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Abstract: This paper proposes a method and an original index for the estimation of fog density using
images or videos. The proposed method had the advantages of convenient operation and low costs
for applications in automatic driving and environmental monitoring. The index was constructed
based on a dark channel map and the pseudo-edge details of the foggy image. The effectiveness of
the fog density index was demonstrated and validated through experiments on the two existing open
datasets. The experimental results showed that the presented index could correctly estimate the fog
density of images: (1) the estimated fog density value was consistent with the corresponding label in
the Color Hazy Image Database (CHIC) in terms of rank order; (2) the estimated fog density level was
consistent with the corresponding label in the Cityscapes database and the accuracy reached as high
as 0.9812; (3) the proposed index could be used to evaluate the performance of a video defogging
algorithm in terms of residual fog.

Keywords: fog density; image fog; measuring haze; image dehazing; evaluation; fog estimation

1. Introduction

Fog or haze in images and videos leads to low visibility and thus, causes major prob-
lems in transportation and computer vision applications. Under poor visibility conditions,
road traffic accidents often increase greatly. In order to ensure people’s safety whilst trav-
eling, it is necessary for the relevant authorities to make the decision of whether or not
to close highways, cancel flights, etc. However, a reliable decision requires an accurate
estimation of fog density and images and videos that are taken during reduced visibility
conditions are often characterized by blurred details, faded color, lower contrast and overall
poor visibility and thus, degrade the performance of outdoor vision systems, such as object
recognition, segmentation and remote sensing. In order to accurately detect and process
extracted features for computer vision applications, image defogging is an imperative
preprocessing step. However, the fog-relevant features closely correlate with the percep-
tion of fog density within the image [1], so it is necessary to estimate the fog density in
order to select the most appropriate defogging methods. As a result, the estimation of
fog density is critical and has a wide range of applications. The definition of fog and the
division standard of fog density levels are somewhat different within the fields of physics
and meteorology [2]. In terms of measuring methods, fog levels can be estimated using
subjective human judgment or measured using instruments, such as a smoke density tester
or an optical fog sensor [3]. For most people, foggy weather is often simply divided into
three levels, according to visibility: shallow fog, moderate fog and dense fog [4]. According
to Koschmieder’s law, horizontal visibility can be estimated simply using the atmospheric
extinction coefficient, which is highly relative to the daytime fog density [5,6]. The visibility
is then measurable using instruments such as a “visiometer”. Therefore, in meteorology,
atmospheric horizontal visibility is usually used to judge fog density levels [5].

Fog density estimation is not just a subjective visual evaluation with the naked eye,
but is rather an objective estimation that is based on facts and measurements. In recent
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years, image-based fog density estimation methods have received an increasing amount
of attention [1]. A representative method is the Fog Aware Density Evaluator (FADE)
algorithm [7], which is based on the model of NSS (Natural Scene Statistics) and fog-aware
statistical features. A pixel-based fog density estimation algorithm was proposed in [8],
which is based on two priors and is constructed in the HSV space. Mori et al. [9] proposed
a fog density estimation method that uses in-vehicle camera images and millimeter wave
(mmW) radar data [9]. This method estimates fog density by evaluating the visibility of
and distance to the vehicle in front. In addition, Jiang et al. [1] proposed a surrogate model
that uses optical depth to estimate fog density. The authors of [10] found three fog-relevant
statistical features by observing the RGB values of foggy images and developed a fog
density estimator (SFDE) that uses a linear combination of those three features.

Machine learning-based methods for the evaluation of atmospheric horizontal visibil-
ity and the estimation of fog density are hot topics at present. Based on the convolution
neural network of the Alex model, a visibility detection method that combines monitoring
camera equipment and a deep learning algorithm was proposed in [11]. To reduce the num-
ber of unnecessary nonlinear components in the network and maintain the performance
as the number of convolution layers gradually increases, a new and improved DiracNet
convolution neural network was proposed and a haze visibility detection method was
constructed in [12]. In addition, a method in which visibility is estimated using a continu-
ous surveillance video by taking the mean square error into account and constructing a
convolutional neural network (MSEBCNN) was developed in [13].

The estimation of the amount of fog in images allows us to construct more effective
image defogging algorithms [1,10]. For example, by repairing the medium transmission
of bright regions using FADE [7], the color distortion that is often produced by many
image dehazing algorithms can be improved effectively [14]. Recently, Yeh’s fog density
estimation method [8] has often been employed to improve the estimation of atmospheric
light and transmission maps. Aiming to find a solution to the defect of many traditional
single image dehazing algorithms that fail in sky areas, the authors in [15] used the haze
density weight function to reduce the halo effect in sky areas. In addition, the estimation of
the amount of fog in scene images allows us to establish more appropriate foggy image
datasets. Recently, several foggy image databases have been built, which contain reference
fog-free images and the related foggy images that are covered with different levels of fog,
such as the Color Hazy Image Database (CHIC) [16], which consists of real images that
are characterized into nine different levels of fog density, and the Real world Benchmark
Dataset (BeDDE) [4], in which each image features a fog level label. These databases were
helpful for us to investigate the quality of our haze model according to fog density and the
efficiency of the dehazing algorithm.

Compared to the instrument measurement methods, these methods are straightfor-
ward [7] and have the advantages of low costs and high efficiency. However, only a few
image processing algorithms have been proposed for fog density estimation and research
on this issue is far from extensive. Since our defogging method, which was based on Dark
Channel Prior (DCP) [17], was drawn from statistical analysis and had clear meteorological
meanings, we assumed that the inverse process of image dehazing using DCP could reveal
the levels of fog density. Based on this assumption and the pseudo-edge details of the
image, an alternative method for quickly detecting fog density using images is proposed in
this paper.

2. Method

With a foggy image, we first estimated fog density using a Dark Channel Prior
(DCP) [17] map and the pseudo-edge details of the image and then calculated the fog
density level. The process for obtaining the fog density level contained four steps: (1) input
images with fog density level labels; (2) calculate dark channel map and pseudo-edges of
the input images; (3) estimate the parameters in the model by training a benchmark dataset;
(4) apply the constructed model to the estimation of fog density values and levels in images
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or videos. Note that when there was no labeled dataset, we either used the default values
for the parameters or a transfer study.

2.1. Density Index

Our physics-based image defogging method using single input image relied on prior
assumptions to estimate the unknown physical parameters of the model. HE et al. [17]
proposed the Dark Channel Prior (DCP) algorithm while investigating a large number of
fog-free images. DCP suggests that the minimum intensity of a non-sky local patch in an
outdoor fog-free image is close to zero. For convenience, we present He’s Dark Channel
Prior (DCP) alorithm here as a proposition:

Proposition 1 ([17]). When image I is fog-free, the minimum values of the three color channels
(r, g and b) in the image are close to 0, i.e.,

Idark(i, j) = min
c∈r,g,b

( min
y∈Ω(i,j)

Ic(y)) ≈ 0, (1)

In Formula (1), (i, j) is the pixel position at the ith row and jth column of the im-
age, Ω(i, j) is a neighborhood of(i, j) and Idark(i, j) the dark channel of pixel I(i, j). Image
Idark was named as the Dark Channel Map (DCM).

The converse negative of Proposition 1 can be expressed as:

Proposition 2. When Idark(i, j) = min
c∈r,g,b

( min
y∈Ω(i,j)

Ic(y)) >> 0, image I is covered in fog.

This assumption may fail when the image contains large sky or white regions, which
causes the DCP algorithm to become invalid [17].

In order to evaluate the validity of Proposition 2, five images with different levels of
fog density from [16] (first row) and their dark channel maps (second row) were studied
and are presented in Figure 1. From this evaluation, we found that the brighter the dark
channel image, the thicker the fog, i.e., the gray value tended toward 1 (0 is dark and 1
is white).

Figure 1. Fog density and pseudo-edge details. The first row shows five images with different fog den-
sity values (from left to right, the fog density changes from high to low) [16]. The corresponding dark
channel images and pseudo-edge details are presented on the second and third rows, respectively.

Usually, foggy images are blurrier and have low contrast, which means that edge
information is also closely related to the fog density. This observation has been validated
using a large set of images. As shown in the third row of Figure 1, the thicker the fog,
the more pseudo-edge details. Due to the effects of the fog, the edges are pseudo-edges.
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Our approach was based on the dark channel maps and pseudo-edge details of the
images and the fog density index Fden of the image was first defined as:

Fden =
1

1 + αe−β(
√

FnaveEr−MFE)
. (2)

This is a logistic function, which is also called the sigmoid function, and its domain is
the real number set and range of the open interval (0, 1). The use of Equation (2) meant
that the relative fog density Fden was defined based on the average value of the product of
dark channels that were related Fnave and the proportion of the edge information. In this
equation, α and β are the scaling parameters andMFE is the translation parameter that
was used in the standardization process. The three parameters were positive numbers and
could be obtained by training the standard database.

Moreover, in Formula (2), Er, the pseudo-edge details of the image are the ratios
of edge pixel points to image points and the edge image was obtained using the Canny
operator [18]. The average brightness of the dark channel maps, except for the sky and
white regions, in the images was represented by Fave:

Fave =
1
n0

m

∑
i=1

n

∑
j=1

(Idark(i, j) ≤ δw), (3)

where m and n are the number of rows and columns in the image, n0 is the number of
non-sky pixels and δw is the segmentation parameter of the pixels in the sky and white
image blocks, generally δw = 0.95. Fave was standardized as:

Fnave =


0, Fave ≤ θL
Fave−θL
θU−θL

, θL < Fave ≤ θU

1, Fave > θU

(4)

where Fnave is the standardized Fave and θU and θL are two thresholds with experimental
values of θU = 0.88 and θL = 0.18, which were introduced to distinguish the sky and white
regions, the foggy regions and the fog-free areas.

2.2. Fog Density Levels

According to application requirement, the fog density level FLev of an image could be
classified into four levels: fog-free, shallow fog, moderate fog and dense fog, which were
represented by 0, 1, 2 and 3, respectively. That is, FLev was a piecewise constant function:

FLev =


0, I is fog-free;
1, I is shallow fog;
2, I is moderate fog;
3, I is heavy fog.

(5)

Different from the manual methods [4], this paper estimated the density level FLev of
an image automatically, according to the fog density index Fden:

FLev =


0, Fden ≤ δ0;
1, δ0 < Fden ≤ δ1;
2, δ1 < Fden ≤ δ2;
3, δ2 < Fden.

(6)

The parameters δ0, δ1 and δ2 in Formula (6) were estimated using an analysis of a set
of foggy images with fog level labels from several accessible databases, for example, the
Cityscapes Dataset [19,20].

Our method for the estimation of parameters was based on the normal distribution
hypothesis of the density value Yi of each category obeying a normal distribution N(µi, σ2

i ),
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i = 0, 1, 2, 3. In general, µ0 ≤ µ1 ≤ µ2 ≤ µ3. The probability density functions were
denoted as φi(y). Our algorithm consisted of two main steps.

The first step was to estimate the values of the parameters µi, σ2
i , i = 0, 1, 2, 3 using the

ith class of images (FLev = i in Formula (5) and Fden in Formula (2)).
The second step was to calculate the parameters δ0, δ1 and δ2 by finding the intersection

points between the adjacent probability density functions φi(y). These intersection points
were successively marked as δ0, δ1 and δ2, from small to big, as shown in Figure 2.
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Figure 2. Estimation of parameters using the intersection points of the adjacent normal distribu-
tion curves.

One of the advantages of the proposed method was that the probability of correct clas-
sification could be estimated theoretically. Here, we take the case of fog-free as an example:

P(FLev = 0|I is fog-free) =
∫ δ0

−∞
φ0(y)dy, (7)

Similarly, the probability of misclassification could be estimated as:

P(FLev = 1|I is fog-free) =
∫ δ1

δ0

φ0(y)dy, (8)

Theoretically, the probabilities of the correct classification or misclassification of all
cases could also be calculated using similar formulae. The results formed a matrix, which
was named as a confusion matrix (described in the next section).

By substituting the estimated values of δ0, δ1 and δ2 into Formula (6), the fog density
level (FLev) of an image I could be determined according to its fog density value Fden.

3. Results

In order to evaluate the proposed method, the experimental results are presented in
this section. The experiments were conducted mainly for the estimation of fog density
values and fog density levels in images, as well as changes of fog density in videos.
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3.1. Fog Density Estimation

To verify the effectiveness of the fog density index Fden, the Fden of images from the
Color Hazy Image Database (CHIC) [16] was calculated and compared to the results from
SFDE [10], FADE [7] and the ground truth. Figure 3 shows 10 images from Scene1 in CHIC
and these images are all labeled with a density from 1 (heavy foggy) to 10 (clear). Note that
the CHIC database is characterized by the presence of the ground truth reference images.

Figure 3. Images from Scene1 of CHIC. From left to right, the fog density levels of the images in the
first row are 1 (the highest) to 5 and those in the second row are 6 to 10 (the clearest image).

Figure 4 shows the fog density values that were evaluated using SFDE [10], FADE [7]
and our method. By comparing these three curves, we found the following characteristics:

(1) The three curves were all monotonically decreasing, which was highly consistent
with the changes in the real fog density values of the images in the dataset (ground
truth information);

(2) The fog density values that were estimated using our method were limited to the
interval 0 to 1, in which 0 meant clear and 1 represented heavy fog, while FADE
did not have a limited interval and the density values that were calculated using
SFDE tended to be greater than 0.5. Obviously, our fog density values had a more
intuitive meaning;

(3) Our curve was in sharp decline from the fourth image to the fifth image, which
illustrated that the fog density in the first four images was significantly different from
that in the last six images. This correlated with the real situation.

    'Scene1_IM_Level2.jpg'

    'Scene1_IM_Level3.jpg'

    'Scene1_IM_Level4.jpg'
    'Scene1_IM_Level5.jpg' 5.5642
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Figure 4. Comparison of the fog density values that were estimated using SFDE [10], FADE [7]
and our method.

3.2. Fog Density Levels

The other experimental dataset that we employed was “lindau”, which is a subset
of the Cityscapes dataset [19,20]. The “lindau” dataset consists of 177 images, of which
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59 images are covered with shallow fog, 59 are covered with moderate fog and 59 are
covered with heavy fog. Figure 5 presents 12 images from four different scenes in the
dataset. By applying Formula (2) to 36 of the images, which consisted of these 12 images
covered with three different density levels of fog, the fog density values Fden were calculated
and are displayed in Figure 6. Figures 5 and 6 show that the fog density in most of these
images was very low. According to general standards, all of these images would be
classified into the shallow fog category, both visually and numerically. However, this
dataset divided the values into three different categories (shallow fog, moderate fog and
heavy fog) based on a refined standard, which meant that in some application scenarios, it
was necessary to distinguish the fog density levels within a small range of variation. Our
method could realize this fine classification through parameter learning when the labeled
training dataset was feasible.

Figure 5. Sample images (four images with three fog density levels) from the “lindau” database [20].

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Fden of Ours

Figure 6. Fog density Fden of the 36 sample images (12 images with three fog density levels) from the
“lindau” database [20] evaluated using our method with default parameters.

In order to identify the density level FLev according to the practice application, it
was necessary to first calculate the value of parameterMFE in Formula (2) and δ0, δ1 in
Formula (6) using the training data. Since only three density levels (shallow, moderate and
heavy) were considered, we did not need to estimate the parameter δ2.

We chose the first 36 images (12 images with three fog densities) as the training data.
Six of them are shown in the first row of Figure 5. After training, the parametersMFE,
δ0 and δ1 were evaluated as MFE = 0.155, δ0 = 0.235 and δ1 = 0.5509. The normal
distribution fitting curves are shown in Figure 7. The confusion matrix of the training
results is listed in the three left-hand columns of Table 1. The accuracy of the fog density
level estimation was 0.9812.
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Figure 7. Frequency statistical histogram and normal distribution fitting curves of fog density levels
of the 36 training images. Different color means different fog density level.

Table 1. The accuracy of fog density level estimation in the training stage and the test (marked with
“*”) stage.

Level FLev = 0 FLev = 1 FLev = 2 F∗
Lev = 0 F∗

Lev = 1 F∗
Lev = 2

Shallow 0.9929 0.0071 0.0000 0.9149 0.0426 0.0426
Moderate 0.0149 0.9689 0.0162 0.4894 0.2553 0.2553

Heavy 0.0000 0.0181 0.9819 0.1489 0.1489 0.7021

The last 141 images (47 images with three fog density levels) in the “lindau” database
were chosen as our test data. The confusion matrix of the test dataset is listed in the three
right-hand columns of Table 1. The accuracy of the fog density level estimation was 0.6241.

3.3. Fog Density Levels in Videos

The fog density level of the scenes that were evaluated using a single image could
predict changes in fog density during a video. We downloaded a video of foggy mountains
(thanks to the open permission of the uploader) from the Bilibili website (https://www.
bilibili.com/video/BV1Rb411y7qR?p=9 accessed on 17 May 2021). The first 12 s of the
video, which is composed of 317 frames, was used as the experimental data. The fog
density values Fden of the frames were drawn as a discrete curve (for convenience, we called
it the Fden curve), which is shown in Figure 8, where the symbol “#” denotes the frame
sequence number.

To evaluate the image defogging algorithms, various objective evaluation indexes
have been adopted, such as the classical indexes “SSIM” and “PSNR” [21] and the recently
proposed indexes “visible edge ratio” and “average gradient ratio” [22]. However, to eval-
uate the performance of video defogging algorithms, additional indexes are needed to
evaluate the temporal and spatial coherence of the defogged results. Since Fden could be
used not only to measure the degree of image pollution and the image defogging effect
but also changes in the fog density in a video, it was suitable for the evaluation of the
video’s temporal and spatial coherence.

https://www.bilibili.com/video/BV1Rb411y7qR?p=9
https://www.bilibili.com/video/BV1Rb411y7qR?p=9
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Figure 8. The changes in fog density value Fden during the video.

According to Equation (2), the fog density Fden of each frame of the defogged video
formed a sequence. We found that the changes in the sequence were closely related to
the smoothness of the video, especially the defogged video. In general, the flatter the
Fden curve, the smoother the motion in the video. Conversely, violent fluctuations in
the Fden curve meant that the flicker of the dehazed video increased. To validate our
observations, experiments were conducted on the foggy video “Cross” [23], which consists
of 240 frames. Four existing video dehazing algorithms were evaluating using the Fden
curves. These four algorithms were: dehazing based on a neural network (DNet) [24],
advanced histogram equalization (HistEq) [23], jointly estimating scene depth (JoDep) [25]
and spatial–temporal MRF (STMRF) [26]. The experimental results are shown in Figures 9
and 10. Figure 9 exhibits the defogged images of one frame that were produced by the
four algorithms.

(a) Orig (b) DNet (c) STMRF (d) HistEq (e) JoDep

Figure 9. A sample frame from the original video and the defogged images from the four different
video defogging algorithms.

The Fden curves of the original foggy video and the defogged videos that were pro-
duced by the four algorithms are displayed in Figure 10. It can be seen that the original
video was taken under heavy fog weather conditions, the result of the DNet algorithm re-
tained the most fog, the curve of HistEq algorithm shows the most and biggest fluctuations
(which meant that there were the most flickers in that video) and the curves of the STMRF
and JoDep algorithms were relatively smooth and almost coincided with the straight line
Fden = 0 (which meant that the defogged videos had less flickers and the least amount of
residual fog).
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Figure 10. Fden curves of the original video and the four different video defogging algorithms.

4. Conclusions

The aim of our method was to estimate the relative fog density by simply using an
improved logistic function, which was related to the dark channel maps and pseudo-edge
details of the images. The fog density values, which are directly proportional to the visibility,
were standardized into the interval 0 to 1, which was conducive for the comparison of
different images. For the practical application, we constructed an index of fog density levels
using the estimated relative fog density values. The parameters that were involved in the
level classification were estimated using a trained set of foggy images with fog level labels
from several accessible databases. Due to this, the number of levels could be increased or
decreased flexibly, according to the application requirements.

From the experimental results using open image datasets, several conclusions could
be drawn:

(1) In the experiment using the Color Hazy Image Database (CHIC), our index was
consistent with the labeled fog density values in terms of rank order;

(2) In the experiment using the Cityscapes database, our index was consistent with the
labeled fog density values. The accuracy reached as high as 0.9812.

It should be noted that our method had its limitations. It did not uncover the quan-
titative relationship between visibility and fog density, which will become our research
topic in the future. One approach that is also worth exploring is as follows: take photos
and calculate the fog density levels using an image-based fog density estimation method
(such as the proposed method) while measuring fog density via various meteorological
sensors [2,27,28], then establish the quantitative relationship between the measured and
estimated fog density values and improve the accuracy using multi-scene model correction.
There is no doubt that the discovery of this relationship will promote the application of our
method in image and video processing.
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