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Abstract: As VOCs pose a threat to human health, it is important to accurately capture changes in
VOCs concentrations and sense VOCs concentrations in relevant areas. Therefore, it is necessary to
improve the accuracy of VOCs concentration prediction and realise the VOCs aggregation situation
sensing. Firstly, on the basis of regional grid division, the inverse distance spatial interpolation
method is used for spatial interpolation to collect regional VOCs data information. Secondly, extreme
gradient boosting (XGBoost) is used for spatio-temporal feature selection, combined with graph
convolutional neural network (GCN) to construct regional spatial relationships of VOCs, and multiple
linear regression (MLR) to process VOCs time series data and predict the VOCs concentration in the
grid. Finally, the aggregation potential values of VOCs are calculated based on the prediction results,
and the potential perception results are visualised. A VOCs aggregation perception method based on
concentration prediction is proposed, using the XGBoost-GCN-MLR method with a scenario-aware
approach for VOCs to perceive the VOCs aggregation in the relevant region. VOCs concentration
prediction and VOCs aggregation trend perception were carried out in Xi’an, Baoji, Tongchuan,
Weinan and Xianyang. The results show that compared with the GCN model, XGBoost model, MLR
model and GCN-MLR model, the XGBoost-GCN-MLR model reduces the input variables, achieves
the optimisation of the input parameters of the VOCs concentration prediction model, reduces the
complexity of the prediction model and improves the prediction accuracy. Intelligent sensing of
VOCs aggregation can visualise the regional VOCs. The intelligent sensing of VOCs aggregation
can visualise the development trend and status of regional VOCs aggregation and convey more
information, which has practical value.

Keywords: VOCs aggregation; XGBoost-GCN-MLR; concentration prediction; aggregation sensing

1. Introduction

VOCs are very important trace components in the atmospheric troposphere and can
react photochemically with nitrogen oxides (NOX) under ultraviolet light irradiation condi-
tions and are important precursors to ozone (O3) and fine particulate matter (PM2.5). VOCs
have a significant impact on the formation of secondary organic matter, ozone pollution [1].
In terms of human health risks, there may be a risk of cancer in people exposed to VOCs
for long periods of time [2]. For example, VOCs are potentially carcinogenic, teratogenic,
mutagenic and cause other adverse health effects in various organs and systems of the
human body [3–5]. VOCs can cause chronic or acute damage to the human respiratory,
haematopoietic and nervous systems, and may even induce symptoms such as asthma [6]
and leukaemia [7]. VOCs are an important cause of increased concentrations of pollutants
such as ozone in the atmosphere and their conversion to secondary organic particulate
matter and ultimately to PM2.5 [8]. In this aspect of environmental pollution, the emission
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of VOCs in the environment is characterised by regional aggregation. The migration of
VOCs is temperature dependent, the higher the temperature, the higher the migration rate
of VOCs [9]. When air pollution is severe and PM10 and PM2.5 concentrations are high,
VOCs concentrations are also high. This means that when meteorological conditions are
unfavourable for dispersion, atmospheric VOCs also accumulate and are not dispersed,
resulting in peak concentrations. Higher concentrations of VOCs are more likely to form
organic aerosols under certain conditions, resulting in more fine particles and increased
atmospheric pollution [10]. Unreasonable emissions of pollutants have led to unusually
high levels of air pollution, and the air pollution situation is becoming increasingly seri-
ous [11,12]. By predicting trends in VOCs concentrations and sensing the aggregation of
VOCs in associated areas, it helps to capture the regional variation process of VOCS in time
and space. This paper attempts to simulate the distribution of VOCs clustering potential in
an attempt to better understand the trend and status of regional VOCs clustering and to pro-
mote the management of regional environmental conditions and pollution early warning.
VOCs aggregation sensing can provide theoretical support to government departments in
formulating air pollution control policies and pollutant reduction countermeasures and is
of great significance in combating environmental pollution and safeguarding public health.

Many scholars are currently conducting research on the prediction of VOCs concentra-
tions and they have used machine learning algorithms and deep learning algorithms to
predict the changes in VOCs concentrations. Zhang et al. used a typical machine learning
approach to predict the emission behaviour of furniture VOCs using artificial neural net-
works (ANN) [13]. Nkeshita et al. used ANN to predict the potential of total volatile organic
compounds (TVOCs) released from local food waste decomposition [14]. Zhang utilised
a deep neural network regression prediction model to achieve multi-component VOCs
concentration inversion [15]. Ren et al. developed a prediction model for VOCs in in-
dustrial parks based on genetic algorithm and BP neural network [16]. Zhao applied the
extreme learning machine (ELM) method to predict the concentration of each component
in a mixed gas sample with four components fixed [17]. Chen provided BP neural network
output nodes to give continuous prediction of the concentration of each VOC in the target
analytes and to complete the quantitative analysis of the VOC gas mixture components
within a certain error range [18]. Many scholars are currently conducting research on the
prediction of VOCs concentrations and they have used machine learning algorithms and
deep learning algorithms to predict the changes in VOCS concentrations. Compared to
traditional BP neural network algorithms, the ELM method has the advantage of faster
learning. However, in terms of factors influencing VOCS, these prediction studies have
not been able to take into account the influence of meteorological factors on the variability
of VOCS. In terms of VOCs study areas, these studies also focus on small regional sample
data and do not predict VOCs aggregation in the region, while lacking a gridded, fine-scale
study to get a sense of VOCs aggregation dynamics. In terms of prediction models for
VOCs, these studies still lack the exploration of optimal combinations of prediction models,
and the prediction accuracy needs to be improved.

More machine learning algorithms and deep learning algorithms are being used in the
study of atmospheric pollutants, which brings more references to carry out trend predic-
tion and aggregation sensing of VOCs, such as k-nearest neighbour (KNN) [19], random
forest (RF) [20], multilayer perceptron (MLP) [21], long short-term memory (LSTM) [22,23],
convolutional neural networks (CNN) [24] and chemical transport models (CTMs) [25].
PM2.5, PM10, O3, NO2, SO2 and CO have more research results as common air pollutants.
Al-Qaness et al. showed an improved version of the Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) to predict the air quality index in Wuhan, China [26]. Prihatno et al. developed
a single dense layer bi-directional long and short-term memory (BiLSTM) model to predict
PM2.5 concentrations in indoor environments using time series data [27]. Guo et al. sug-
gested a hybrid decomposition-integrated learning paradigm for PM2.5 prediction based on
variational pattern decomposition (VMD) and an improved whale optimisation algorithm
(IWOA) [28]. Huang et al. developed an empirical modal decomposition (EMD-GRU)
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based gated recurrent unit neural network integration method for predicting PM2.5 concen-
trations [29]. Photphanloet et al. presented a new model for predicting PM10 concentrations
based on a combination of a genetic algorithm, MLP and an improved depth-first search
algorithm [30]. Durao et al. combined meteorological, air quality and industrial emissions
data to predict O3 levels in the Portuguese region through classification and regression
trees combined with a multilayer perceptron model [31]. Liu et al. used an autoregressive
integrated moving average (ARIMA) numerical forecasting model (ARIMAX) to predict air
pollutants such as NO2 [32]. Zhu et al. developed a support vector regression (SVR) model
combined with the cuckoo search algorithm (CS) and the grey wolf optimisation algorithm
(GWO) to model high and low frequency sequences to predict NO2 or SO2 in central
China [33]. Nourani et al. produced an effective model using ANN and ANFIS to predict
CO pollutant concentrations [34]. Wong et al. combined the Land Use Regression (LUR)
model with XGBoost to predict PM2.5 concentrations in Taiwan [35]. Just et al. applied
the XGBoost model for recursive feature selection to predict daily PM2.5 concentrations
in 13 northeastern US states from 2000–2015 [36]. Muthukum et al. used GCN and con-
volutional long and short-term memory (ConvLSTM) to learn the spatial and temporal
characteristics of PM2.5 and predicted PM2.5 concentrations in Los Angeles using meteo-
rological data and ground-based observations and remote sensing satellite big data [37].
Qi et al. proposed a hybrid GCN and LSTM-based model (GC-LSTM) to model and predict
the spatial and temporal variation in PM2.5 concentrations [38]. Ren et al. developed and
applied a daily average PM2.5 prediction model for northern China by combining back
propagation artificial neural network (BPANN) and MLR [39]. Kim et al. used aerosol
optical depth (AOD) values from ground-based and satellite remote sensing observations
to estimate PM2.5 in Seoul based on the MLR model [40]. Studies related to these atmo-
spheric pollutants have shown that effective meteorological characteristics can enhance the
accuracy of prediction models in the process of predicting changes in pollutants.

The following shortcomings have been identified through the existing research:

(1) In the process of VOCs prediction, due to practical conditions, data is mainly ob-
tained through specific monitoring stations and by reference to pollutant emission
inventories, and the study area is rarely divided into grids for fine-grained studies.

(2) Most of the joint prevention and control of VOCs pollution is through the method of
numerical simulation, which requires the collection of topographical and geographical
data information that is difficult to obtain, and the simulation of the dispersion process
is complicated. At the same time, the existing VOCs prediction is mainly reflected
in small-scale studies, which fail to predict VOCs from the perspective of regional
correlation considerations.

(3) VOCs prediction mainly focuses on quantity prediction, and the prediction process
takes less account of the influence of factors such as meteorological indicators on
the accuracy of prediction results. Existing studies have not screened for relevant
characteristics. Existing studies of air pollutants have failed to provide aggregated
sensing of air pollutants in associated areas.

(4) When there are many influencing factors, the model construction efficiency and pre-
diction performance will be reduced. The existing VOCs prediction model lacks
consideration of complex influencing factors, and the focus is mostly on model opti-
misation and accuracy.

In summary, studies on concentration prediction for pollutants are less fine-grained to
each grid and subjective input feature variables are used to make concentration predictions.
There are fewer existing studies that perceive the aggregation of VOCs in a temporal and
spatial dimension and systematically assess the dynamics of VOCs when aggregation
occurs. No studies have systematically assessed the regional environmental dynamics
of VOCs concentrations on the basis of concentration predictions. Current research on
air pollutant concentration prediction is dominated by time-series prediction, with less
consideration of the spatial and temporal correlation between pollutants.

The main contributions of this paper are as follows:
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(1) In terms of the research object, the five cities of Xi’an, Baoji, Tongchuan, Weinan
and Xianyang have poorer haze and air quality problems compared to other regions
in China, so it is representative to perceive and predict VOCs concentrations in the
cities where the region is located. In order to visualise the regional VOC pollution
situation, regional gridding and modelling of the aggregation pattern, which enables
the perception of the VOCs aggregation phenomenon in the associated areas, is of
great importance for the environmental management of the atmosphere.

(2) In terms of the prediction model, the aim of this paper is to develop a concentration-
based prediction method for sensing the aggregation of VOCs from a correlation area
perspective and taking into account spatial and temporal characteristics. Combin-
ing the advantages of the three algorithms XGBoost, GCN and MLR, XGBoost can
solve the traditional feature redundancy problem by eliminating redundant features
according to their importance. The GCN extracts multi-scale spatial information from
the associated regions and fuses it to construct feature representations. The MLR
model handles complex samples with high-dimensional features well and can be
targeted for migration and application in different scenarios. The features of VOCs
are selected by applying XGBoost to the features, then the GCN is used for spatial
feature extraction, and finally the extracted features are fed into the MLR model for
prediction. The method considers the excellent characteristics of GCN-MLR in the
temporal prediction of VOCs concentrations, while the XGBoost model can fully play
an important role in the selection of VOCs related features. The XGBoost model and
GCN-MLR model were combined to construct a VOCs concentration prediction model
and VOCs aggregation potential values were obtained for VOCs aggregation percep-
tion analysis. Intelligent sensing of VOCs aggregation can visualise the development
trend and status of regional VOCs aggregation, conveying more information and
having some practical value. The aggregation sensing method can therefore provide
decision support for regional VOCs pollution prevention and early warning.

(3) In terms of prediction results, this paper takes the VOCs concentration of the re-
gional grid as the entry point and proposes a concentration prediction-based VOCs
aggregation sensing method. It was demonstrated that the combined prediction
model proposed in this paper has higher prediction accuracy compared to other deep
learning models. In this paper, the prediction results of XGBoost-GCN-MLR are
generally better than those of CNN, LSTM, MLP, SVR, GCN, XGBoost, MLR and
GCN-MLR, and the results of several experiments show that the proposed model has
good robustness.

2. Intelligent Sensing Model of VOCs Gathering Concentrations
2.1. Study Area

The Kuan-chung Plain is located in central Shaanxi Province, between the Qinling
Mountains and the northern Weibei Mountains. The Kuan-chung Plain includes Xi’an,
Baoji, Xianyang, Weinan and Tongchuan in Shaanxi Province, with a length of about 300 km,
an altitude of about 323–800 m and an area of about 49,400 square km. The Kuan-chung
Plain has a continental climate with an average annual temperature of 6–13 ◦C. Annual
precipitation ranges from 500 to 800 mm, of which 60% is from June to September, with less
precipitation in winter and spring.

2.2. Modelling of VOCs Aggregation in Associated Areas
2.2.1. Regional Gridding

VOCs pollutants in the region will move and accumulate in the near-surface layer
of the region due to factors such as meteorological conditions and geographical location.
There are different distributions of VOCs concentrations at different locations in the region.
In order to implement a fine-grained management of regional VOCs pollutants, the areas
are divided into grids. Xi’an, Baoji, Tongchuan, Weinan and Xianyang were selected as
the study area. The selected study area was divided into a 10 × 10 km square element
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grid using the grid division method. The n grids obtained by gridding are numbered 1, 2,
. . . , n, starting from the bottom left corner of the grid range layer. Each grid represents a
sub-region and records information on the VOCs data for that sub-region. At the same time,
in order to accurately position the regional grid, a coordinate system is established using
geographic coordinates as spatial reference information. The centre point of each grid has
its own latitude and longitude coordinates. (xi, yi) denotes the coordinates of the centroid
of the i-th grid, where i = 1, 2, . . . , n. In the process of regional grid-based management of
VOCs, the number of monitoring points set up in the grid is much smaller than the total
number of grids due to financial and geographical constraints. Let there be a monitoring
point at grid i in the regional grid map with a monitoring value of Zi. The points not
monitored at grid P are called points to be interpolated and their values to be interpolated
are denoted by Zp. In order to predict the trend of regional VOCs concentrations and
to perceive in time and space the dynamics of VOCs occurring in the region, the inverse
distance weighted method was used [41].

Zp =
n

∑
i=1

Zi

d2
i

/ n

∑
i=1

1
d2

i
(1)

where di is the distance between the grid to be interpolated and the i-th grid in its neigh-
bourhood, n is the number of grids to be divided.

2.2.2. VOCs Aggregation Sensing Model Construction

VOCs aggregation perception is the prediction of VOCs aggregation from the perspec-
tive of VOCs aggregation risk and VOCs eventual formation of haze from the perspective
of spatial and temporal characteristics. VOCs aggregation sensing is the perception of
the direction and state of change of VOCs concentrations as a reflection of their future
occurrence in air pollution conditions. In order to reflect the extent of VOCs aggrega-
tion in different grids within the correlation area, predictions of VOCs concentrations in
the relevant regional grids are required. In this paper, we propose a model for sensing
the aggregation of VOCs based on concentration prediction. The model is divided into
three parts: XGBoost feature selection, GCN-MLR concentration prediction and VOCs
aggregation trend sensing. Taking grid k as an example, a variety of relevant features
affecting the variation in VOCs aggregation concentration are first selected, and the known
VOCs feature data series are input into the XGBoost feature selection model for feature
importance ranking and selection. The new feature data series are obtained by selecting the
features that have a greater impact on the variation in VOCs concentrations through the
XGBoost model. Using this new feature data series as input to the GCN prediction model,
the predicted hourly concentrations of VOCs at time t in the future are obtained by MLR
model prediction. The predicted hourly concentrations of VOCs for all grids at time t in
the future can be obtained in the same way. Based on the predicted results, the indicators
of VOCs aggregation potential for each grid at time t are obtained: T is aggregation time,
Weight is the aggregation level weighting. The aggregation time and the aggregation level of
VOCs in different grids at the same time are different, so the maximum aggregation time Tt
and the maximum aggregation level weight Weightt at time t are selected from the m grids.
The number of grids in the region as a whole that exceed the concentration limit at time t
is used to represent the range of VOCs aggregation, then the VOCs aggregation potential
value At for the region as a whole at time t is obtained. Finally, the VOCs aggregation
potential perception results are visualised.

2.3. Perceived Extent of VOCs Aggregation

The risk of VOCs aggregation is defined as the severity of the deviation of VOCs
concentration values from normal thresholds, expressed as an aggregation level. The degree
of aggregation class is defined with reference to the correlation between changes in VOCs
and PM2.5 concentrations during a single episode of heavy pollution [42]. As shown in
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Table 1, the aggregation levels are defined as follows: Level 1 for non-VOCs pollution, Level
2 for light VOCs pollution, Level 3 for moderate VOCs pollution, Level 4 for moderate to
heavy VOCs pollution, Level 5 for heavy VOCs pollution and Level 6 for severe VOCs
pollution. The corresponding rank weights are defined as the degree of aggregation: 0 for
no aggregation, 0.2 for low aggregation, 0.4 for medium aggregation, 0.6 for medium to
high aggregation, 0.8 for high aggregation and 1 for very high aggregation.

Table 1. VOCs aggregation degree.

Number Concentration Aggregation Weights

1 (0, 75) Good 0
2 (75, 125) Mild 0.2
3 (125, 160) Moderate 0.4
4 (160, 190) Heavy 0.6
5 (190, 260) Severe 0.8
6 (260, 500) Extreme 1

The calculation of individual grids and the overall regional VOCs aggregation dynam-
ics considers mainly the threat of haze formation. The higher the VOCs concentration value,
the greater the degree of aggregation and the greater the likelihood of haze formation.
T represents the time of aggregation of VOCs. As VOCs gradually accumulates VOCs will
gradually form a haze. The time at which aggregation occurs in a given grid is calculated
cumulatively from the time the concentration value exceeds 75 µg/m3, defaulting the value
of T to 1. When the predicted VOCs concentration value for a grid exceeds the threshold
and the concentration value for that grid at the next moment is greater than or equal to
the concentration value at the previous moment, then T + 1, otherwise T − 1, until T is
0 representing the end of the aggregation time. The aggregation potential value At

i of grid
i at moment t is then calculated as shown in Equation (2).

At
i = Weightk

t Tk
t (2)

where Weightk
t is the aggregation level weight of grid i at time t. Tk

t is the aggregation
time of the grid k at moment t. When At

i is 0, the grid has a low risk of aggregation or no
aggregation. When At

i is greater than 0 it indicates that VOCS aggregation is occurring
on this grid. A higher value of A indicates a more severe and prolonged accumulation of
VOCs in that grid.

Here, the aggregation potential values are calculated for the city as a whole. For the
calculation of the overall city VOCs aggregation trend at time t, the trend indicator for
the city as a whole is generated from the aggregation trend indicators of individual grids.
Weightt is the VOCs aggregation degree level weight, Tt is the time at which aggregation of
VOCs occurs, Rt is the extent of VOCs aggregation. The total number of grids into which
the study area is divided is indicated by m. The extent of VOCs aggregation Rt is expressed
as the number of grids in the grid area where the mass concentration of VOCs exceeds
75 µg/m3 and the number of grids with an aggregation level rating of mild and above at
time t. Aggregation level weights and aggregation times are taken as maximum values for
all grids at the same time. The worst result was selected for the VOCs aggregation level
calculation, which was used to indicate the most severe level of aggregation that may exist
in the region as a whole. Then, the aggregation potential value for the region as a whole at
moment t is calculated as shown in Equation (3).

At = WeighttTt +
Rt

m
(3)

The degree of aggregation and haze generation can be seen through the aggregation
potential value At. The higher the level of aggregation occurring in the region as a whole,
the greater the likelihood of haze formation. If the threat occurs more frequently or for
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longer periods of time, the more severe the impact on the region as a whole is likely to be.
If the VOCs accumulate over a wider area, the wider the range of possible haze formation,
where an At of 0 indicates a low or no aggregation risk for all grids in the region as a whole.
When At is not 0, it means that the region as a whole contains grids where aggregation
occurs. The value to the right of the decimal point of At indicates the ratio of the number
of grids exceeding the concentration limit to the total number of grids. The magnitude of
the ratio indicates the size of the area where VOCs are concentrated in relation to the total
area of the area. When At is an integer and not 0, it indicates that VOCs are concentrated
over the whole area.

2.4. Data Collection and Pre-Processing
2.4.1. Introduction to the Data

The experimental data used in this paper include VOCs concentration data, air quality
data and meteorological data for the period 1 September 2020–31 December 2020. Data
were obtained via China Meteorological Administration, China National Environmental
Monitoring Centre. The data of the unknown grid was derived from the dataset generated
through collation, calculation and spatial interpolation processing with a spatial resolution
of 10× 10 km. In this paper, Xi’an, Baoji, Tongchuan, Weinan and Xianyang were selected as
the study area, and the study area was divided into fine grids covering the entire regional
geographical area by means of a 10 × 10 km grid division. The grid map is shown in
Figure 1.

Figure 1. Mesh division diagram of Xi’an, Baoji, Tongchuan, Weinan and Xianyang.

2.4.2. Data Collection

The existing monitoring equipment not only monitors the concentration of VOCs
(emissions per unit volume), but also analyses the content of the different components of
VOCs in the area and uploads the monitoring data to a server for storage. For grids with
monitoring points, VOCs monitoring values are obtained through monitoring equipment
and processed in a uniform format. Monitoring data from known monitoring points were
used to calculate the predicted composition of VOCs for grids without monitoring points
by inverse distance weighted. The grid monitoring data was combined with the grid
prediction data to obtain the VOCs pollutant concentration values for the regional grid,
as shown in Table 2.

Table 2. VOCs emission values of the regional grid.

Pollutants
Grid

Grid 1 Grid 2 . . . Grid n

Benzene V1(1) V2(1) . . . Vn(1)
Methylbenzene V1(2) V2(2) . . . Vn(2)

...
...

...
. . .

...
Styrene V1(12) V2(12) . . . Vn(12)
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The main components of VOCs are numbered sequentially in Table 2: benzene as
No. 1, methylbenzene as No. 2, . . . . . . and styrene as No. 12. Pollutants are combined
with cell grid sequence codes to describe the monitored concentration values of different
components in different grids, V1(1) for benzene in grid 1, Vn(12) for styrene in grid n, and in
turn collected to obtain the concentration values of VOCs pollutants in the regional grid.

2.4.3. VOCs Data Characteristics

As precursors, VOCs react with atmospheric pollutants to form photochemical pollu-
tants such as O3 and secondary organic matter aerosols (SOA) in response to meteorological
factors. Changes in meteorological factors can affect changes in the concentration of VOCs
and accompany changes in other pollutants in the atmosphere. Aggregation of regional
VOCs occurs and can be influenced by a variety of surrounding environmental factors.
Therefore, six major pollutants affecting air quality were selected with 13 collated and more
complete meteorological factor statistics as the relevant characteristic variables for VOCs
concentration prediction, as shown in Table 3. For grid k, a total of N hours of data are
obtained, such that Xk = (X1, X2, · · · , XN) denotes the time series dataset of grid k and N
is the total number of hours in the dataset. Where Xk(t) includes the hourly values of the
eigenvariables at moment t and Xk,j(t) is the jth eigenvalue of grid k at moment t.

Table 3. Air pollutant and meteorological factors of VOCs aggregation sensing model.

Category Factors Representation Unit

Atmospheric pollutant factors

VOCs X1 µg/m3

PM2.5 X2 µg/m3

PM10 X3 µg/m3

SO2 X4 µg/m3

NO2 X5 µg/m3

O3 X6 µg/m3

CO X7 µg/m3

Meteorological factors

Daily average
surface temperature X8 0.1 °C

Daily maximum
surface temperature X9 0.1 °C

Daily minimum
surface temperature X10 0.1 °C

Average wind speed X11 km/h
Maximum wind speed X12 km/h
Daily maximum wind
speed wind direction X13 -

Extreme wind speed X14 km/h
Average temperature X15 0.1 °C
Highest temperature X16 0.1 °C
Lowest temperature X17 0.1 °C
Hours of sunshine X18 0.1 h
Average humidity X19 1%
Lowest humidity X20 1%

Average air pressure X21 0.1 hpa
Lowest air pressure X22 0.1 hpa

3. Methods
3.1. Graph Convolutional Neural Network (GCN)

Graph convolutional neural network (GCN) is a kind of convolutional neural network
which is based on graph data. First proposed by Bruna in 2013, the emergence of graph
convolutional neural network provides new ideas for processing non-Euclidean graph
data. GCN can be applied to social network analysis, recommendation systems and
traffic prediction.



Atmosphere 2022, 13, 483 9 of 20

The essential purpose of GCN is to use graph convolution to extract spatial features of
non-Euclidean structured graph data [43]. For the graph G = (V, E, A), the input signal
X and the output signal Y, the processing method f adopted by the graph convolutional
neural network is defined as:

f (X, A) = Y (4)

where V denotes the number of nodes in the graph, and the input features of the n grids
at each time point can be translated into a graph signal as a feature matrix v = {vi}N

i=1.
E denotes the set of edges, A is the adjacency matrix of the graph, A ∈ RN×N . The ele-
ments in matrix A represent the spatial connectivity between nodes vi and vj in graph G.
The forward propagation formula for the convolution of a graph is:

H(l+1) = σ(D̃−
1
2 ÃD̃

− 1
2 H(l)W(l)) (5)

where, Ã = A + I, I is a unit matrix of size N × N; D̃ is the diagonal matrix, D̃ii = ∑j Ãij;
Hl ∈ RN×D denotes the output value of the lth level, where H0 = X; σ(· ) denotes the
activation function; wl denotes the parameter value of the lth layer.

3.2. Multiple Linear Regression

MLR is a traditional prediction method. The training process has a significant speed
advantage over back propagation neural networks and support vector regression (SVR)
algorithms. For highly periodic curves, multiple linear regression makes it easier to obtain
accurate predictions than neural networks and SVR. The effect is similar to that of a neural
network using a linear function as the activation function, but without the tedious iterative
training process and parameter tuning. Therefore, for low frequency load components,
the use of multiple linear regression is a more suitable option compared to other methods.
The strength of the model fit can be diagnosed by judging the normality and independence
of the residuals, while the selection of independent variables in the model is often completed
using stepwise regression and full subset regression [44].

MLR is a traditional mathematical statistical model with matrix expressions and their
expansions as:

Y = X× β + µ (6)
y1
y2
...

yn

 =


1 x11 . . . x1n
1 x21 . . . x2n
...

...
. . .

...
1 xn1 . . . xnn

×


β0
β1
β2
βn

+


µ1
µ2
µ3
µn

 (7)

yi indicates the concentration of VOCs; xij indicates the factors affecting VOCs;
β0(i = 1, 2, . . . , n) denotes regression coefficient; µi denotes random perturbation.

3.3. XGBoost Algorithm

The XGBoost algorithm is a scalable system of tree boosting algorithms based on the
idea of integration and is an integration of many categorical regression trees [45]. XGBoost
has been widely used in Kaggle competitions, finance and many other fields. This algorithm
prevents overfitting of the model by introducing regular terms in the loss function and
other methods and can process large amounts of data faster and more efficiently. The most
basic predictive model can be expressed as Equation (8):

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (8)

where, i =1,2, . . . , n, n is the number of samples, K is the number of trees, and fk is a
function in the set F of trees.
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The loss function consists of an error term L(θ) and a regularisation term Ω(θ). The er-
ror and regularisation terms are denoted, respectively, as shown in Equation (9) and
Equation (10):

L(θ) = l(yi, ŷi) =
n

∑
i=1

(yi − ŷi)
2 (9)

Ω(θ) =
K

∑
K=1

Ω( fk) (10)

where l(yi, ŷi) is the training error of ix of the sample and Ω( fk) is the regular term of the
k-th tree.

A further Taylor expansion of the loss function yields an approximate objective func-
tion as shown in Equation (11):

L(φ) ∼=
n
∑

i=1
[l(yi, ŷ(t−1)

i )gi ft(xi) +
1
2 hi f 2

t (xi)] + Ω(θ) + C

gi = f ′i (xi), hi = f ′′i (xi)
(11)

where ft(xi) denotes the new function added for the t-th time and C is a constant term.
Here, let Gj = ∑

i∈Ij

gi, Hj = ∑
i∈Ij

hi + λ, then we get Equation (12):

ωj∗ = −
−Gj

Hj + λ
(12)

Using the greedy algorithm, a new segmentation is added each time to an existing leaf
and the maximum gain obtained as a result. For a specific segmentation scheme, the gain
obtainable is calculated as in Equation (13).

Gain =
1
2
[

G2
L

H2
L + λ

+
G2

R
H2

R + λ
+

(GL + GR)
2

H2
RH2

L + λ
]− γ (13)

where term 1 represents the gain resulting from splitting the left subtree, term 2 represents
the gain resulting from splitting the right subtree, term 3 represents the gain without
splitting and γ represents the complexity cost due to the addition of new leaves to the split.

3.4. Intelligent Sensing Model for VOCs Aggregation

Based on historical data and area gridding, we propose a hybrid model to predict
future VOCs concentrations at different time spans at hourly scales. The schematic diagram
of our proposed model based on the XGBoost-GCN-MLR structure is shown in Figure 2.
The correlation region is first divided into a grid, and then the features are ranked by
importance using XGBoost. Further, the feature-selected data is fed into the GCN and
spatial features are extracted using graph convolution operations. Extraction of temporal
features of VOCs is completed using MLR. In our framework, the input to MLR is a graph
convolution feature connected to the original signal. Within each spatio-temporal block,
the graph signal and spatial weight matrix are extracted for each time point and the spatial
features are calculated by graph convolution. The graphic signal is then connected to
the MLR. Finally, the output of the MLR was used as a prediction of the expected time
VOCs concentration.

Figure 2. VOCs aggregation intelligent sensing model structure.
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3.5. Evaluation Indicators

In order to verify the performance of the model, the error indicator in this paper uses
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE) and R2 as evaluation indicators [46].

RMSE =

√√√√ 1
N

N

∑
i=1

(ŷi − yi)
2 (14)

MAE =
1
N

N

∑
i=1
|ŷi − yi|2 (15)

MAPE =
100
N

N

∑
i=1
| ŷi − yi

yi
| (16)

R2 = 1−
∑
i
(ŷi − yi)

2

∑
i
(y− yi)

2 (17)

where, ŷi represents the predicted VOCs mass concentration at point i; yi represents the
actual VOCs mass concentration at point i; y is the mean of the modelled VOCs mass
concentration in the corresponding dataset; N is the number of samples in the dataset [47].

4. Results
4.1. Feature Selection

XGBoost obtains the importance of each feature from the tree after gradient boosting.
The importance of a feature indicates the role of this feature in the construction of the lifting
tree [48]. A feature is more important if it is used as a dividing attribute more often in
all trees. The importance of individual decision trees is calculated by the amount of each
attribute partition point improvement performance measure, weighted by the number of
observations for which the node is responsible. Finally, the element importance is averaged
across all decision trees in the model. The final importance of each feature is obtained,
after which the features can be ranked or compared with each other.

In VOCs concentration prediction, feature selection can reduce the complexity of the
prediction model and improve the prediction accuracy. Therefore, the XGBoost model
was used to rank the feature variables involved in VOCs concentration prediction in
terms of feature importance and select the variables that have a greater impact on VOCs
concentration prediction. The step size indicates the length of the historical time series
data on which each prediction relies. The importance analysis of VOCs-related feature
variables was carried out based on XGBoost using Grid 92 as an example. After several
experiments, it was found that the model prediction error was minimised by selecting the
top 10 feature variables among the feature variables with a step size of 3 for each input as
the input feature variables for the GCN-MLR model.

We used the training set part for feature filtering to divide the dataset into a training set
and a validation set. For different classification problems, feature selection can effectively
remove the redundant elements in the feature set, which can have the effect of improving
the generalisation performance of the model. Firstly, the importance ranking of all features
is obtained based on XGBoost. The top-ranked features are then added to the feature subset
(initially the empty set) in turn, and the cross-checked classification accuracy (ACC) of
the feature subset is calculated after each addition. If the ACC improves, the feature is
retained, and if not, the feature is removed, and the optimal feature subset is obtained by
iterating through all features. Cross-validation is used for the training and validation sets
to select the optimal hyperparameters, and the training and validation sets are trained
together to produce the final model. GBtree was chosen as the weak evaluator for this
model. Detailed parameters are set as follows: Num-class was set to 4, n-estimators was set
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to 130, the learning rate was set to 0.3 by default, and max-depth was set to 6 for the best
accuracy of the model.

The different features of the five cities are ranked in importance by the XGBoost
algorithm. The top 10 feature importance values for the five cities are shown in Figure 3,
with the y-axis representing the cities and the x-axis representing the features. The colour
shades of the squares represent the magnitude of feature importance. The importance of the
features differs for different regional VOCs and the filtered features are fed into GCN-MLR

Figure 3. Characteristic variables with the highest importance of characteristics in the five cities.

4.2. VOCs Concentration Prediction Based on XGBoost-GCN-MLR Model

As shown in Figure 4, a comparison of the five cities shows that the XGBoost pre-
diction model and the GCN prediction model are more inaccurate in predicting VOCs
concentrations at the spikes. The MLR model is less effective in predicting VOCs concentra-
tions at the lower true values. CNN, LSTM and MLP are less effective in prediction when
the VOCs concentration values fluctuate widely. The overall predicted value of SVR is
greater than the actual value. The XGBoost-GCN-MLR prediction model in Figure 4 is more
accurate in predicting VOCs at the spikes, thus indicating that the GCN-MLR prediction
model with feature extraction is more accurate in predicting sudden changes in VOCs
concentrations. As can be seen from Figure 4, the predicted hourly VOCs concentrations of
the XGBoost-GCN-MLR model are close to the measured values, and when the measured
hourly VOCs concentrations increase rapidly, the predicted values deviate little from the
measured values. The four models, CNN, LSTM, MLP and SVR, showed large deviations
between the predicted and measured values when the measured values increased or de-
creased sharply. When the measured values of the GCN-MLR model were between 40 and
80 ug/m3, the predicted and measured hourly concentrations of VOCs were more consis-
tent, and when the measured values were greater than 100 µg/m3, the predicted values
were greater than the measured values. The GCN model predicted values were significantly
smaller than the measured values. Comparing the predicted hourly VOCs concentrations
of the nine models with the measured values in five cities, the XGBoost-GCN-MLR model
predicted the best results.

As can be seen from Table 4, compared with the CNN prediction model, the RMSE,
MAE and MAPE of the XGBoost-GCN-MLR prediction model were reduced by an average
of 69.3%, 65.41% and 69.11%, respectively, in the five cities. Compared with the LSTM
prediction model, the RMSE, MAE and MAPE of the XGBoost-GCN-MLR prediction
model were reduced by an average of 69.22%, 68.4% and 72.17%, respectively, in the five
cities. Compared with the SVR prediction model, the RMSE, MAE and MAPE of the
XGBoost-GCN-MLR prediction model were reduced by an average of 66.31%, 60.74%
and 59.68%, respectively, in the five cities. Compared to the GCN prediction model,
the RMSE, MAE, MAPE and SMAPE of the XGBoost-GCN-MLR prediction model were
reduced by an average of 59.96%, 54.55%, 58.55% and 56.54%, respectively, in the five cities.
Compared with the XGBoost prediction model, the RMSE, MAE, MAPE and SMAPE of
the XGBoost-GCN-MLR prediction model were reduced by 52.79%, 54.38%, 77.96% and
66.51% on average in the five cities, respectively. In contrast to the MLR prediction model,
the RMSE, MAE, MAPE and SMAPE of the XGBoost-GCN-MLR prediction model were
reduced by an average of 43.69%, 36.37%, 41.37% and 45.12%, respectively, in the five cities.
Compared to the GCN-MLR prediction model, the RMSE, MAE, MAPE and SMAPE of
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the XGBoost-GCN-MLR prediction model were reduced by an average of 27.03%, 19.02%,
36.63% and 30.69%, respectively, in the five cities. Compared with the other four models,
the XGBoost-GCN-MLR-based VOCs concentration prediction model improved in terms of
prediction accuracy. By calculating the R2, RMSE, MAE and MAPE of the measured and
predicted values, the R2 of the nine machine learning models ranged from 0.6825 to 0.8991,
and the results were quite satisfactory. Among them, the XGBoost-GCN-MLR model and
the GCN-MLR model both have R2 greater than 0.87, while the rest of the models have
values below 0.87. The RMSE of the models ranged from 11.13 to 26.88 in the five cities.
The XGBoost-GCN-MLR model has the lowest RMSE value in all five cities, while the
CNN model has the highest RMSE value of 26.88 in Xi’an. Comparing the MAE values,
the XGBoost-GCN-MLR model has the lowest MAE value of 2.9516 in Baoji, followed by
the GCN-MLR model with 3.4183 and the maximum MAE value of 19.6508 for the CNN
model. For the MAPE metric, the XGBoost-GCN-MLR model also had the lowest value
of the nine models, with an average of 0.09662 across the five cities. The average MAPE
of the remaining models was greater than 0.13 in all five cities, while the MAPE of the
CNN and LSTM models was greater than 0.3. When comparing the nine machine learning
models, the XGBoost-GCN-MLR model has the best prediction performance followed by
the GCN-MLR model, while the CNN and LSTM models have poor prediction ability
among the nine models.

Figure 4. Cont.
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Figure 4. Fit curves of predicted and true values of nine models in five cities.

The XGBoost-GCN-MLR prediction model outperforms the GCN, XGBoost and MLR
prediction models, and the predicted values fit the true value curve better. The GCN-MLR
model using the GCN algorithm gives better predictions than the single deep learning
model MLR model, which in turn is more suitable than the three models CNN, MLP and
SVR for the prediction of VOCs mass concentration data in this paper. The XGBoost-
GCN-MLR prediction model uses the XGBoost model to select the feature variables in a
meritocratic manner, optimising the number of model input feature variables and reducing
the complexity of model construction. The proposed model fully exploits the relationship
between time series data and learns the long-term dependence in historical time series data,
achieving better prediction results.

4.3. DM Test

The main objective of the DM test is to test whether there is a significant difference in
the predictive power between the baseline model and the model under test. The original
hypothesis H0 of the DM test is that the baseline model outperforms the prediction accuracy
of the tested model. The alternative hypothesis H1 of the DM test is that the prediction
accuracy of the tested model outperforms the prediction accuracy of the baseline model.
The DM tests are shown in Table 5. Since the p-values of all eight prediction models are
less than 0.05, the results of the DM test indicate that the XGBoost-GCN-MLR method
proposed in this paper can make accurate predictions of directional changes in the original
data when compared to all eight models. The horizontal prediction ability of the XGBoost-
GCN-MLR method was significantly better than the prediction ability of the remaining
eight comparison models, and the DM test results show that XGBoost-GCN-MLR can
effectively improve the prediction accuracy of the hourly VOCs concentrations.
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Table 4. Accuracy comparison of nine models in five cities.

City Evaluation
Index CNN LSTM MLP SVR GCN XGBoost MLR GCN-MLR XGBoost-

GCN-MLR

Baoji

RMSE 8.7331 8.9924 8.8620 13.0087 8.377 5.252 5.9861 4.4833 3.2436
MAE 6.2389 6.4813 6.0716 10.3413 6.0049 4.2827 3.9951 3.4183 2.9516

MAPE 0.2610 0.3291 0.2122 0.8211 0.2201 0.2932 0.1025 0.1364 0.0685
R2 0.7943 0.7879 0.7912 0.7655 0.8028 0.8618 0.8503 0.8721 0.8979

Tongchuan

RMSE 17.0812 11.7999 12.0799 13.0087 11.6993 10.0232 9.7749 6.5573 5.4892
MAE 11.2308 9.6179 9.1894 10.3413 8.4598 8.8154 6.2045 4.6676 4.1168

MAPE 0.2100 0.2209 0.2013 0.8211 0.204 0.4016 0.1555 0.1305 0.1019
R2 0.7719 0.8389 0.8359 0.7955 0.8399 0.8559 0.858 0.8811 0.8947

Weinan

RMSE 12.7652 22.3230 12.2303 17.8997 10.2787 12.2824 7.0161 6.3676 5.2561
MAE 8.4136 16.1408 7.8273 13.3125 6.7729 10.1576 5.9529 4.3599 3.9111

MAPE 0.2811 0.3963 0.1810 0.7880 0.1789 0.4881 0.3732 0.1276 0.1192
R2 0.8520 0.7532 0.8559 0.8056 0.8689 0.8556 0.8855 0.8881 0.8985

Xi’an

RMSE 26.8876 23.4873 23.9599 33.0032 11.6993 10.1385 10.0232 6.5573 3.4892
MAE 19.6508 17.7037 17.9471 26.3624 8.4598 8.2763 8.8154 4.6676 3.1168

MAPE 0.4780 0.4046 0.5651 0.7818 0.2040 0.1688 0.4016 0.1019 0.1305
R2 0.6825 0.7577 0.7479 0.5217 0.8399 0.8511 0.8559 0.8811 0.8947

Xianyang

RMSE 21.997 20.085 22.9112 29.9232 19.6825 15.6156 10.7567 9.0542 6.6113
MAE 16.301 15.617 12.2295 23.971 12.476 11.974 5.6525 5.8845 4.3458

MAPE 0.6324 0.6369 0.2118 1.0896 0.348 0.4199 0.0897 0.1984 0.063
R2 0.7311 0.7592 0.8168 0.6875 0.8648 0.8149 0.8596 0.8714 0.8991

Table 5. DM test.

Compared Algorithm DM P(DM)

CNN −7.3356 1.6635 × 10−6

LSTM −8.4718 2.4563 × 10−5

MLP −7.3629 2.1878 × 10−5

SVR −7.5231 3.7718 × 10−4

GCN −6.6567 5.3325 × 10−4

XGBoost −6.6209 2.354 × 10−4

MLR −3.7377 3.265 × 10−4

GCN-MLR −3.6826 2.5689 × 10−3

From Table 5, the DM test results show that the predictive power of the other eight
algorithms is significantly different compared to the XGBoost-GCN-MLR model. The as-
sociated p-value for each DM statistic was less than α at the α = 0.05 level. Confidence
and significance results indicated that the XGBoost-GCN-MLR model had better predictive
power than similar algorithms.

4.4. Robustness Test

The stability of a predictive model has an important impact on the scope of its ap-
plication. Models with high stability are better able to withstand external disturbances
and ensure the reliability of prediction results. To assess the robustness of the model to
outliers, the test dataset was retested after perturbation. Random Gaussian noise of 5% and
10% was added to the model input parameters. The XGBoost-ETPGMLP maintained good
prediction results under 5% noise perturbation. As shown in Table 6, compared with the
other eight models, the XGBoost-GCN-MLR error increased by only 3.7%, while the error
increased by 8.4% under 10% noise perturbation.
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Table 6. Comparison of mean absolute error of VOCs in Xi’an.

Data
Error Values/(ug/m3)

CNN LSTM MLP SVR GCN XGBoost MLR GCN-
MLR

XGBoost-
GCN-MLR

Normal 19.6508 17.7037 17.9471 26.3624 8.4598 8.2763 8.8154 4.6676 3.1168

5%Noise 22.5002
(+14.5%)

20.4832
(+15.7%)

20.5674
(+14.6%)

30.0795
(+14.1%)

9.6188
(+13.7%)

9.3274
(+12.7%)

9.8115
(+11.3%)

5.0550
(+8.3%)

3.2321
(+3.7%)

10%Noise 28.3727
(+26.1%)

25.6654
(+25.3%)

25.6270
(+24.6%)

37.0579
(+23.2%)

11.5618
(+20.2%)

11.3421
(+21.6%)

11.6561
(+18.8%)

5.9093
(+16.9%)

3.5036
(+8.4%)

4.5. VOCs Aggregation Perception Analysis

Based on the predicted VOCs concentration results, the aggregation potential value
At

i of each grid is calculated by Equation (2). The magnitude of the aggregation potential
value of each grid is represented by different shades of colour, the darker the colour
the larger the aggregation potential value, the lightest colour grid has an aggregation
potential value of 0. The overall VOCs aggregation trend in the region is shown in Figure 5.
The distribution of the VOCs aggregation pattern for each grid in the study area at 14:00
(t = 134) on 8 December 2020 was obtained by ArcGIS as shown in Figure 6. The ratio
of the number of grids exceeding the concentration limit to the total number of grids is
calculated by using Equation (3) to calculate the VOCs aggregation potential of the region
as a whole. The results of the At part of Xi’an are shown in Table 7. Figure 5 shows that the
concentration of VOCs in the region as a whole is low and the risk of aggregation is low or
non-existent, and no VOCs aggregation warning is required. From Figure 5 and Table 7,
it can be seen that at the 94th hour (22:00 on 6 December 2020), the VOCs concentration
started to increase significantly and the trend value was 2.6. Indicating that the overall
regional VOCs concentration continued to increase and the VOCs aggregation occurred.

Figure 5. VOCs trend of the situation value.

From Figure 5, Figure 6 and Table 7, it can be seen that at hour 134 (14:00 on
8 December 2020), on the regional grid VOCs aggregation potential distribution map,
the grid with the largest aggregation potential dropped to 6.1686 at this time. This indicates
that a grid of VOCs still exists in the region as a whole with 87.41% of the total area of the
region where VOCs accumulation occurs, which is consistent with the haze generation
in the study area during this time period. The results of the calculations are visualised
in Figures 5 and 6 to provide a visual understanding of the distribution of VOCs at a res-
olution of 10 × 10 km in terms of aggregation dynamics and the direction of the overall
regional aggregation dynamics.
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Figure 6. Distribution of the VOCs aggregation pattern in the regional grid at 14:00 (t = 134) on
8 December 2020.

Table 7. Aggregate situation values.

t Weight T At t Weight T At t Weight T At

1 0 0 0 50 0.2 1 0.21532 102 0.4 18 7.4
2 0.2 1 0.21532 54 0.2 1 0.21532 106 0.4 18 7.4
6 0.2 1 0.34132 58 0.2 3 0.64596 110 0.4 14 5.8

10 0 0 0 62 0.2 2 0.46128 114 0.6 18 11
14 0 0 0 66 0 0 0 118 0.6 18 11
18 0 0 0 70 0 0 0 122 0.6 20 12.2
22 0.2 2 0.41532 74 0.2 4 0.92256 126 0.6 20 12.2
26 0.2 2 0.43064 78 0.2 3 0.72256 130 0.4 18 7.4
30 0.2 1 0.23064 82 0.2 6 1.29192 134 0.4 15 6.1686
34 0.2 4 0.83064 86 0.2 4 0.96852 138 0 0 0
38 0.2 1 0.21532 90 0.2 8 1.78382 142 1 1 0.2766
42 0 0 0 94 0.2 12 2.6 146 1 2 0.44596
46 0 0 0 98 0.4 16 6.6 150 1 2 0.41532

5. Conclusions

This paper presented a method for situational awareness of VOCs aggregation based
on VOCs concentration prediction. In order to improve the construction efficiency and
prediction accuracy of the prediction model, the XGBoost model was used to select the
importance of VOCs-related features. A VOCs concentration prediction model based
on XGBoost-GCN-MLR was constructed, and VOCs aggregation trend indicators were
generated for VOCs aggregation trend perception analysis. The results showed that the
proposed XGBoost-GCN-MLR-based VOCs prediction model handled the VOCs concentra-
tion time series with higher prediction accuracy than other models, and the RMSE, MAE
and MAPE were reduced by 57.81%, 54.17% and 62.98%, respectively. VOCs aggregation
situational awareness provides managers with a concise and intuitive view of VOCs ag-
gregation in the form of a regional grid situational distribution and an overall regional
situational trend map. Finally, by combining the regional grid number and coordinate
information, we can precisely locate the areas where the future VOCs aggregation is in a
more serious situation. The proposed model can provide decision support to managers
for early warning information expression, which is important for VOCs management and
environmental protection.

The recommendations made in this paper are as follows:

(1) Grid-based management of associated regions for joint prevention and control. Grid
management is a key step in the refinement of regional management and the basis
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for pollution prevention and control. Information from different grids can be shared,
and pollution from each grid can be monitored and summarised in real time.

(2) Use the degree of influence of VOCs pollution between associated areas to apply
preventive and control measures to the relevant areas. Monitor the pollution concen-
tration in each sub-regional grid and propose relevant guidelines to reduce pollution
and harm to the environment according to local conditions. VOCs emissions from
different grid areas will be aggregated, with key monitoring of heavily polluted areas
and timely release of grid and source information for heavily polluted areas. VOCs
are also controlled at the source, regulated in the process and treated at the end of
the process.

(3) Prediction and early warning of VOCs pollution. The sources of VOCs pollution are
identified through immediate prediction and early warning to further strengthen the
management of pollution control. At the same time, the functions and tasks of each
organisation’s personnel are assigned according to the degree of VOCs aggregation in
the grid, and the relevant personnel are involved in timely follow-up and feedback.
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