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Abstract: Highly convection-related short-duration heavy rainfall (SDHR), defined as rainfall greater
than 20 mm h−1 of a whole hour, causes severe damage every year in China. An objective forecasting
method is developed to provide guidance products for the short-term probability of SDHR. Rep-
resentative parameters of environmental moisture content, instability, and dynamical forcing are
selected as predictors based on the ingredients-based methodology. The predictors are selected by
comparing their ability to discriminate between SDHR and both no rainfall and ordinary rainfall with
hourly rainfall records and the NCEP reanalysis dataset during the warm seasons of 2002 and 2009.
A fuzzy logic approach is obtained for the calculation of SDHR probability. Intervals of intensities are
obtained based on specific percentiles and various weight settings examined. The probabilistic SDHR
forecasts during the 2015 warm seasons with the NCEP GFS dataset are obtained, and forecasts are
evaluated by using an operational used spatial verification method. Results show that the reference
operational SDHR forecasts are surpassed by the 00–12 h period objective SDHR forecasts measured
with the maximum critical success index (CSI), and even the average CSI (CSIave) for the top groups
is better than the reference. The guidance SDHR products are skillful within 60 h. Although the
weights vary significantly, the short-term patterns of the SDHR probability are mainly determined by
the environmental conditions. The objective forecasting method is ingredients-based but is combined
with fuzzy logic algorithms. The new approach provides a feasible exploration of the convective
weather phenomenon.

Keywords: short-duration heavy rainfall (SDHR); probability forecasts; ingredients-based methodology;
fuzzy logic approach

1. Introduction

The hourly rainfall within a whole hour greater than 20.0 mm h−1 is defined as a
short-duration heavy rainfall (SDHR) event by the National Meteorological Center (NMC),
China Meteorological Administration (CMA). SDHR occurs throughout the tropics and
mid-latitude regions [1–4]. SDHR is also the leading cause of inaccurate quantitative
precipitation forecasting (QPF). Extreme SDHR is often reported in extreme torrential
rainfall events [5–9]. SDHR can also cause flash floods [10] and threaten aircraft safety [11].
Numerical weather prediction (NWP) models can provide high-quality QPF for lower
rainfall grades, but nevertheless, many works are needed for the heavier ones due to their
convective properties [12,13]. The accurate short-term forecasting of SDHR is therefore
crucial if responsive measures are to be taken within an adequate timeframe.
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The feasibility of operational SDHR forecasts based on environmental recognition has
been documented in theoretical studies and statistical reports. SDHR can be estimated
theoretically by multiplying the precipitation efficiency, the ascent rate, and the water vapor
mixing ratio of the rising atmosphere of the precipitating system [14]. Nevertheless, there
are challenges in obtaining values for the influencing factors. Fankhauser [15] found that
the precipitation efficiency varies between events. May et al. [16] examined numerous
examples of shallow, deep, and decaying convection, and reported that the large-amplitude
vertical motion in deep convection is also observed in shallow convection. Lepore et al. [17]
reported that the hourly rainfall intensity could be influenced by moisture availability and
vertical instability. Lenderink et al. [18] documented that the most extreme hourly rainfall
is accompanied by substantial large-scale upward motion and the convergence of moisture.
The importance of stronger synoptic-to-mesoscale forcing for ascent and greater total
column moisture content for extreme short-term precipitation has also been reported [19].
These studies show that the environmental conditions favoring high-intensity rainfall
have certain features in common, such as sufficient moisture content, strong instability,
and substantial upward motion, but emphasize different aspects. Although the synoptic
patterns and the associated environmental conditions are similar, they are never identical.
The ever-changing environmental conditions challenge the manually drawn operational
SDHR forecasts.

Operational SDHR forecasts show that short-term predictions can be made by analyz-
ing the environmental conditions of the atmosphere. The operational short-term SDHR
forecasts are produced by analyzing the moisture content, the instability, and the probable
dynamical lifting mechanisms using data provided by the NWP models. The process can
be identified as a combination of checklists, decision trees, and experience [20]. The opera-
tional SDHR contours are produced manually and issued three times a day during the warm
seasons at 06:00, 10:00, and 17:00 Beijing Time (BT = UTC + 8) [21]. The forecasts with 24-h
coverage for day two and day three are treated as outlooks. The predicted areas are shaded
in the issued products (available at http://www.nmc.cn/publish/bulletin/swpc.html,
accessed on 1 July 2022).

Some preliminary studies have been carried out to improve the performance of the
operational SDHR forecasts over China. Tian et al. [22] analyzed parameters representing
the thermodynamic, moisture, and kinematic conditions of the atmosphere and found
that the moisture content and instability indicators perform better if all the parameters are
compared together. Divergence of 925 hPa (DIV925), the best kinematic indicator, is only
listed as 17th. The best vertical wind shear (SHR3 compared with SHR1 and SHR6) is only
listed at 22nd. This is to some degree in conflict with the preliminary understanding that
dynamic factors play important roles [19,20]. The importance of kinematic indicators is
significantly undervalued if parameters are just put together for comparison. By classifying
the parameters into indicators of moisture content, instability, and dynamic conditions, and
dividing the hourly rainfall into no rainfall (less than 0.1 mm h−1), ordinary rainfall (inten-
sities between 0.1 and 19.9 mm h−1), and SDHR (greater than 20.0 mm h−1), Tian et al. [23]
used millions of hourly rainfall records to study the performance of different parameters
as indicators. Results show that the precipitable water (PWAT), the best lifted index (BLI),
the K index (KI), and the DIV925 are good at simultaneously discriminating SDHR from no
rainfall and ordinary rainfall. The results provide solid foundations for understanding the
environmental conditions favoring SDHR. However, there are some problems to be solved
for manually producing SDHR forecasts: subjective, large-scale systems are captured but
there is negligence on relatively small systems, and there is not enough time to investigate
the full environmental conditions.

Objective short-term convection forecasting methods have been developed but with
obvious disadvantages. Li et al. [24] developed an overlapping method to predict the areas
of intense convection. More than ten indices with similar representative properties are
used for that method, and the area that fulfills the multi-thresholds is considered as the
target area. Logistic regression models are used for intense convection prediction [25,26],
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but with similar problems as [24]. Most of them do not have a solid physical basis, and
even worse, they do not provide SDHR forecasts. Hill et al. [27] developed a random
forests method with some physical understanding to forecast severe weather, but usability
for SDHR is not verified. This paper explores a new approach based on the ingredients-
based methodology. The basis for the newly developed method is that adequate moisture
content, some instability, and favorable dynamical forcing are required if SDHR is expected.
These three components are necessary for deep, moist convection [14]. The candidate
parameters are divided into different classes according to their properties. The predictors
are selected by comparing the significance of distinguishing ordinary rainfall and no rainfall
within the class it belongs to. A piecewise linearization method is used for the selected
predictors to indicate the intensities. A fuzzy logic method is adopted to display the
multiple combination modes, in other words, the probability distribution of SDHR under
multiple environmental conditions.

The paper is organized as follows. Section 2 describes the data used, the selection of
predictors, the construction of the method, and the evaluation method. The evaluation
results are given in Section 3. Section 4 illustrates an application of the objective method
to two case studies under different synoptic patterns, and a summary and discussion are
given in Section 5.

2. Data and Methods
2.1. Data Source

We use quality-controlled hourly rainfall data of 411 climate observation stations
(Figure 1a) from CMA, and the NCEP reanalysis dataset (https://rda.ucar.edu/datasets/,
accessed on 22 April 2022) from May to September (warm seasons) during 2002 and 2009 to
select predictors. The climate observation stations are widely distributed in central-eastern
China (Figure 1a). The stations can only record liquid precipitation. Thus, the span of
available data varies significantly. Rain can be reported in January in south China, while
no records are available even at the end of April in northeast China. Only the observations
between 1 May and 30 September are used in this study for the broad applicability of
the forecasting method. The NCEP GFS dataset for the 2015 warm season is adopted to
produce the forecasts of SDHR. Data for the SDHR reported by automatic weather stations
(AWS) are also used for verification (Figure 1b).
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Figure 1. Distribution of (a) climate observation (solid points) and verification (circles) stations and
(b) automatic weather stations (AWS).

The NCEP reanalysis dataset has a spatial resolution of 1◦ × 1◦ and a temporal
resolution of four times a day at 02:00, 08:00, 14:00, and 20:00 BT [28]. Table 1 lists the
parameters which are possibly useful to represent the favorable environmental conditions

https://rda.ucar.edu/datasets/
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of SDHR, including moisture content, instability, and dynamical forcing. The instability
parameters include the BLI, the best convective available potential energy (BCAPE), etc.
The PWAT, specific humidity, relative humidity, and water vapor flux divergence are treated
as candidate indicators of the moisture content, whereas the dynamical forcing and vertical
wind shear are considered to be kinematic indicators.

Table 1. Description of referred parameters used to indicate the environmental moisture content,
instability, and lifting conditions. S1 and S2 represent the overlapping sizes of the relative frequencies
between SDHR and ordinary rainfall (S1), and SDHR and no rainfall (S2). S is the multiplication of S1
and S2. The bolded are the minimum values within its group. The parameters selected as predictors
are signed with *.

Classification Abbr. Indices Unit S1 S2 S

Moisture

PWAT *
Total

precipitable
water

mm 0.70 0.41 0.287

Q925

Specific
humidity of 925

hPa
g kg−1 0.70 0.49 0.343

RH850

Relative
humidity of 850

hPa
% 0.75 0.42 0.315

Q850

Specific
humidity of 850

hPa
g kg−1 0.76 0.44 0.334

RH700

Relative
humidity of 700

hPa
% 0.77 0.41 0.316

Q700

Specific
humidity of 700

hPa
g kg−1 0.78 0.40 0.312

DVF700

Water vapor
flux divergence

of 925 hPa

g s−1 cm−2

hPa−1 0.80 0.65 0.520

DVF850

Water vapor
flux divergence

of 850 hPa

g s−1 cm−2

hPa−1 0.90 0.78 0.702

DVF925

Water vapor
flux divergence

of 700 hPa

g s−1 cm−2

hPa−1 0.98 0.97 0.951

Instability

BLI * Best lifted index ◦C 0.52 0.47 0.244

θse925

925 hPa
potential
pseudo-

equivalent
temperature

K 0.63 0.51 0.321

θse850

850 hPa
potential
pseudo-

equivalent
temperature

K 0.64 0.45 0.288

BCAPE

Best convective
available
potential
energy

J kg-1 0.67 0.73 0.489
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Table 1. Cont.

Classification Abbr. Indices Unit S1 S2 S

T850
850 hPa

Temperature
◦C 0.68 0.66 0.449

KI* K index ◦C 0.70 0.37 0.259

DT85

Temperature
difference of

850 hPa and 500
hPa

◦C 0.92 0.90 0.828

TT Total totals ◦C 0.96 0.83 0.797

Lifting

SHR6 0–6 km vertical
wind shear m s−1 0.81 0.92 0.745

DIV925 * 925 hPa
divergence s−1 0.83 0.64 0.531

SHR3 0–3 km vertical
wind shear m s−1 0.88 0.71 0.625

DIV850
850 hPa

divergence s−1 0.92 0.90 0.828

SHR1 0–1 km vertical
wind shear m s−1 0.97 0.98 0.951

2.2. Climatology of SDHR

SDHR mainly occurred during the warm seasons. For the consistent period over
different areas of China, the SDHR between 1 May and 30 September is used. Here, we
mainly analyze the monthly variation to provide a reference for the determination of
studied months. The eight-year hourly rainfall data show that the monthly SDHR usually
peaked in June, July, or August (Figure 2). The monthly number of SDHR in May is
generally between 200 and 300. The average number is about 250. In June, the number of
SDHR increased to about 400. There are approximately 500 SDHR in July. In August, the
number of SDHR shows a slight decrease compared with July, before decreasing sharply to
about 200 in September. This variation is similar to that reported in previous studies [4,29]
and is in good agreement with the yearly variation in torrential rainfall [30].
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2.3. Selection of Predictors

The climate observation stations are mainly located in central and eastern China
(Figure 1a). There are 24 records for every station in one day, while there are only four
time moments for the NCEP reanalysis data. A temporal matching process is executed to
use the information provided by both observations and the NCEP reanalysis data. The
24 hourly rainfall records in a day are divided into four groups with the four times of 02:00,
08:00, 14:00, and 20:00 BT of the NCEP reanalysis dataset in the center. The maximum
hourly rainfall in each group is selected. Using this process, the size of the SDHR sample is
about 11,400, whereas the sizes of the no rainfall and ordinary rainfall samples are about
350,000 and 1,500,000, respectively. The values of the parameters in Table 1 at the climate
observation stations are obtained by bilinear interpolation from the grid points of the NCEP
reanalysis data. The characteristics of the parameters for SDHR, no rainfall, and ordinary
rainfall are then obtained.

We select only the most representative parameters within each group of moisture
content, instability, and dynamic lifting as predictors. The selection of predictors is based
on the common understanding that certain moisture content, some instability, and favorable
dynamical forcing are the required environmental components for SDHR. The overlapping
size of the relative frequencies of SDHR and ordinary rainfall (S1) and SDHR and no rainfall
(S2) are calculated for all parameters (Table 1). The overlapping size provides an objective
measure for the selection of predictors. A smaller overlapping size represented by S1
or S2 indicates better discrimination between SDHR and no rain, and ordinary rainfall
and SDHR, respectively. The multiplication S of S1 and S2 as an overall index for each
parameter is also obtained. A smaller S indicates better overall discrimination.

The overlapping size shows that S1 for both PWAT and specific humidity of 925 hPa
(Q925) equals 0.70. However, the S2 for PWAT is 0.41, whereas the value for Q925 is 0.49. The
S for PWAT is 0.287, while the others are greater than 0.310. The S shows that PWAT has the
overall best performance compared with the other moisture indicators. For the instability
indicators, the S1 for the BLI is 0.52, the smallest value. KI has a smaller S2. S shows that
BLI is the best overall indicator. However, the difference between BLI and KI is much
smaller. Both the BLI and KI are selected as instability indicators. For dynamic forcing, S1
values for SHR6 and DIV925 are similar, but S2 for DIV925 is much smaller than that for
SHR6. S shows that DIV925 performs best among the verified dynamic indicators. PWAT,
BLI, KI, and DIV925 are therefore selected as predictors. Figure 3 shows the distributions of
the relative frequencies of the selected predictors. It should be noted that DIV925 could not
represent the correct dynamic conditions of higher latitude areas.

Box-and-whisker plots of different hourly rainfall intensities provide clear images of
the overlapping portion, whereas the overlapping sizes of the relative frequencies provide
objective measures (Figure 3). Figure 3a shows that more than 99% of SDHR occurs in
environments with PWAT greater than 28 mm. The median PWAT for SDHR is 58 mm.
Only about 25% of ordinary rainfall events occur with PWAT greater than 58 mm, and
the percentage for no rainfall is much less than 25%. Both the BLI and KI are selected as
good indicators of instability. More than 80% of SDHR occurs when the BLI is less than
−0.6 ◦C (Figure 3b). More than 80% of the SDHR has a KI greater than 35.45 ◦C (Figure 3c),
but the percentage for ordinary rainfall is less than 50%, and for no rainfall it is much less
than 25%. The DIV925 shows that more than 80% of SDHR occurs under a negative DIV925
environment (Figure 3d). It is a favorable dynamical forcing condition.

The selected predictors are physically meaningful. Trenberth [31] shows that a large
part of the moisture had already been in the air as storms formed over areas outside
the tropics. The BLI indicates latent instability [32]. The KI has three components: the
temperature difference between 850 and 500 hPa, the 850 hPa dew point temperature,
and the difference between the 700 hPa temperature and the dew point temperature. The
temperature difference between 850 and 500 hPa itself is usually used as an instability
indicator. The 850 hPa dew point temperature is also used to indicate the absolute moisture
content at low levels. The difference between the 700 hPa temperature and the dew point
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temperature is usually used to indicate saturation. Thus, KI represents both instability
and the moisture content, making KI a good discriminator of SDHR from no and ordinary
rainfall. DIV925 is often used to characterize near-surface dynamic conditions.

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 19 
 

 

vides an objective measure for the selection of predictors. A smaller overlapping size 

represented by S1 or S2 indicates better discrimination between SDHR and no rain, and 

ordinary rainfall and SDHR, respectively. The multiplication S of S1 and S2 as an overall 

index for each parameter is also obtained. A smaller S indicates better overall discrimi-

nation. 

The overlapping size shows that S1 for both PWAT and specific humidity of 925 hPa 

(Q925) equals 0.70. However, the S2 for PWAT is 0.41, whereas the value for Q925 is 0.49. 

The S for PWAT is 0.287, while the others are greater than 0.310. The S shows that PWAT 

has the overall best performance compared with the other moisture indicators. For the 

instability indicators, the S1 for the BLI is 0.52, the smallest value. KI has a smaller S2. S 

shows that BLI is the best overall indicator. However, the difference between BLI and KI 

is much smaller. Both the BLI and KI are selected as instability indicators. For dynamic 

forcing, S1 values for SHR6 and DIV925 are similar, but S2 for DIV925 is much smaller than 

that for SHR6. S shows that DIV925 performs best among the verified dynamic indicators. 

PWAT, BLI, KI, and DIV925 are therefore selected as predictors. Figure 3 shows the dis-

tributions of the relative frequencies of the selected predictors. It should be noted that 

DIV925 could not represent the correct dynamic conditions of higher latitude areas. 

  

  

Figure 3. The box-and-whisker plots of (a) PWAT, (b) BLI, (c) KI, and (d) DIV925 for no rainfall, or-

dinary rainfall, and SDHR. The three lines of the boxes indicate the 25th, 50th, and 75th percentiles. 

The upper and lower short bars indicate the 1st and 99th percentiles, respectively. The dashed lines 

with calibrations at the upper level show the distribution of the corresponding relative frequencies 

of the samples. 

Box-and-whisker plots of different hourly rainfall intensities provide clear images of 

the overlapping portion, whereas the overlapping sizes of the relative frequencies pro-

vide objective measures (Figure 3). Figure 3a shows that more than 99% of SDHR occurs 

Figure 3. The box-and-whisker plots of (a) PWAT, (b) BLI, (c) KI, and (d) DIV925 for no rainfall,
ordinary rainfall, and SDHR. The three lines of the boxes indicate the 25th, 50th, and 75th percentiles.
The upper and lower short bars indicate the 1st and 99th percentiles, respectively. The dashed lines
with calibrations at the upper level show the distribution of the corresponding relative frequencies of
the samples.

For the selected predictors, the correlation coefficients for SDHR are also calculated.
All the correlation coefficients are significant at the 0.05 significant levels with the two-tailed
test of significance. The highest correlation coefficient is 0.5406 and is given by PWAT
and KI; the absolute values of the other correlation coefficients are all less than 0.35. The
correlation coefficients indicate that the selected predictors are not strongly correlated and
are representative of the environmental conditions characterized.

2.4. Fuzzy Logic Algorithm for the Probability of SDHR

The distribution of relative frequencies of the three-hourly rainfall intensities for a
specific predictor shows that the recognition of SDHR from both ordinary rainfall and
no rainfall conforms to the fuzzy set theory. Fuzzy logic is an extension of set-theoretic
multivalued logic [33] that can deal with problems relating to ambiguous and imprecise
judgments. Fuzzy logic algorithms have been used in the nowcasting of convection,
the prediction of lightning and afternoon thunderstorms, and the identification of radar
echoes [34–37]. However, there is no report of the application of the fuzzy logic algorithm to
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the prediction of short-term SDHR. By adopting the fuzzy logic algorithm, the probability
of SDHR (Ps) with selected predictors can be derived as:

Ps =
∑i=n

i=1 fiwi

∑i=n
i=1 wi

(1)

where n is the number of predictors (n = 4 in this study), wi is the corresponding weight of
the ith parameter, and fi is the membership function of the ith parameter.

There are several ways to obtain the membership functions [35–37]. We adopted the
membership functions using a piecewise linearization method by dividing the selected
predictors into five grades based on the 20th, 40th, 60th, and 80th percentiles (Figure 4). A
piecewise linearization method is a way to approximate a nonlinear objective function by
adding extra binary variables, continuous variables, and constraints [37]. The piecewise
linearization method is used arbitrarily due to the difficulty in defining proper membership
functions to distinguish SDHR from ordinary rainfall and no rainfall simultaneously. With
the piecewise linearization method, the five membership function grades 0.2, 0.4, 0.6, 0.8,
and 1.0 are arbitrarily fixed (Figure 4). The relative strength could be represented with this
piecewise linearization method. Taking PWAT and BLI as examples, a higher PWAT means
an environmental condition with more moisture content, while a smaller BLI indicates a
more unstable atmospheric environment. Statistics show that there are some thresholds if
SDHR is expected. The fuzzy logic algorithm is applied only if these thresholds are met.
Table 2 shows that the thresholds should be fulfilled to reduce the number of false alarms.
The precipitation provided by the NCEP GFS is also used as a threshold (Table 2). Most
thresholds are obtained by calculating the fifth percentile (the 95th percentile for the BLI
and DIV925).
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Table 2. Thresholds of parameters used to define SDHR.

Abbrev. PWAT RH850 BLI KI DIV925 T850 TP

Unit mm % ◦C ◦C S−1 ◦C mm
Threshold ≥30 ≥70 ≤0.96 ≥32.0 ≤1.0 × 10−5 ≥15 ≥1.0

The determination of weights is also important. By setting a weighted step of 0.1,
84 groups of feasible weight settings are executed. No zero weight is allowed to follow,
on the basis that moisture content, instability, and lifting force are all necessary for SDHR,
although the BLI and KI are both considered to be instability indicators. Another specific
group with an assigned equal weight of 0.25 is also examined for comparison.

With the results mentioned above, the fuzzy logic algorithm is executed grid by grid.
The procedure is as follows:

Step 1: The obtaining of the physical quantity fields of the predictors provided by
NWP models at a given forecast moment.

Step 2: The check of thresholds according to Table 2. Grids values that do not meet the
thresholds given in Table 2 are judged as not favoring SDHR.

Step 3: The obtaining of fuzzy sets according to Figure 4. The physical quantity fields
of the predictors are transformed into fuzzy sets between 0.0 and 1.0. It is a normalization
process of predictors.

Step 4: The obtaining of the weights. There are up to 85 weight groups estimated in
this study.

Step 5: The obtaining of the SDHR probability according to Equation (1).
SDHR probability field at a given forecast moment is obtained by executing steps from

1 to 5.

2.5. Evaluation Method

Prediction within 96 h with three-hour intervals between 1 April and 30 September,
provided by NCEP GFS 1◦ × 1◦dataset, a coverage of later spring, a whole summer, and
the early autumn, in 2015, initialized at 08:00 BT, is obtained. For ease of comparison
with the operational SDHR forecasts, the 12-hour interval SDHR forecasts are obtained by
comparing the five three-hour interval forecasts. The highest probability is considered to
be the 12-hour SDHR probability for every grid.

A spatial verification method is adopted that considers the dependence of extreme
convective rainfall on the gauge network density. Schroeer et al. [38] shows that operational
gauge networks underrate extreme convective rainfall falling over small areas. With the
spatial verification method, the AWS observations within 40 km of verification stations are
searched [21,22]. The hourly rainfall reported by the 1827 verification stations (Figure 1a)
and the AWS (Figure 1b) is used during the verification period. If both the verification
stations and the AWS within 40 km report no SDHR, it is considered as no SDHR; otherwise,
SDHR is confirmed. This approach will, to some extent, compensate for a failed detection
as a result of the spatial scale of local SDHR. The bilinear interpolation method is adopted
to obtain the forecast results of the verification stations.

Using the preprocessed SDHR observations and predictions, the performance of the
probabilistic SDHR forecast is evaluated with thresholds at 2.5% increments to create a
contingency table. Taking 2.5% as an example, the stations with a probability greater than
2.5% are considered as yes forecasts. Otherwise, they are considered as no forecasts. Then,
hits, false alarms, misses, and correct rejections denoted by H, FA, M, and CR (Table 3) are
calculated. For the operational SDHR forecasts, the verification stations located within
the predicted areas are taken as yes forecasts. Otherwise, no forecasts are confirmed.
Skill scores are then computed for the objective and operational SDHR forecasts. Metrics
including the critical success index (CSI), the bias, the probability of detection (POD), and
the false alarm rate (F) are used. The calculations are as follows:

CSI = H/(H + FA + M) (2)
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Bias = (H + FA)/(H + M) (3)

POD = H/(H + M) (4)

F = FA/(FA + CR) (5)

Table 3. The 2 × 2 contingency table for yes/no categorical verification.

Observation

Yes No

Forecast
Yes H (hit) FA (false alarm)
No M (miss) CR (correct rejection)

3. Evaluation of Results
3.1. Evaluation for 00–12 h Forecasts

The 00–12 h forecasts show skillful performance compared with the operational SDHR
forecast measured with the maximum CSI. The maximum CSI for all 85 groups varies
between 0.31 and 0.32, around a probability of 20% (Figure 5a). The reference CSI is 0.24, the
maximum value for the operational SDHR forecasts issued at different times [18]. However,
the corresponding bias of the maximum CSI for each group is about 1.5, indicating an
overestimate (Figure 5b). All the groups have unbiased results around the probability of
about 40%. The CSI around this probability is about 0.28, a higher score than the reference.
The bias for each group of weight settings decreases as the probability increases. However,
the trends for the CSI of different groups are different (Figure 5a). The groups with higher
maximum CSI values do not always surpass the others as the probability increases. Thus,
the average CSI (CSIave) values for all 85 groups are calculated to understand the general
performance of each group. The CSIave for each group is calculated by dividing the sum
CSIs of every group at continuous probability points, as shown in Figure 6, by the total
number of probability points. The five top groups with the highest maximum CSI and
highest CSIave are colored in red and blue, respectively (Figure 5). The five top groups with
the highest maximum CSI have a higher bias than the five groups with the highest CSIave
at almost every probability.

Table 4. Weights of groups with the maximum CSI and CSIave for the 00–12 h forecast. No. 1–5 are
listed with maximum CSI, while NO. 6–10 are listed with maximum CSIave. No. 11 in the group is
assigned with equal weights. The Bias, POD, and FAR that correspond to the CSI are also given. The
maximum CSI and CSIave are bolded. The maximum weight values of each group are also bolded.

No.
Weights Skill Scores

PWAT BLI DIV925 KI CSI CSIave Bias POD FAR

1 0.1 0.7 0.1 0.1 0.3202 0.2426 1.376 0.576 0.1234
2 0.2 0.6 0.1 0.1 0.3201 0.2357 1.416 0.586 0.1281
3 0.1 0.6 0.1 0.2 0.3199 0.2377 1.413 0.585 0.1278
4 0.1 0.5 0.1 0.3 0.3197 0.2333 1.339 0.567 0.1190
5 0.2 0.5 0.1 0.2 0.3197 0.2310 1.398 0.581 0.1261
6 0.1 0.1 0.7 0.1 0.3120 0.2501 1.477 0.589 0.1370
7 0.1 0.2 0.6 0.1 0.3130 0.2482 1.476 0.590 0.1367
8 0.1 0.3 0.5 0.1 0.3144 0.2465 1.475 0.592 0.1363
9 0.1 0.4 0.4 0.1 0.3157 0.2450 1.471 0.593 0.1355

10 0.1 0.1 0.6 0.2 0.3126 0.2443 1.456 0.585 0.1344
11 0.25 0.25 0.25 0.25 0.3165 0.2273 1.457 0.591 0.1269
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Figure 6. Variation of (a) CSI and (b) bias for 00–12, 12–24 . . . 72–84, and 84–96 h probabilities of
SDHR for the groups with the highest maximum CSI and the highest CSIave during the 00–12 h
forecasts. The dashed horizontal line in Figure 6a represents the reference CSI.

The weights can be divided into two groups according to the proportional distribution
(Table 4). The weights of the BLI and DIV925 play important roles for the groups with the
highest maximum CSI and CSIave, respectively. For the five groups in which the weights
of the BLI are much higher than the others (Table 4), the DIV925 weights are 0.1. The
portion of instability is increased for better SDHR results. The maximum CSI for the top
five groups with the highest maximum CSI is about 0.320, and the corresponding bias is
about 1.4. The POD is about 0.580, and the FAR is less than 0.130, indicating skillful results.
Different results are obtained for the groups with the highest CSIave. The maximum CSIave
is 0.250 (No. 6 in Table 4), better than the reference. DIV925 has higher weights for the five
groups with the highest CSIave. The difference in the weights for instability and dynamical
forcing leads to different performances of the highest maximum CSI and highest CSIave.
Table 4 also gives the group assigned equal weights, although this is not included in the top
10. It should be noted that even with the assigned equal weights, the maximum CSI and
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corresponding index are much the same as the others. The importance of different weights
is not as important as previously thought.

3.2. Evaluation of Longer Period Forecasts

The longer period forecasts for the weights of the highest maximum CSI and highest
CSIave during the 00–12 h forecasts are evaluated. The maximum CSI for the forecasts
covering the daytime (e.g., 00–12, 24–36, 48–60, and 72–84 h) is higher than the reference
CSI (Figure 6a). The maximum CSI for the nighttime forecasts (e.g., 12–24, 36–48, 60–72,
and 84–96 h) is different. The maximum CSI of both groups for the 12–24 h forecasts is
better than the reference. The maximum CSI for the 36–48 h forecast is almost the same as
the reference. However, the maximum CSI for both groups’ 60–72 and 84–96 h forecasts is
smaller than the reference. The bias indicates the dependence of performance on daytime
and nighttime (Figure 6b). The biases in the nighttime forecasts are higher than those in
the daytime forecasts for the same probability. The diurnal variation of SDHR could cause
the difference between daytime and nighttime on verification. SDHR over eastern China
mainly occurs during the daytime [4,29,39].

The afternoon peak of SDHR is caused by the local thermal forcing [7,40]. The max-
imum atmospheric instability in the afternoon that originated from solar heating is the
immediate cause [40]. The afternoon maximum atmospheric instability has been frequently
observed. The NCEP reanalysis data are only four times a day at 02:00, 08:00, 14:00, and
20:00 BT. The peak of SDHR is around 18:00 BT [39], just the middle of 14:00 and 20:00 BT.
The diurnal variation of detailed characteristics could not be fully revealed by the NCEP
reanalysis data as the daily cycle of precipitation shows [41,42]. However, the reference
value is surpassed by both weight groups within 60 h though the diurnal variation of
the SDHR.

4. Performance for Oceanic and Continental Events

The performance of the two events that occurred under oceanic and continental
environmental conditions is assessed. The first event was the typhoon Soudelor, which
occurred on 8 August 2015. Accurate forecasting of convective precipitation produced
by typhoons is still a great challenge [43]. The second event, which occurred on 15 May
2015 over southern China, is a typical spring event caused by a low-level convergence
line combined with a mid-level short trough. Accurate forecasting of heavy rainfall that
happens under similar synoptic patterns is still challenging due to intense convection. The
selected cases represent two SDHR regimes: oceanic and continental [44]. The different
environmental conditions for SDHR show the applicability of the new method.

The NCEP GFS data are also used to obtain the SDHR probabilities and environmental
conditions. The spatial resolution is 1◦ × 1◦. SDHR observations reported by all available
weather stations are displayed.

4.1. The Typhoon Soudelor on 8 August 2015

The synoptic pattern had been effectively predicted several days in advance. Here,
we focus mainly on the 24-h SDHR forecasts valid at 20:00 BT on 8 August 2015. The
predicted 850 hPa wind field (Figure 7a) shows that the maximum westward wind was
greater than 40 m s−1. A large area had a negative DIV925, indicating favorable low-level
forcing conditions. The minimum DIV925 was less than −10 × 10−5 s−1 north of the center
of Soudelor (Figure 7a). A relatively large area of DIV925 can be characterized as moderate
to strong and strong. For the area with a negative DIV925, the PWAT was greater than 49
mm, and the maximum PWAT was greater than 70 mm (Figure 7b), with the center located
over the seas. The PWAT can also be characterized as moderate to strong and strong grades.
The KI delivers similar information to the DIV925 and PWAT (Figure 7c). However, the BLI
is between −2.5 and 1 ◦C in the main body of Soudelor (Figure 7b), which can be ranked
only as moderate and weak to moderate. The environment provided at this time can be
characterized by strong dynamical forcing, strong PWAT, and weak to moderate instability.
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Figure 7. The 24-h synoptic pattern and parameter distribution valid at 20:00 BT on 8 August 2015
predicted by the NCEP GFS; (a) 925 hPa divergence (10−5 s−1, negative shading with legend at right),
850 hPa wind field (where a half-bar represents 2 m s−1, a full bar represents 4 m s−1, and a flag
represents 20 m s−1), temperature (red line, ◦C), and 500 hPa isobars (solid black line). (b) The PWAT
(shaded with legend at right) and BLI (dashed black lines, ◦C). (c) The KI (shaded with legend at
right) with the 850 hPa relative humidity greater than 70% (black solid line, %). The thresholds used
for the key parameters are the same or close to that given in Figure 4.

Under the predicted environmental conditions, the area with high probabilities of
SDHR is mainly located in the north of Soudelor, in the southeastern coastal area of China
(Figure 8). Most of the SDHR reported by AWS is predicted well. There should be much
SDHR that occurred over the seas but no records are available. Figure 8a,b show the SDHR
forecasts for the weights of maximum CSI and the maximum CSIave. As a comparison, the
averaged SDHR probability and the corresponding standard deviation of the 84 groups are
also given (Figure 8c,d). For this case, the maximum CSIave weight group performs better
than the maximum CSI weight group. Even the averaged SDHR probability shows good
performance. Still, there are some misses and false alarms. The standard deviation is much
smaller over the predicted field, indicating a relatively small variance between different
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weight settings. It is reasonable because the predicted large-scale environmental conditions
are determined for a fixed time.
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Figure 8. Comparison of the predicted 24-h SDHR probability (shaded) valid at 20:00 BT on 8 August
2015; (a) is for the maximum SCI group with weights of No. 1 in Table 4, (b) is for the maximum
SCIave group with weights of No. 6 in Table 4, (c) is the average of the 84 groups, and (d) is the
corresponding standard deviation of (c). The available SDHR observations reported by AWS from
17:00 to 23:00 BT on 8 August 2015 are shown as purple dots. The solid lines in each panel are the
NCEP-GFS-predicted six-hour rainfall accumulation (mm) from 17:00 to 23:00 BT on 8 August 2015.

4.2. The Spring Event over Southern China on 15 May 2015

The 15 May 2015 example is a typical spring SDHR event. The 48-h prediction of
the synoptic pattern shows that a cold low is located in northeast China. The cold air to
the south of the cold low encounters warm, moist air as it moves into southern China,
and a shear line is formed at lower levels (Figure 9a). The DIV925 along the shear line
is between 1 × 10−5 and −5.0 × 10−5 s−1, measured as favorable dynamical forcing
conditions (Figure 4a). The moisture content measured by PWAT is greater than 50 mm
over a large area, with a maximum PWAT of about 60 mm (Figure 9b). The PWAT can
only be measured as moderate. A large area over the north is unfavorable for SDHR as the
moisture content indicated by PWAT is lower than required. The instability indicated by
the BLI shows moderate to strong and strong unstable atmospheric conditions (Figure 9b).
The instability over a large area can also be classified as moderate to strong and strong, even
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measured by KI (Figure 9c). The environmental conditions can be recognized as strong
dynamical lifting, strong instability, and only moderate moisture content.
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Figure 9. The 48-h synoptic pattern and parameter distribution valid at 20:00 BT on 15 May 2015
provided 48 h in advance by the NCEP GFS dataset; (a) 925 hPa divergence (10−5 s−1, negative
shading with legend at right), 850 hPa wind field (where a half-bar represents 2 m s−1, a full bar
represents 4 m s−1, and a flag represents 20 m s−1), temperature (red line, ◦C), and 500 hPa isobars
(solid black line). (b) The PWAT (shaded with legend at right) and BLI (dashed black lines, ◦C).
(c) The KI (shaded with legend at right) with the 850 hPa relative humidity greater than 70% (black
solid line, %).

With these predicted environmental conditions, a large area is predicted to be at a high
probability of SDHR. Much SDHR is reported by AWS located in the areas with a certain
probability, but there are false alarms. The maximum CSIave weight group has higher
probabilities at a great area compared with the maximum CSI weight group (Figure 10).
The averaged SDHR probability of 84 groups shows many similar results. The standard
deviation (Figure 10d) is much smaller over the predicted field, indicating a relatively small
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variance. The misses and false alarms of SDHR, in this case, indicate there is still some
room for improvement.
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Figure 10. Comparison of predicted 48-h SDHR probability (shaded) valid at 20:00 BT; (a) is for the
maximum CSI group with weights of No. 1 in Table 4, (b) is for the maximum CSIave group with
weights of No. 6 in Table 4, (c) is the average of the 84 groups, and (d) is the corresponding standard
deviation of (c). The available SDHR observations reported by AWS from 17:00 to 23:00 BT on 15 May
2015 are shown as purple dots. The solid lines in each panel are the NCEP-GFS-predicted six-hour
rainfall accumulation (mm) from 17:00 to 23:00 BT on 15 May 2015.

5. Conclusions and Discussion

SDHR can be predicted from environmental conditions. However, the relative im-
portance of instability, moisture content, and dynamic lifting varies between events. We
introduce here an objective forecasting method for SDHR, taking the ingredients-based
methodology. The approach is based on the common view that the moisture content, the
instability, and the dynamical forcing are necessary ingredients for SDHR. The parameters
indicating different aspects of the environmental conditions are chosen as predictors by
comparing the discrimination of SDHR from both no rainfall and ordinary rainfall from the
candidate parameters. A fuzzy logic approach using the selected predictors is adopted, and
the probability of SDHR with various weight settings is evaluated. The objective SDHR
products show strong positive skills within 60 h compared with the reference. Although
weights for the SDHR with the highest maximum CSI and highest CSIave are much differ-
ent, the case studies show similar patterns for the SDHR probabilities, indicating that the
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pattern of the SDHR probability is mainly determined by the environmental conditions
rather than the weights.

The significant improvement compared to the reference could be determined by the
intrinsic property that the various combinations favorable for SDHR could be covered.
Luo et al. [3] summarized four main synoptic patterns leading to extreme hourly rainfall
over China. The four synoptic patterns are far from enough to cover all the possible
combinations. There might be no two synoptic patterns that are the same. The relative
importance of the moisture content, instability, and dynamical lifting in a specific case can
be seen. The obtaining of SDHR probability with the piecewise linearization of predictors
reveals that the ingredients of moisture, instability, and lifting are complementary. The
weakness of one ingredient could be made up for by the strengthening of the other one
or two ingredients. The studied two case examples provide notable proof of this. Of the
studied two cases, the notable environmental features for typhoon Soudelor would be
the strong low-level convergence and the huge amount of water vapor content. For the
ingredient-based methodology, the lack of enough instability does not favor heavy rainfall.
The objective forecasting results show even weak to moderate instability is enough for a
high probability of SDHR. Compared to the typhoon case, the second has strong lifting
conditions and strong instability, but only moderate moisture content. It is one of the most
challenging conditions the forecaster faced in spring. We can see the SDHR probability is
still high. However, there is an overestimate. The forecasters can be remaindered in the
short term. It is unimaginable for the manually produced SDHR forecasts to have similar
coverage. The objective forecasting method provides evidence for the ingredients-based
methodology that “sufficiency” is relative [45]. The insufficiency of a specific ingredient
could still be strong enough to produce SDHR when coupled with the other ingredients
with appropriate strength.

The representativeness of selected predictors is also important. Of the predictors used
in this study, the BLI only represents the latent instability. KI is also used as an indicator of
latent instability, although it has a two-way meaning. For the dynamic conditions, only the
large-scale DIV925 is currently recognized as dynamical forcing. Local terrain effects [46]
playing important roles in local SDHR are not taken into consideration. Even the local
small-scale terrain can slow down the movement of surface weak convergence lines and
enhance the temperature difference, and finally forms the local environment conditions
favoring SDHR [8]. Application to high-resolution models could improve the influence of
local terrain effects. Due to this incomplete coverage of the atmospheric environmental
conditions, some of the SDHR could not be well predicted. More work should be carried
out to improve the objective method and give it more wide applicability.
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