flows.

The self-attention mechanism can extract important parts of feature maps. In order to
model full-image dependencies over local feature, we use criss-cross attention as shown in
Section 2.2 of the article. Besides, Ct and Ht contain spatiotemporal flows, while in the pro-
cess of feature extraction in adjacent sequences, more potential tendencies can be captured
by using multi-scale regions. Namely, MS block can extract multi-scale spatiotemporal
flows. As shown in Figure 4, Ht, Ct ∈ RC×H×W are stacked into Z ∈ RC×H×W×2. Then Z is
divided into n multi-scale groups Z1,Z2, . . . , Zn, and each Zi is stacked in C to compose Ẑ1,
Ẑ2, . . . , Ẑn . Each Ẑi is fed into Criss-Cross Attention module, and, respectively, obtain ẑ1,
ẑ2, . . . , ẑn. Finally, ẑ1, ẑ2, . . . , ẑn are stacked to the output z ∈ RnC×H×W×2. In this paper n
is set to 3, namely the input is divided into 3 multi-scale groups. The spatiotemporal states
Ht, Ct are stacked and then fed into Multi-Scale Criss-Cross Attention Module to obtain z.
Then we take z as input, and 5 × 5 convolution layer is applied to generate feature maps
AH and AC. AH and AC are stacked in C channel as the input of 5 × 5 convolution layer
to obtain a multi-scale attention map A. Meanwhile, ZH is generated from hidden state C
after going through a 5 × 5 convolution layer. Add A to ZH and split the result into 3 parts:
zi, zg and zo. Formally, Ct and Ht are updated as follows:
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zi = σ(WAi ∗ [AH , AC] + Whi
∗ ZH + bi)

zg = tanh(WAg ∗ [AH , AC] + Whg ∗ ZH + bg)

zo = tanh(WAo ∗ [AH , AC] + Who ∗ ZH + bo)

Ĉt = (1− zi) ◦ Ct + zi ◦ zg

Ĥt = zo ◦ Ct

(4)

where [AH , AC] represents the stacking result of AH and AC. After this update, the
output state and memory of LSTM can extract multi-scale spatiotemporal flows and
contextual information.

Figure 4. Multi-Scale Spatiotemporal block (MS block) with criss-cross attention.
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3.3. MCCS-LSTM

In order to take into account of contextual information and multi-scale implicit features,
we proposed MCCS-LSTM by applying CS framework and MS block into LSTM. Figure 5
illustrates the inside structure of MCCS-LSTM unit, where Ht−1 denotes the output state
of t− 1 time, Ct−1 represents memory state of t− 1 time, Xt denotes the input of t time,
Ĥt represents the output through MCCS-LSTM unit of t, and Ĉt represents memory state
of t. Formally, the calculation of MCCS-LSTM unit can be expressed as follows:

X̂t, Ĥt−1 = CS(Xt, Ht−1)

it = σ(Wxi ∗ X̂t + Whi ∗ Ĥt−1 + bi)

gt = tanh(Wxg ∗ X̂t + Wht ∗ Ĥt−1 + bg)

ft = σ(Wx f ∗ X̂t + Wh f ∗ Ĥt−1 + b f )

Ct = ft ◦ Ct−1 + it ◦ gt

ot = σ(Wxo ∗ X̂t + Who ∗ Ĥt−1 + bo)

Ht = ot ◦ tanh(Ct)

Ĥt, Ĉt = MS(Ht, Ct)

(5)

where ◦ denotes the Hadamard product, ∗ denotes the 2D convolution. Obviously, both
contextual information and multi-scale implicit features are extracted by this unit.

Figure 5. The inner structure of MCCS-LSTM unit.

The architecture of MCCS-LSTM model is shown in Figure 6. We stack four MCCS-
LSTM units to build a network. In this network, we update the spatial memory cells in a
zigzag direction, and update temporal memory information in the horizontal direction. The
top layer outputs the prediction result X̂t. Therefore, the whole MCCS-LSTM model extracts
highly abstract features by stacking MCCS-LSTM units to obtain great spatiotemporal
modeling capability. In this paper, we stack four MCCS-LSTM units.
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Figure 6. The architecture of MCCS-LSTM model.

4. Experiment

In this section, we evaluate the proposed MCCS-LSTM model and compare with some
state-of-the-art models.

4.1. Experiment Details

In this part, we will present the implementation details including the dataset, parame-
ters, evaluation metrics, and training setting.

4.1.1. Dataset

We conducted experiments on two diffient data sets to verify the strong applicability
and generalization of our model. The first radar echo dataset is from the Conference on
Information and Knowledge Management (CIKM) AnalytiCup 2017 competition. This
radar echo maps dataset covers 101 × 101 km area in Shenzhen City and the size of each
map is 101 × 101 (pixel). In order to facilitate the calculation of deep learning, we resize
the image size to 104 × 104 (pixel) with the operation of padding. Besides, the original
dataset contains a training set with 10,000 samples and a testing set with 4000 samples, and
each sample includes 15 radar echo maps with an interval of six minutes. We take the first
five consecutive radar echo maps as input and predict the last ten. Namely, we predict
radar echo maps for the next 60 min based on observations from the past 30 min. A total of
2000 samples were randomly selected from training set as the validation set.

The second radar echo dataset used in this paper consists of three-year radar intensities
collected in Guangdong Province of China from 2018 to 2020. We extract Constant Altitude
Plan Position Indicator (CAPPI) images from original data. Our experimental radar maps
are resized to 100 × 100 by using down-sampling. The resolution of radar map is changed
to 0.1◦ (10 km × 10 km) in order to be more suitable for model training and testing. Since
there existed some corrupt data as well as some days without rain, we select 267 rainy days
to form our dataset. Namely, 80% of total radar echo data are used as training set, 10% are
used as the testing set, and 10% are used as the validation set. The dataset was originally
divided into a training set with 26,322 sequences, a validation set with 3198 sequences and
a test set with 3321 sequences. Each sequence covers 22 radar images with an interval of
10 min. Namely, the first ten radar echo maps are treated as input and the last twelve as
the expected output.
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4.1.2. Evaluation Metrics

We change the ground and the prediction echo maps into binary matrices according
to a threshold. If the radar echo value is greater than the given threshold, the corre-
sponding value is 1, otherwise 0. So we calculate the number of positive predictions TP
(prediction = 1, true = 1), false−positive predictions FP (prediction = 1, truth = 0), true
negative predictions TN (prediction = 0, truth = 0) and false-negative predictions FN
(prediction = 0, truth = 1). In experiment, three thresholds are used, respectively, namely
10 dBZ, 20 dBZ and 30 dBZ. At last, we calculate the Critical Success Index (CSI) [18] and
the Heidke Skill Score (HSS) [19] to measure the performance of experimental results. CSI
indicates the performance of precision, and HSS indicates the performance of random
forcast. Larger score of CSI and HSS means that the predict quality is better. The calculation
formula of CSI and HSS are given as follows:

CSI =
TP

TP + FN + FP

HSS =
2(TP× TN − FN × FP)

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)

(6)

4.1.3. Training Setting

In the experiment, our model adopts a 4-layer MCCS-LSTM network with each layer
containing 128 hidden states and 5 × 5 kernels. The parameter settings of the experiment
are shown in Table 1. Setting the initial learning rate to 0.001, mini-batch to 8, and patch
size to 4. In addition, planned sampling [20] is adopted, mean square error is used as the
loss function, and all models are trained by the ADAM optimizer [21].

Table 1. Parameter Settings.

Learning Rate Batch Size Patch Size Optimizer

0.001 8 4 Adam

Before training, all radar echo maps were normalized to [0, 1] as the input, and we use
NVIDIA P100 GPU to train and test based on Pytorch.

4.2. Experimental Results

Table 2 shows all results on CIKM dataset. Here, in addition to the MCCS-LSTM
model proposed in this paper, ConvLSTM, PredRNN, PredRNN++, MIM, IDA-LSTM were
applied and tested. All models used the same training set, validation set and test set. we
adopted a random mechanism to initialize the weights of models and chose the best by
training each model several times.

Table 2. Comparison results of some models South of CIKM dataset in terms of Heidke Skill Score
(HSS) and Critical Success Index (CSI). Bold denotes the best evaluate index among all models.

dBZ Threshold CSI HSS
10 20 30 avg 10 20 30 avg

ConvLSTM 0.6943 0.4601 0.1963 0.4503 0.6937 0.5401 0.2630 0.4989
PredRNN 0.6907 0.4708 0.2036 0.4550 0.6916 0.5526 0.2731 0.5058

PredRNN++ 0.6905 0.4631 0.2079 0.4538 0.6963 0.5521 0.2793 0.5092
MIM 0.6906 0.4571 0.1965 0.4481 0.6892 0.5402 0.2646 0.4980

IDA-LSTM 0.6947 0.4617 0.2085 0.4549 0.6958 0.5420 0.2777 0.5051
MCCS-LSTM 0.7001 0.4777 0.2188 0.4656 0.7006 0.5592 0.2919 0.5173
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From the above table, our model achieves the best performance under three threshold,
and the advantage of our model becomes increasingly obvious as threshold increases. To
better illustrate the results, we visualize some qualitative results in Figure 7.

As can be observed from Figure 7, our model not only can accurately predict the
boundaries, but also can achieve better timeliness. All the above results demonstrate that
our model improves the prediction accuracy.

Figure 7. The prediction results for echo on CIKM dataset. The first row refers to real observa-
tions, the top five images indicates the input. Other rows represent prediction results of different
models, respectively.

In order to test the predictive effect in the longer time range, we conduct some exper-
iments on Guangdong Province of China radar dataset. Table 3 shows the experimental
results using different models. Here, in addition to the MCCS-LSTM model proposed in
this paper, ConvLSTM, PredRNN, PredRNN++, MIM, IDA-LSTM were applied and tested
on the data set. All models used the same training set, validation set and testing set. we
adopted a random mechanism to initialize the weights of models and choose the best by
training each model several times.

Table 3. Comparison results of some models in terms of Heidke Skill Score (HSS) and Critical Success
Index (CSI). Bold denotes the best evaluate index among all models.

dBZ Threshold
CSI HSS

10 20 30 avg 10 20 30 avg

ConvLSTM 0.5936 0.4285 0.2050 0.4090 0.7073 0.5528 0.3057 0.5219
PredRNN 0.5685 0.4286 0.2685 0.4219 0.6836 0.5498 0.3764 0.5366

PredRNN++ 0.5291 0.4387 0.2489 0.4266 0.7061 0.5625 0.3547 0.5411
MIM 0.5968 0.4436 0.2546 0.4317 0.7097 0.5653 0.3564 0.5438

IDA-LSTM 0.5951 0.4445 0.2345 0.4247 0.7070 0.5642 0.3330 0.5347
MCCS-LSTM 0.5989 0.4576 0.2466 0.4344 0.7117 0.5841 0.3573 0.5510

From the above table, it can be seen under three threshold, the MCCS-LSTM model
we proposed achieves the best performance in terms of the HSS, CSI. Although when
the threshold is 30, PredRNN performs best. One of the reason for this result is that as
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the reflectivity threshold increases, the filtered information also increases synchronously,
resulting in poor prediction effect. Furthermore, the other reason is that the high echo
area changes quickly, our model is slightly weaker than PredRNN in capturing short-term
dynamics. However, according to the overall average results, our model is better than other
models. When the threshold value is 20, the CSI of MCCS-LSTM model is 2.9% higher
than that of IDA-LSTM model, and the HSS of MCCS-LSTM model is 3.2% higher than
that of MIM model, which effectively improves the accuracy of radar echo extrapolation.
The results of PredRNN++ and MIM are better than those of ConvLSTM, PredRNN and
IDA-LSTM. ConvLSTM performs the worst among all these models. Although on the
whole testing set, the differences between different models are small, the difference is
obvious in a single sample. Therefore, these differences can reduce economic losses in a
specific precipitation event. Considering that the time series is a whole, it is more scientific
to use the mean value on testing set.

In the whole testing set, we drew Figure 8 to show the CSI and HSS change curves
of all models at each time stamps. As can be seen from the figure, when the threshold is
10, 20, and 30, except for the first few time stamps, our model is superior to other models
in CSI and HSS. This is because our model pays more attention to context information
and has weak ability to extract abrupt features. Besides, when the threshold is 20, our
model achieves effective prediction particularly in the last few time stamps compared to
other models. In addition, ConvLSTM and PredRNN perform worst at threshold 20. It
shows that our method can significantly improve the prediction accuracy with longer lead
times, which is particularly important educing the harm of severe convective weather to the
human economy and society. In fact, it thanks to our model which can effectively aggregate
contextual information and capture the long-term dependencies.

Figure 8. Cont.
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Figure 8. The performance changes against different nowcasting lead time in terms of CSI and HSS.
The three rows represent, respectively, CSI and HSS curve changes over the threshold of 10, 20 and
30—best view in color.

In order to compare the experimental results better, we visualized the extrapolation
results of the radar echo from 4:50–6:50 a.m. on 31 August 2020 in Guangdong Province
of China radar dataset, as shown in Figure 9. It can be seen from the figure that as the
prediction time becomes longer, the extrapolation results of ConvLSTM, PredRNN++, MIM
and IDA-LSTM models gradually became fuzzy, the high echo area gradually became
smaller or even disappeared, and the whole prediction boundary area also gradually
smoothen. PredRNN and MCCS-LSTM can well retain the high echo area, but compared
with PredRNN, MCCS-LSTM can better retain the details of prediction results, which is
due to the structure of MCCS-LSTM that can effectively transmit context information. This
makes it able to capture the short-term dependencies between adjacent frames and retain
the long-term dependencies of the entire echo sequence.

4.3. Ablation Study

In order to further investigate the effectiveness of CS framework and MS block, we
conducted ablation experiments. On the basis of ConvLSTM, CS Framework and MS Block
were separately added to ConvLSTM, and then they are compared with ConvLSTM and
our model MCCS-LSTM. The experimental results are shown in Table 4.

Table 4. Comparison results of Ablation study experiment in terms of Critical Success Index (CSI)
and Heidke Skill Score (HSS). Bold denotes the best evaluate index.

dBZ Threshold
CSI HSS

10 20 30 avg 10 20 30 avg

ConvLSTM 0.5936 0.4285 0.2050 0.4090 0.7073 0.5528 0.3057 0.5219
ConvLSTM with

MS block 0.5764 0.4290 0.2404 0.4152 0.6906 0.5512 0.3450 0.5289

ConvLSTM with
CS framework 0.5792 0.4317 0.2247 0.4119 0.6932 0.5533 0.3241 0.5235

MCCS-LSTM 0.5989 0.4576 0.2466 0.4344 0.7117 0.5841 0.3573 0.5510
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Figure 9. The prediction results for echo in Guangdong Province of China, 31 August 2020, 4:50 UTC.
The images in the first row are the ground-truth output, a total of 12 radar echo maps, denoting the
forecast results for the next two hours. Other rows are the prediction of some methods.

Table 4 shows that ConvLSTM with MS block and ConvLSTM with CS framework
perform better than ConvLSTM, and ConvLSTM with both CS framework and MS block
(MCCS-LSTM) delivers the best results. So the results validate the effectiveness of CS frame-
work and MS block. Overall, ConvLSTM with MS block performs better than ConvLSTM
with CS framework.

Similarly, we also depict the HSS and CSI curves changes at different lead times in
Figure 10. It can be seen from the figure that as the prediction lead time becomes longer,
the advantages of our model become more and more obvious. This thanks to our model
by having the ability to build the long-term dependency and the short-term dependency
effectively. In summary, CS Framework and MS block both play positive roles to predict
longer lead time, which are profitable for economic society.

In order to visually compare the experimental results of removing CS framework and
MS block, we visualized the extrapolation results of radar echo from 11:40–13:40 a.m. on
12 August 2020 in South China, as shown in Figure 11. We can see that the extrapolated
result of ConvLSTM is gradually smoothed, and some areas tend to fade away. The model
of MS block can retain the contour feature of radar map. The model of CS framework can
effectively predict the variation trend of the high echo value regions.
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Figure 10. The performance changes against different nowcasting lead time in ablation experiments
in terms of CSI and HSS. (Best view in color).

In summary, the ablation studies further verifies the validity of MS block and CS
framework, and the effectiveness of predicting radar echo movement in a longer lead time.
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Figure 11. The prediction results of ablation studies on an example (Best view in color).

5. Discussion

Firstly, we discussed the positive effect of capturing the full-image dependencies in
feature map. In a specific area, the weather system at each position is related. Specifically,
there are dependencies between each pixels in radar echo map. From Figure 10, we
can see the MS block effectively found the relationship between each pixels, providing
improved forecast quality. This is a great significance for the accurate prediction of strong
convective weather in some important areas. We therefore believe that capturing full-image
dependence is a breakthrough to improve the effect of radar echo extrapolation in the
future. Futhermore, we argued that using more complicated techniques in deep learning
can be more effective to capture full-image dependency such as the Feature Integration
Unit (FIU) [22] technology.

Secondly, we noticed that our model did not perform as well as some models in the
first few lead times in Figure 7. After the experiment and comparision, we argued that the
criss-cross attention used in MS block probably exists the problem of predicting the high
radar echo areas in the first few lead times. However, our model seemed to be more stable
in predicting medium radar echo areas. Therefore integrating some existing methods to
improve the predict quality of high radar echo value parts is our future work. Besides,
from Table 2, we can see that the performance of PredRNN is better than other models. By
comparing these models based on radar echo extrapolation literature, we noticed that the
external memory of PredRNN plays an important role in exploring new features, such as
the generation of high radar echo areas. The variation trend of high intensity echo area is
relatively fast. In the future, in order to improve the nowcasting in some extreme weather
events, we will explore to improve our model’s ability of capturing short-term dynamics.

Finally, precipitation system processes exhibit complex non-stationarity in space and
time. Therefore, it is very difficult to achieve accurate prediction. According to the limited
lifetime of radar echo, we cannot accurately predict the evolution trend of radar echo
based on only radar data. In the future, we will consider introducing some meteorological
elements into extrapolation model to improve the prediction.
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6. Conclusions

In this paper, we propose a new radar echo extrapolation model named MCCS-LSTM.
To capture the long-term and short-term dependencies on radar echo movement, we put
forward context sensing framework and multi-scale spatiotemporal block with criss-cross
attention. Experiments show that MCCS-LSTM can effectively mitigate the radar echo
map blurring and improve prediction accuracy with longer prediction lead times. The
effectiveness of our model is fully proved by the experimental comparison of existing
models. In the future, we will study the radar echo prediction with longer time duration
(0–6 h in the future), and improve the forecasting ability for precipitation nowcasting.
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