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Abstract: This study identified the meteorological parameters that influence PM2.5 concentrations
in the Greater Cincinnati area by employing principal components analysis and multi-variable
regression. Meteorological and PM2.5 data were collected over several years to derive statistical
relationships about the seasonal variability of meteorological parameters and quantify their influence
on PM2.5. We studied the effect of meteorological parameters by seasons and by k-means clustering.
The results show that outdoor temperature (OT), planetary boundary height (HPBL) and visibility
(VIS) have the strongest effect on PM2.5. The distribution of PM2.5 concentrations in each cluster and
season was evaluated using the Kolmogorov–Smirnov test with data fitting using the lognormal
and gamma distributions. To our observation, we found the PM2.5 concentration fits the gamma
distribution marginally better than the lognormal distribution.

Keywords: PM2.5; statistical analysis; meteorological parameters; air quality

1. Introduction

Fine particulate matter PM2.5, with an aerodynamic diameter less than 2.5 microme-
ters, has been associated with cardiovascular disease leading to mortality [1–4]. Inhaling
PM2.5 has been associated with asthma, chronic bronchitis, irregular heartbeat, heart attack,
premature death, lung disorder [2,5] and cancer [6,7]. PM2.5 is a heterogeneous mixture
of various chemical species with a variable size distribution and mixing states, which
are influenced by emissions, atmospheric chemistry, and meteorology [8,9]. PM2.5 emis-
sions combined with adverse meteorological conditions can significantly deteriorate air
quality [10–13], affect visibility [4,14–18], and impact health. It is directly emitted in the
atmosphere from various natural and anthropogenic sources, including biomass burning,
combustion of fossil fuels, and dust, and it is formed through secondary formation from
emitted precursor gases.

It has been suggested that central monitors cannot capture the spatial variability that
exists at the urban scale and can thereby introduce error in health models. In one such
study, Goldman et al. (2010) found that the use of the data from a central monitoring site in
Atlanta, GA, introduced errors while estimating exposures; they further suggested that sev-
eral other studies have underestimated exposures by not accounting for spatial variability.
In one of their health studies, Wilson et al. (2007) showed that a variation in cardiovascular
mortality rates is associated with PM2.5, with respect to the geographical distance from
the central monitoring sites. Spatiotemporal variation has, therefore, become a matter of
concern for environmental scientists, health researchers, public health officials, and the
public [19,20]. These studies were conducted on 24-h integrated PM2.5 over several years
to investigate both seasonal variation and yearly trends and suggest that the variability is
attributable to the meteorology and topography of the study area as well as local conditions
such as vehicular emissions, traffic flow patterns, and emissions from residential sources
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as well as local businesses such as restaurants, etc. In another study, conducted in Birm-
ingham, Alabama, Balanchard et al. (2014) work showed that regional-scale air pollution
and local emissions from mobile sources, industrial facilities, and residential communities
and complex dispersion patterns of PM2.5 resulted in spatiotemporal variation. Addition-
ally, other factors such as measurement errors and differences in the behavior of PM2.5
constituents contributed to spatiotemporal variation [21]. In addition, PM2.5 concentrations
are closely related to temperature, wind speed, and precipitation [22–24]. For example,
warmer temperatures and changes in precipitation can impact wildfire emissions in North
America, and an increase in temperature can lead to higher biogenic emissions, which
are important precursor of secondary organic aerosols (SOAs) [5]. Higher temperature
increases sulfate concentrations and SOAs due to increased SO2 and VOC oxidation [25],
a decrease in semivolatile aerosols due to evaporation [25–27], and an increase in the
emissions of biogenic VOCs from vegetation. The production of the hydroxyl (OH) radical
and hydrogen peroxide (H2O2) could be enhanced by higher relative humidity (RH) [26].
Additionally, the changes in wind speed and mixing height have a strong influence on
PM2.5 [28]. Meteorological parameters are strongly correlated, resulting in strong interrela-
tionships. For example, boundary layer height is dependent on surface temperature or the
relationship between surface temperature and radiation makes it difficult to analyze the
effects of individual parameters. The nature of these effects can vary for different air sheds
and across seasons and complicate the understanding of local PM2.5 concentrations due to
individual meteorological parameters.

Although statistical models do not account for atmospheric processes, they are an
important tool to quantify the pollutant sensitivities of individual meteorological param-
eters [29,30]. One statistical method, principal component analysis (PCA), can be used
to separate interrelationships into statistically independent basic components [9]. PCA
results can be used in regression analysis to address collinearity and in exploring the
relationship among the independent variables, a method known as principal component
regression (PCR). For example, early morning (AM) and previous evening (PM) forecasts
were evaluated using PCR to quantify the sensitivity of PM2.5 to prescribed burning activity
and meteorological variables [31]. Sabah et al. (2005) used multiple linear regression and
PCR methods to predict the concentration of ozone in the atmosphere [9]. Schlink et al.
(2003) proposed a computational method combining principal component analysis (PCA)
and artificial neural networks ANN) to compare air quality and meteorological data and
to forecast the concentrations of environmental parameters of interest (air pollutants) in
urban areas in Finland and Greece [30]. In their work multivariate statistical methods were
employed to predict the annual and seasonal indoor concentrations of PM10 and PM2.5.
Leung et al. (2018) studied the relationships of PM2.5 with local meteorology and synoptic
weather patterns in different regions of China using a combination of multivariate statistical
methods [26].

The present work quantifies the spatiotemporal variation of daily (24 h average)
PM2.5 in the greater Cincinnati metropolitan area and PM2.5 sensitivities to meteorological
parameters. Five years of PM2.5 and meteorological data were collected from the EPA CSN
network and the North American Regional Reanalysis (NARR), respectively. The study
area includes seven sites (Amanda, Batavia, Colerain, Lebanon, Sycamore, Taft, and Yankee)
that measure PM2.5 using continuous monitors (Figure 1). A unique contribution from this
work is that meteorology can be grouped by k-means clustering as opposed to seasons. We
also evaluated the applicability to fit PM2.5 using the gamma distribution [32,33]. Principal
components analysis (PCA) was used to determine the most important meteorological
parameters for use in multivariate regression, which was used to quantify PM2.5 sensitivities
to the local meteorology in Cincinnati. This work lays the foundation to develop PM2.5
forecast models using the techniques developed in this work.
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Figure 1. Map of monitoring sites in Cincinnati. (Source: Google maps)

2. Materials and Methods
2.1. Meteorological Data

Daily 24-h mean meteorological data were obtained using the North American Re-
gional Reanalysis (NARR). The data consists of the following meteorological parameters
for five years from August 2011 to December 2015: wind direction (WD), wind speed (WS),
solar radiation (SR), relative humidity (RH), outdoor temperature (OT, K), visibility (VIS,
km), planetary boundary height (HPBL, m), precipitation rate (PRATE, kg/m2/s), accu-
mulated total precipitation (APCP, kg/m2), barometric pressure (BP, Pa), UWND.10 m’:
Horizontal-wind speed at 10 m (m/s), VWND.10 m’: Vertical-wind at 10 m (m/s). The
NARR dataset covers the entire study area, and as a result all sites in the study use the same
meteorological data.

2.2. Continuous Particulate Matter Data Completeness

Hourly PM2.5 data from August 2011 to December 2015 (1797 days) were obtained from
the Southwest Ohio Air Quality Agency (SWOAQA) and processed to remove negative
and unreported values for all seven monitoring sites. In addition, days with less than 75%
hourly data were considered incomplete and also removed. The processed data resulted in
958 days for which data were available for all seven sites.

2.3. Study Sites

The monitoring network is spread across five counties: Hamilton, Butler, Clermont,
Clinton, and Warren, which constitute the five-county Cincinnati metropolitan area (Figure 1).
The monitoring network consists of 18 sites, out of which seven operate three types of
continuous PM2.5 samplers (Table 1). These sites are operated and maintained by the
SWOAQA and follow monitoring protocols established by the USEPA. The instruments
used are the Tapered Element Oscillating Microbalance (TEOM), the Met-One Beta Attenu-
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ation Mass Monitor (BAM), and the Synchronized Hybrid Ambient Real Time Particulate
(SHARP) monitors, which are all accepted as federal equivalent methods (FEMs). The
TEOM is very sensitive to the ambient relative humidity, which causes a change in its
oscillation frequency and can lead to both positive and negative artifacts [34]. Batavia
uses a TEOM to collect concentrations and is more susceptible to error than instruments
using beta-attenuation. BAM works on the principle of beta ray attenuation to measure
airborne particulate concentration, and therefore the instrumental error is minimal. SHARP
combines the speed of light scattering nephelometry with the accuracy of beta attenuation
technology for continuous PM10 and PM2.5 measurements.

Table 1. Details of monitoring sites.

Site Address Latitude Longitude Sampler Type Locality

Amanda 1300 Oxford Rd Middletown 39.478849 −84.407675 SHARP Residential
Batavia 2400 Clermont Dr Batavia 39.0828 −84.1441 TEOM Residential

Colerain 6950 Ripple Rd Cleves, Colerain 39.21487 −84.366192 MetONE BAM Residential
Lebanon 416 Southeast St Lebanon 39.4293 −84.2006 MetONE BAM Residential
Sycamore 11,590 Grooms Rd Sycamore 39.2787 −84.366192 SHARP Residential

Taft 250 Taft Rd Cincinnati 39.123841 −84.504011 SHARP Residential
Yankee 3350 Yankee Rd Middletown 39.472436 −84.394952 SHARP Industrial

2.4. Clustering Analysis- K-Means Clustering

Clustering is a technique used to separate data into similar groups. Clustering methods
vary depending on the distance measure, cluster evaluation criteria, and data type (real
or binary data). Commonly used clustering principles are centroid-based, hierarchical,
density-based, and graph-based clustering. A variety of distance measures, such as variants
of Euclidean distance, Manhattan distance, Mahalanobis distance, cosine distance, and
correlation measure can be used in determining the similarity of the data samples. Different
cluster evaluation metrics include sum of squared error (SSE), cohesion, and entropy.

In this work, K-means, a widely used center-based clustering algorithm, was chosen.
Euclidean distance and SSE were used to determine the similarity of data and evaluate
clusters, respectively. K-means determines the members of a cluster such that the members
have minimum Euclidean distances from the cluster center, relative to the other cluster
centers. A heuristic-based method known as the elbow method was used to determine the
optimal number of clusters [35,36]. K-means clustering was applied to the NARR data set
using the “kmeans ()” function in Matlab (Mathworks, 2019).

2.5. Distribution Fitting: Lognormal vs. Gamma

Air pollution data are assumed to be lognormally distributed. However, it has been
suggested that uncertainties of source impacts quantified by source apportionment models
follow an inverse gamma distribution [37]. Here, we evaluated the use of fitting PM2.5
data using the gamma distribution, given that the gamma, like the lognormal, can be used
to fit data with right tailed distributions. The Kolmogorov–Smirnov (KS) test is one such
method that compares the maximum separation between the experimental cumulative
frequency (Sn(x)) and the CDF of an assumed theoretical distribution (FX(x)). It quantifies
a critical value to determine how well the underlying data distribution matches the target
distribution [38]. The limitation of the KS test is that the determination of the critical value
is distribution-free. The null hypothesis is satisfied if Dn < Dα

n where Dα
n is the critical

value at the 5% significance level.

Dn = max
x
|FX(x)− Sn(x)| (1)

In this work, PM2.5 data for the entire data set for four clusters and seasons were
fitted to lognormal and gamma distributions, and the KS-Test was applied to check the
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satisfiability of the null hypothesis. The null hypothesis is satisfied if the computed KS
statistic is less than the critical value.

2.6. Principal Component Analysis

PCA is a method that is often used to reduce the dimensionality of large datasets,
by transforming a multidimensional data matrix into orthogonal components. The first
step in PCA is to standardize the data matrix so that all variables have a mean of 0 and
standard deviation of 1. Singular value decomposition is applied next to determine the
principal components that are the eigenvectors of the dispersion matrix. The eigenvectors
are orthonormal, and the resulting Z scores are orthogonal, which has the net effect of
removing collinearity within the data matrix [31].

2.7. Multiple Linear Regression

Multiple linear regression is used to model a relationship between two or more
predictor variables and a response variable by fitting a linear equation to the observed data.
In this work, meteorological parameters used to predict PM2.5 (response variable) were
determined using PCA results.

3. Results and Discussions
3.1. Spatial Variability

The Pearson’s correlation coefficient r for all possible pairs (21 pairs) of the given sites
ranges between 0.62 and 0.88 (Table 2). The slope for the linear correlation can be found in
the SI (Table S27). The lower correlations between Batavia and other sites are most likely
due to the use of TEOM. However, even at the highly correlated sites (r = 0.88, r2 = 0.77),
23% of PM2.5 variability could plausibly be attributed to local sources of air pollution.

Table 2. Correlation of PM2.5 across the monitoring sites.

Sites Taft Amanda Batavia Colerain Lebanon Sycamore Yankee

Taft 0.84 0.72 0.88 0.87 0.88 0.82
Amanda 0.62 0.83 0.79 0.87 0.88
Batavia 0.65 0.68 0.67 0.63
Colerain 0.85 0.82 0.79
Lebanon 0.82 0.75
Sycamore 0.84

3.2. PM2.5 Trends

A boxplot of daily averages of PM2.5 is shown in Figure 2. The yearly average PM2.5
concentrations for different sites are detailed in Table 3, and the yearly variations are
shown in Figure 3. The yearly average PM2.5 concentrations across years range between
9.08 µg/m3 to 14.87 µg/m3, and the overall mean is 11.73 µg/m3. In 2011, Yankee had
the highest PM2.5 among all the sites. However, all the sites in 2011 had a lower PM2.5
concentrations when compared to 2012, 2013, and 2014. In 2012, the average PM2.5 con-
centration was highest at Taft, Lebanon, and Yankee when compared to the other sites
(Table 3). In 2013 and 2014, the highest PM2.5 concentration was observed in Lebanon and
Colerain, respectively. The average concentrations across sites was highest in 2012, and the
average across years was seen to be highest at Yankee. All sites showed a reduction in PM2.5
concentrations from 2013 through 2015. PM2.5 concentrations were lowest in 2015 for all
the sites from the implementation of national and local control policies and more stringent
PM2.5 NAAQS standards. National policies include controls for mobile sources (TIER
2 emissions standards, US EPA Diesel Rule, US EPA Clean Air Non-road Air Non-Road
Diesel Rule, and the continued use of low sulfur gasoline and diesel) and stationary sources
(Clean Air Interstate Rule for control of SO2 and NOx emissions). Local controls include
the implementation of policies from the Ohio State Implementation Plan, Diesel Emission
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Reduction Grant program, as well as permitting, enforcement, and compliance from the
Southwest Ohio Air Quality Agency [39].

Version March 11, 2022 submitted to Journal Not Specified 6 of 19

Figure 2. Boxplot of daily averages of PM2.5.The red line represents the median, the edges of the box
are 25th and 75th percentiles and the whiskers are the extreme data points. The edges of the dashed
line represent the extremes which are not considered to be outliers.
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Table 3. Yearly averages of PM2.5.

Sites Taft Amanda Batavia Colerain Lebanon Sycamore Yankee Avg

2011 10.78 ± 5.74 10.76 ± 6.53 9.85 ± 6.07 10.23 ± 5.99 11.33 ± 5.51 11.50 ± 7.21 12.55 ± 6.87 11
2012 13.46 ± 4.34 11.19 ± 4.42 10.70 ± 3.78 12.96 ± 4.23 13.03 ± 4.25 12.34 ± 4.48 13.73 ± 5.02 12.49
2013 11.79 ± 5.11 10.36 ± 4.35 10.98 ± 4.99 13.76 ± 5.11 14.87 ± 4.80 11.60 ± 5.23 12.97 ± 6.08 12.33
2014 12.12 ± 4.38 10.40 ± 4.26 12.17 ± 4.70 14.31 ± 4.66 13.41 ± 4.46 10.51 ± 4.42 13.36 ± 5.104 12.33
2015 9.57 ± 5.48 9.08 ± 4.46 10.36 ± 4.59 12.02 ± 6.18 9.53 ± 5.14 10.76 ± 5.09 12.27 ± 5.45 10.51

The average PM2.5 concentration across all the sites is highest in summer, followed by
spring, winter, and fall (Figure 4, Table 4). The seasonal average of meteorological parame-
ters are listed in Table 5. Among all the sites, Yankee reports the highest PM2.5 (15.35 µg/m3)
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in summer. However, the PM2.5 concentrations in Colerain in spring (13.93 µg/m3) and win-
ter (13.84 µg/m3) are higher than summer. Likewise, the PM2.5 concentration in Lebanon
in spring is higher than summer (Table 4). Spring experiences warmer days than winter,
and both spring and winter experience cooler nights, which is favorable for inversions. The
average PM2.5 in fall is relatively low compared to other seasons for all the sites.Version March 11, 2022 submitted to Journal Not Specified 7 of 19
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Sites Winter Spring Summer Fall
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Amanda 10.07±4.81 10.84±4.89 11.20±4.53 9.57±5.08
Batavia 10.33±4.67 10.73±4.18 13.45±5.074 9.74±4.82
Colerain 13.84±5.83 13.93±5.22 13.66±5.57 11.10±5.16
Lebanon 13.20±5.74 13.98±4.98 13.53±5.00 10.82±5.05
Sycamore 10.98±4.77 11.60±5.02 12.72±5.40 10.13±5.68

Yankee 11.99±5.03 13.40±5.51 15.35±5.80 11.884±5.96
MeanPM2.5 11.74 12.41 13.32 10.49

Figure 4. Seasonal variation of PM2.5 at the monitoring sites. Error bars represent 1 standard deviation
of variability in the time series.

Table 4. Seasonal averages of PM2.5.

Sites Winter Spring Summer Fall

Taft 11.75 ± 5.14 11.89 ± 4.86 13.36 ± 5.33 10.20 ± 5.23
Amanda 10.07 ± 4.81 10.84 ± 4.89 11.20 ± 4.53 9.57 ± 5.08
Batavia 10.33 ± 4.67 10.73 ± 4.18 13.45 ± 5.074 9.74 ± 4.82

Colerain 13.84 ± 5.83 13.93 ± 5.22 13.66 ± 5.57 11.10 ± 5.16
Lebanon 13.20 ± 5.74 13.98 ± 4.98 13.53 ± 5.00 10.82 ± 5.05
Sycamore 10.98 ± 4.77 11.60 ± 5.02 12.72 ± 5.40 10.13 ± 5.68

Yankee 11.99 ± 5.03 13.40 ± 5.51 15.35 ± 5.80 11.884 ± 5.96
MeanPM2.5 11.74 12.41 13.32 10.49

Table 5. Seasonal average of meteorological parameters.

Meteorology Winter Spring Summer Fall

WD 204.01 207.49 207.95 208.22
WS 1.49 1.47 1.05 1.33
RH 63.77 57.85 63.42 63.72
SR 60.78 143.02 194.20 98.96

BP (Pa) 736.62 737.13 737.09 737.74
OT (K) 274.81 285.50 297.93 286.51

APCP (kg/m2) 2.56 3.47 3.51 3.34
HPBL (m) 767.54 886.63 878.33 812.72

PRATE (kg/m2/s) 0.000027 0.000038 0.000041 0.000037
UWND.10 m (m/s) 1.73 0.84 0.93 0.99

VIS 16,363.58 17,549.05 18,751.20 18,027.20
VWND.10 m (m/s) 0.85 0.79 0.87 0.93

3.3. Clustering Analysis at the Study Sites

The cluster variation across all the seven sites are shown in Figure 5. Clustering using
the elbow method resulted in four clusters. Of the total of 958 days, the majority of days
were in C2 (528 days), followed by C1 (195 days), C4 (147 days), and C3 (88 days). All
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four clusters have days in all seasons (Table 6). C1 is comprised of 61 days in winter, 28 in
spring, 58 in summer, and 48 in fall. C1 is characterized by moderate SR (110.21) and low
PRATE (0.00004), which represents warmer and drier days, often seen throughout the year
(Table 7 and Figure 6).
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Table 6. Mapping clusters onto seasons.

Cluster Season Days Total

Winter 61
C1 Spring 28 195

(warmer and drier days) Summer 58
Fall 48

Winter 107
C2 Spring 115 528

(warmer and drier days) Summer 146
Fall 160

Winter 50
C3 Spring 20 88

(cooler and wetter days) Summer 2
Fall 16

Winter 48
C4 Spring 33 147

(cooler and wetter days) Summer 25
Fall 41

C2 has 146 days in summer, 160 days in fall, 115 spring days, and 107 days in winter.
C2 is characterized by high solar radiation (148.39), low APCP (0.30 µkg/m2), and low
PRATE (0.0000037 µkg/m2) (Table 7) and is consistent with the conditions usually observed
in summer and the beginning of fall and represents warmer and drier days. C3 has 2 days
in summer, 50 days in winter, 20 days in spring, and 16 days in fall. C3 is driven by low VIS
(9043), low SR (43.58), high APCP (12.22 µkg/m2), and high PRATE (0.000135 µkg/m2/s),
which represents cool and wetter days (Figure 6). C4 has 48 days in winter, followed
by 41 days in fall, 33 days in spring, and 25 days in summer and also represents cooler
days. C4 is driven by low SR (79.54), low VIS (14,526.51), and moderately high APCP and
PRATE (Figure 5). The wind directions predominantly come from the SSW direction for all
four clusters.
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Clustering allows viewing similar weather conditions from a multidimensional per-
spective, rather than temperature alone, the most defining feature of seasonality. The
coefficient of variation (COV) of PM2.5 (the ratio of standard deviation for each cluster and
season to the mean of each cluster and season, respectively) ranges from 0.39 to 0.50 across
clusters and from 0.37 to 0.53 across seasons. The variation within clusters is similar to the
variation within seasons (Table 8) suggesting that clustering could potentially be a useful
way to bin PM2.5 data based on meteorology. Given this similarity in (COV), clustering
could possibly offer a new way to develop forecast models.

Table 7. PM2.5 Cluster averages at the study sites.

Sites C1 C2 C3 C4

TPM2.5 11.41 ± 4.82 12.53 ± 5.39 11.10 ± 5.63 9.79 ± 4.65
APM2.5 9.41 ± 3.99 11.30 ± 5.25 9.90 ± 4.33 8.63 ± 4.18
BPM2.5 11.35 ± 4.93 11.41 ± 5.09 9.97 ± 5.03 9.83 ± 4.10
CPM2.5 12.65 ± 5.19 13.74 ± 5.48 12.87 ± 6.48 11.38 ± 5.58
LPM2.5 12.65 ± 5.13 13.01 ± 5.29 13.29 ± 5.70 11.91 ± 5.74
SPM2.5 11.22 ± 4.75 11.95 ± 5.64 10.96 ± 4.95 9.36 ± 4.66
YPM2.5 12.35 ± 4.97 14.17 ± 6.19 11.49 ± 4.64 11.08 ± 4.82

WD 206.54 209.71 186.16 209.57
WS 1.35 1.29 1.41 1.45
RH 66.55 56.06 76.80 71.34
SR 110.21 148.40 43.58 79.54

BP (Pa) 736.38 738.46 734.09 735.28
OT (K) 286.53 285.84 278.54 283.89

APCP (kg/m2) 3.34 0.30 12.22 7.92
HPBL (m) 870.49 801.28 769.91 920.91

PRATE (kg/m2/s) 0.000040 0.0000037 0.0001305 0.00009
UWND.10 m (m/s) 1.70 0.96 0.49 1.51

VIS 17,943.22 19,834.98 9043.51 14,526.51
VWND.10 m (m/s) 1.20 0.64 0.67 1.35

Figure 6. Cluster deviation from mean.
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Table 8. Coefficient of Variation.

TPM2.5 APM2.5 BPM2.5 CPM2.5 LPM2.5 SPM2.5 YPM2.5 Mean Stdev

C1 0.42 0.42 0.43 0.41 0.41 0.42 0.40 0.42 0.011
C2 0.43 0.46 0.45 0.40 0.41 0.47 0.44 0.44 0.02
C3 0.51 0.44 0.50 0.50 0.43 0.45 0.40 0.46 0.04
C4 0.47 0.48 0.42 0.49 0.48 0.50 0.43 0.47 0.03

Winter 0.44 0.48 0.45 0.42 0.44 0.43 0.42 0.44 0.02
Spring 0.41 0.45 0.39 0.37 0.36 0.43 0.41 0.40 0.03

Summer 0.40 0.40 0.38 0.41 0.37 0.42 0.38 0.39 0.01
Fall 0.51 0.53 0.49 0.46 0.47 0.56 0.50 0.50 0.03

3.4. Distribution Fitting: Lognormal vs. Gamma

PM2.5 data for both the clusters and seasons were fit by the lognormal and gamma
distributions at a 95% confidence interval (α = 0.05). Goodness of fit was tested using
the Kolmogorov–Smirnov (KS) test. All clusters and seasons for all seven sites did not
reject the null hypothesis for KS test with the only exception of summer at Taft where it
rejects the null hypothesis for the lognormal distribution. Although both the distributions
performed equally well, the gamma distribution, in general, had higher p-values than the
lognormal suggesting a slightly higher confidence interval for the gamma distribution
for the clusters and seasons (Tables 9 and 10). A comparison between the gamma and
lognormal distributions shows that both the PDFs give similar results for daily PM2.5
concentrations from seven sites in Cincinnati, during all seasons and for four clusters
(Supplementary materials Figures S1–S48 and Tables S1–S27). Figures 7 and 8 shows the
PDFs and Q-Q plots for the Taft site. The Q-Q plots show that the gamma distribution
captures higher concentrations better than the lognormal. As air quality continues to
improve, these days with relatively high PM2.5 concentrations are expected to play an
important role in developing future air quality management strategies.

Table 9. Fitting statistics for seasonal-based lognormal and gamma distributions.

Lognormal Gamma
Amanda p-Value KS Stat p Value KS Stat

winter 0.94 0.03 0.89 0.03
spring 0.16 0.07 0.62 0.05

summer 0.18 0.07 0.36 0.05
fall 0.77 0.03 0.99 0.02

Batavia
winter 0.81 0.03 0.25 0.06
spring 0.83 0.04 0.48 0.05

summer 0.35 0.06 0.72 0.04
fall 0.79 0.03 0.59 0.04

Colerain
winter 0.50 0.04 0.71 0.04
spring 0.93 0.03 0.97 0.03

summer 0.15 0.07 0.48 0.05
fall 0.50 0.04 0.40 0.05

Lebanon
winter 0.09 0.07 0.26 0.06
spring 0.44 0.06 0.81 0.04

summer 0.50 0.05 0.77 0.04
fall 0.47 0.05 0.35 0.05
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Table 9. Cont.

Lognormal Gamma
Amanda p-Value KS Stat p Value KS Stat

Sycamore
winter 0.85 0.03 0.34 0.05
spring 0.69 0.04 0.91 0.03

summer 0.33 0.06 0.40 0.05
fall 0.69 0.04 0.92 0.03

Taft
winter 0.53 0.04 0.17 0.06
spring 0.63 0.05 0.65 0.05

summer 0.04 0.08 0.35 0.06
fall 0.53 0.04 0.96 0.02

Yankee
winter 0.84 0.03 0.46 0.05
spring 0.45 0.05 0.87 0.04

summer 0.29 0.06 0.80 0.04
fall 0.78 0.03 0.90 0.03

Table 10. Fitting statistics for clustering based lognormal and gamma distributions.

Gamma Lognormal
Amanda p-Value KS Stat p Value KS Stat

C1 0.99 0.02 0.73 0.04
C2 0.35 0.03 0.12 0.05
C3 0.73 0.07 0.33 0.09
C4 0.95 0.04 0.46 0.06

Batavia
C1 0.33 0.06 0.84 0.04
C2 0.17 0.04 0.88 0.02
C3 0.55 0.08 0.75 0.06
C4 0.96 0.03 0.49 0.06

Colerain
C1 0.95 0.03 0.73 0.04
C2 0.94 0.02 0.17 0.04
C3 0.97 0.04 0.60 0.07
C4 0.82 0.05 0.95 0.04

Lebanon
C1 0.49 0.05 0.11 0.08
C2 0.85 0.02 0.59 0.03
C3 0.69 0.07 0.25 0.10
C4 0.38 0.07 0.17 0.08

Sycamore
C1 0.75 0.04 0.97 0.03
C2 0.26 0.04 0.79 0.02
C3 0.51 0.08 0.35 0.09
C4 0.91 0.04 0.59 0.06

Taft
C1 0.97 0.03 0.49 0.05
C2 0.98 0.01 0.37 0.03
C3 0.84 0.06 0.42 0.09
C4 0.72 0.05 0.97 0.03

Yankee
C1 0.97 0.03 0.95 0.03
C2 0.68 0.03 0.12 0.05
C3 0.76 0.06 0.36 0.09
C4 0.98 0.03 0.79 0.05
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Figure 7. Comparison of Gamma and Lognormal distribution for Taft(central monitoring site) across
four seasons (blue line represents gamma distribution and red represents lognormal)
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Figure 8. Comparison of Gamma and Lognormal distribution for Taft(central monitoring site) across
four clusters (blue line represents gamma distribution and red represents lognormal)
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Figure 8. Comparison of Gamma and Lognormal distribution for Taft (central monitoring site) across
four clusters (blue line represents gamma distribution and red represents lognormal).

3.5. Principal Component Analysis

The first five PCs cumulatively explained more than 80% of the total variance, and the
total variance explained by each principal component was 31.97, 16.97, 16.17, 8.64, and 7.80
for PC1 to PC5, respectively. The loadings greater than ±0.3 are highlighted in bold, and in
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this work they are assumed to be the most significant parameters and interactions within
each PC. The first principal component consists mainly of positive contributions from RH,
APCP, and PRATE and negative contributions from VIS (Table 11). The second component
has positive contributions from SR, OT, and HPBL. The third component is dominated by
WS, OT, SR, and UWND, the fourth and the fifth component by APCP, HPBL, PRATE, BP,
VWND and VWND, BP, respectively.

Table 11. The total variance explained by each principal component: Taft.

Meteorology PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12

WS 0.04 0.03 −0.49 0.19 −0.09 −0.54 0.38 0.07 −0.33 −0.11 0.78 0.007
RH 0.37 −0.18 0.16 −0.21 0.00 0.14 0.37 −0.48 −0.08 −0.18 0.58 −0.06
BP −0.33 −0.29 0.13 0.31 0.32 0.13 0.36 −0.01 −0.03 −0.14 −0.18 −0.63
SR −0.24 0.36 0.36 0.14 −0.15 −0.01 0.19 0.53 0.08 0.04 0.56 −0.03
OT 0.05 0.37 0.53 −0.08 0.02 −0.12 0.37 −0.13 −0.19 −0.22 −0.48 0.28

APCP 0.40 −0.03 0.20 0.43 0.09 −0.05 −0.19 0.03 −0.18 0.16 0.01 0.02
HPBL 0.13 0.44 −0.25 0.38 0.11 0.08 0.24 −0.30 0.63 0.14 −0.03 0.03

PRATE 0.39 −0.02 0.21 0.44 0.10 −0.04 −0.19 0.03 −0.22 0.16 0.03 −0.08
UWIND.10 m 0.05 0.32 −0.38 0.05 0.18 0.65 0.11 0.15 −0.48 −0.11 0.01 0.10

VIS −0.37 0.25 0.06 −0.12 0.16 −0.12 −0.04 −0.41 −0.33 0.66 0.12 −0.10
VWIND.10 m 0.16 0.22 −0.01 −0.32 0.79 −0.27 −0.18 0.17 0.10 −0.18 0.12 −0.11

3.6. Multiple Linear Regression

PM2.5 was regressed against meteorological parameters from the first five PCs that
had loadings that met three threshold criteria: ±0.3 and ±0.4 and ±0.44 [40]. For the first
and the second threshold (±0.3 and ±0.4 respectively), these meteorological parameters
were WS, RH, SR, OT, HPBL, APCP, PRATE and VIS. For the third threshold (±0.44), the
parameters selected were APCP, PRATE, OT, HPBL and WS. MLR was used over these
two combinations of parameters. Although UWIND and VWIND both met the threshold
criteria, they were not used in the MLR Runs since the total magnitude WS is the parameter
of interest with regards to PM2.5 sensitivity. Using the first and second threshold (MLR
Run 1) the meteorological parameters that are statistically significant at a p-value of 0.05
(95% confidence) were SR, HPBL, OT and VIS. Using the third threshold (MLR Run 2),
the statistically significant parameters were HPBL and OT in the third threshold (MLR
Run 2). When all meteorological parameters were used (MLR Run 3), the statistically
significant parameters were BP, SR, HPBL, OT and VIS (Table 12). The intercept for all the
three MLR runs were not statistically significant. It should be noted that when SR was
included in the regression, PM2.5 had a negative sensitivity to OT which is not consistent
with the findings in literature. One plausible reason is that SR might be accounting for the
effects of temperature. To address potential confounding, MLR was run again for the three
combinations using only the meteorological parameters which were statistically significant
and with SR removed. r2 values for MLR Runs 1, 2 and 3 were 0.17 (three predictor
variables), 0.16 (two predictor variables) and 0.18 (four predictor variables), respectively
(Table 12).

Table 12. MLR analysis at Taft.

MLR Runs No.of Variables (p) Predictor Variables r r2

1 3 HPBL, OT, VIS 0.41 0.17
2 2 HPBL, OT, 0.40 0.16
3 4 BP, HPBL, OT, VIS 0.42 0.18

MLR results are consistent across all three runs with PM2.5 having negative sensitivities
to HPBL and BP and positive sensitivities to OT and VIS (Table 13). Although other
studies show a relationship to RH, in our work PM2.5 sensitivity to RH was not statistically
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significant. For example, Balachandran et al., (2017) showed that a 10% increase in daily
average of RH would increase 0.27 µg/m3 of PM2.5. Their work investigated the impact
of prescribed fires whereas this work does not investigate specific emissions conditions.
Tai et al. (2010) showed that temperature is positively correlated to PM2.5 concentrations
throughout the US and RH is positively correlated to PM2.5 in the Northeast and Midwest
but negatively correlated in the Southeast and West. Similarly, Leung et al. (2018) showed
that PM2.5 has both positive (r = 0.4) and negative correlation (r = 0.4, 0.2) to RH, depending
on location in China. This location specific nature of PM2.5 sensitivity to RH might be one
plausible explanation for the lack of statistical significance in our work. For all three MLR
runs, our results show that 1000 m increase in HPBL decreases PM2.5 by 6.8 µg/m3. HPBL
can act as a proxy for some of the cumulative effects of various meteorological phenomena
such as transport by winds, temperature gradients, moisture content, and the dilution
of pollution in the atmospheric boundary layer that impacts PM2.5 concentrations. PM2.5
shows a positive sensitivity to VIS (statistically significant in MLR Runs 1 and 2 only) and
therefore a 1 km increase in VIS results in an increase of 0.15 µg/m3 of PM2.5. PM2.5 has
a positive sensitivity to OT and every 10K increase in temperature would increase PM2.5
by 0.7 µg/m3, consistent with Leung et al. (2018), who showed that temperature has a
positive correlation (r = 0.60) with PM2.5. However other work, such as Dawson et al.
(2007), showed a negative sensitivity of PM2.5 to temperature of 0.016 and 0.17 µg/m3/K in
summer and winter, respectively. Finally, PM2.5 has a negative sensitivity to BP (statistically
significant in MLR Run 3 only) and an increase of 100 Pa decreases PM2.5 by 0.7 µg/m3

Table 13. PM2.5 sensitivities at Taft. SE represents standard error. The uncertainty of the average
sensitivity was calculated using propagation of errors.

Meteorological PM2.5 Sensitivity PM2.5 Sensitivity PM2.5 Sensitivity Average Uncertainty
Parameters MLR Run 1 (SE) MLR Run 2 (SE) MLR Run 3 (SE)

HPBL −6.76 µg/m3/ (1000 m) −6.89 µg/m3/ (1000 m) −6.82 µg/m3/ (1000 m)
(0.0005) (0.0005) (0.017) −6.823 0.906

OT 0.05 µg/m3/K 0.08 µg/m3/K 0.07 µg/m3/K
(0.003) (0.014) (0.014) 0.068 0.021

VIS 0.15 µg/m3/km - 0.15 µg/m3/km
(0.00005) (0.00004) 0.15 0.066

BP - - −0.007/Pa
0.0055

Our results show an r2 of 0.17 when three predictor variables were used (MLR Run1),
0.16 with two predictor variable (MLR Run 2) and 0.18 with four variables (MLR run
3) Table 12. In Rui et al. (2018), the r2 was 0.76 when gaseous pollutants, AOD and
meteorological parameters were used. In Cifuentes et al. (2021), r values ranged from
0.16-0.27 when only meteorological parameters were used but increased to 0.41 when air
pollutants are included with meteorology .

4. Conclusions

This work lays the foundation for a new way to understand relationships between
air pollution and meteorology by analyzing the spatial and temporal variation of PM2.5
and its sensitivity to meteorological parameters in the greater Cincinnati area. A unique
contribution from this work is that meteorology can be grouped using k-means clustering
in addition to seasons. PM2.5 concentrations are moderately correlated across all sites
(r = 0.62 − 0.84). Average PM2.5 concentrations are highest in summer for all sites, except
for Colerain and Lebanon where PM2.5 concentrations are highest in spring. The coefficient
of variation of average concentrations across all sites are similar when grouped by clusters
as by seasons. Based on the KS test, the gamma distribution fits the PM2.5 slightly better
than the lognormal, suggesting that modeling efforts can use the highly flexible gamma
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distribution. Although the relationship between the variables of the dataset is not linear,
the use of PCA to guide the MLR allowed the use of a smaller subset of the meteorological
parameters. RH, HPBL, APCP, OT, PRATE, WS, and VIS are the most important parameters
in the first five principal components (which cumulatively explained greater than 80 percent
of variance). MLR using two combinations of these parameters as well as all meteorological
variables resulted in the following statistically significant parameters: HPBP, OT, VIS and
BP. The r2 value ranged from 0.16 and 0.17. Our future work will be to develop a PM2.5
forecast model with the help of artificial neural networks using clustering of meteorology
as well as gamma distribution statistics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos13040545/s1, Figure S1. Comparison of Gamma and Log-
normal distribution at Amanda_Clus1; Figure S2. Comparison of Gamma and Lognormal distribution
at Amanda_Clus2; Figure S3. Comparison of Gamma and Lognormal distribution at Amanda_Clus3;
Figure S4. Comparison of Gamma and Lognormal distribution at Amanda_Clus4; Figure S5. Com-
parison of Gamma and Lognormal distribution at Amanda_Winter; Figure S6 Comparison of Gamma
and Lognormal distribution at Amanda_Summer; Figure S7. Comparison of Gamma and Lognormal
distribution at Amanda_Spring; Figure S8. Comparison of Gamma and Lognormal distribution
at Amanda_Fall; Figure S9. Comparison of Gamma and Lognormal distribution at Batavia_Clus1;
Figure S10. Comparison of Gamma and Lognormal distribution at Batavia_Clus2; Figure S11. Com-
parison of Gamma and Lognormal distribution at Batavia_Clus3; Figure S12. Comparison of Gamma
and Lognormal distribution at Batavia_Clus4; Figure S13. Comparison of Gamma and Lognormal
distribution at Batavia_Summer; Figure S14. Comparison of Gamma and Lognormal distribution
at Batavia_Spring; Figure S15. Comparison of Gamma and Lognormal distribution at Batavia_Fall;
Figure S16. Comparison of Gamma and Lognormal distribution at Batavia_Winter; Figure S17. Com-
parison of Gamma and Lognormal distribution at Colerain_Clus1; Figure S18. Comparison of Gamma
and Lognormal distribution at Colerain_Clus2; Figure S19. Comparison of Gamma and Lognormal
distribution at Colerain_Clus3; Figure S20. Comparison of Gamma and Lognormal distribution at
Colerain_Clus4; Figure S21. Comparison of Gamma and Lognormal distribution at Colerain_Summer;
Figure S22. Comparison of Gamma and Lognormal distribution at Colerain_Summer; Figure S23.
Comparison of Gamma and Lognormal distribution at Colerain_Fall; Figure S24. Comparison of
Gamma and Lognormal distribution at Colerain_Winter; Figure S25. Comparison of Gamma and
Lognormal distribution at Lebanon_Clus1; Figure S26. Comparison of Gamma and Lognormal
distribution at Lebanon_Clus2; Figure S27. Comparison of Gamma and Lognormal distribution at
Lebanon_Clus3; Figure S28. Comparison of Gamma and Lognormal distribution at Lebanon_Clus4;
Figure S29. Comparison of Gamma and Lognormal distribution at Lebanon_Summer; Figure S30.
Comparison of Gamma and Lognormal distribution at Lebanon_Spring; Figure S31. Comparison
of Gamma and Lognormal distribution at Lebanon_Fall; Figure S32. Comparison of Gamma and
Lognormal distribution at Lebanon_Winter; Figure S33. Comparison of Gamma and Lognormal
distribution at Sycamore_Clus1; Figure S34. Comparison of Gamma and Lognormal distribution at
Lebanon_Clus2; Figure S35. Comparison of Gamma and Lognormal distribution at Lebanon_Clus3;
Figure S36. Comparison of Gamma and Lognormal distribution at Sycamore_Clus4; Figure S37.
Comparison of Gamma and Lognormal distribution at Sycamore_Winter; Figure S38. Comparison
of Gamma and Lognormal distribution at Sycamore_Summer; Figure S39. Comparison of Gamma
and Lognormal distribution at Sycamore_Spring; Figure S40. Comparison of Gamma and Lognormal
distribution at Sycamore_Fall; Figure S41. Comparison of Gamma and Lognormal distribution at
Yankee_Clus1; Figure S42. Comparison of Gamma and Lognormal distribution at Yankee_Clus2;
Figure S43. Comparison of Gamma and Lognormal distribution at Yankee_Clus3; Figure S44. Com-
parison of Gamma and Lognormal distribution at Yankee_Clus4; Figure S45. Comparison of Gamma
and Lognormal distribution at Yankee_Summer; Figure S46. Comparison of Gamma and Lognormal
distribution at Yankee_Spring; Figure S47. Comparison of Gamma and Lognormal distribution at
Yankee_ClusFall; Figure S48. Comparison of Gamma and Lognormal distribution at Yankee_Winter;
Table S1. The total variance explained by each principal component: Amanda; Table S2. The total
variance explained by each principal component: Batavia; Table S3. The total variance explained by
each principal component: Colerain; Table S4. The total variance explained by each principal compo-
nent: Lebanon; Table S5. The total variance explained by each principal component: Syc-amore; Table

https://www.mdpi.com/article/10.3390/atmos13040545/s1
https://www.mdpi.com/article/10.3390/atmos13040545/s1


Atmosphere 2022, 13, 545 19 of 20

S6. The total variance explained by each principal component: Yankee; Table S7. MLR study on data
obtained at Amanda; Table S8. MLR study on data obtained at Batavia; Table S9. MLR study on data
obtained at Colerain; Table S10. MLR study on data obtained at Lebanon; Table S11. MLR study on
data obtained at Sycamore; Table S12. MLR study on data obtained at Yankee; Table S13. Lognormal
parameters for seasons and clusters at Amanda; Table S14. Lognormal parameters for seasons and
clusters at Bataviaa; Table S15. Lognormal parameters for seasons and clusters at Colerain; Table
S16. Lognormal parameters for seasons and clusters at Lebanon; Table S17. Lognormal parameters
for seasons and clusters at Sycamore; Table S18. Lognormal parameters for seasons and clusters
at Yankee; Table S19. Lognormal parameters for seasons and clusters at Taft; Table S20. Gamma
parameters for seasons and clusters at Taft; Table S21. Gamma parameters for seasons and clusters
at Amanda; Table S22. Gamma parameters for seasons and clusters at Batavia; Table S23. Gamma
parameters for seasons and clusters at Colerain; Table S24. Gamma parameters for seasons and
clusters at Lebanon; Table S25. Gamma parameters for seasons and clusters at Sycamore; Table S26.
Gamma parameters for seasons and clusters at Yankee; Table S27. Regression equations for linear
correlation between the monitoring sites in the form y = mx + c, where m is the slope and c are the
y intercepts.
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