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Abstract: This paper presents the results from field measurements and household surveys on the
severity of indoor mold risk and its impact on respiratory health in a typical unplanned neighborhood
of kampungs in Bandung, Indonesia. Mold risk was investigated using fungal risk detectors (n = 102),
while air pollution levels were established with total suspended particulate (TSP) and particulate
matter (PM2.5) (n = 38). The self-reported prevalence of respiratory diseases was obtained using a
questionnaire form (ATS-DLD-78) (n = 599). The results showed that respiratory health problems
were higher in the rainy season, particularly among children. Most houses suffered from severe
mold risk, primarily due to extreme humid weather conditions, especially during rainy season (97%)
where water leakage was prevalent (60%). In addition, the TSP and PM2.5 concentrations exceeded
the WHO standards in most kampung houses, where around 58% of the houses recorded higher
outdoor mean PM2.5 concentrations than indoors. Further, the path analysis showed that allergies
followed by humidity rate and smell, which were affected by window-opening duration, directly
impacted children’s respiratory health. Smoking behavior and building-related health problems,
due to exposure to outdoor air pollution, affected the respiratory health of those aged 15 years old
and over.

Keywords: dampness; mold; respiratory health; tropics; kampung

1. Introduction

People spend most of their time (90%) indoors [1]. Therefore, indoor air quality (IAQ)
becomes crucial to address the health and well-being of the occupants. In particular, in
developing countries, occupants in residential buildings can be exposed to a complex mix
of air pollution not only from indoor sources but also from outdoor sources [2]. Building
dampness is one of the causes of IAQ problems that commonly occur in many countries [3–7].
Common built-environment related challenges, such as dampness in housing, have been
thoroughly associated with numerous adverse health symptoms, particularly of the respiratory
system, including (i) aggravation of asthma, (ii) increased occurrence of wheezing, coughing
and other respiratory symptoms, (iii) increased rate of upper respiratory infections, and
(iv) irritation of airways [7]. There are observable qualitative signs of current or/and past
dampness, including visible mold spots, water damage or leakage, floor moisture, visible
damp spot, and condensation on windows [8–11]. Intermediate flood incidents and high
humid weather conditions are often ideal for indoor mold growth, imposing severe concerns
about the possible adverse direct and indirect health effects associated with indoor mold
exposure. Though not many, there are several examples of evidence proposed that the indoor
mold growth and subsequent human exposure to spores, as well as to mold cell wall proteins,
may cause occupant health problems [3–6,8,11–17], especially diseases related to asthma and
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allergic [18–23]. On the other hand, outdoor air pollution (e.g., SO2, NO2, O3, and PM) can
increase the risk and incidence of IAQ problems. Outdoor air pollution is still increasing
in most developing countries primarily due to industrialization and urbanization [24]. In
addition to indoor ventilation conditions, occupant behavior, including window-opening
behavior [25], indoor smoking habits [26], and ventilation-related behavior, such as installation
of active cooling devices [27], also modifies indoor mold growth and IAQ levels.

The world’s fastest population and urban growth are experienced in Southeast Asian
cities [28]. Indonesia has a population of more than 250 million as of today, and it is
continuously rising, particularly in urban areas. However, many parts of the cities still
comprise traditional unplanned houses, the so-called kampungs. Most kampung houses
are tiny, detached houses constructed by non-professional workers in densely crowded
settlements. Despite the different definitions, the term, kampung, can be translated as an
urban village. The houses in kampungs vary in size and wealth, and it is possible to see
many different house types in the same kampung [29]. Moreover, houses in kampungs
still carry community behaviors and build characteristics of rural life, i.e., close family
ties, rich social connections (leading to a high sense of ownership), and irregular and
informal building environments [30]. This morphology of a kampung leads to an urban
microclimate, where relative humidity (RH) is often significantly higher compared to other
urban areas, which was measured at 74–91% in the dry season, especially in Bandung [31].
Dampness and mold are, therefore, commonly seen in kampungs, particularly during the
rainy season and seasonal floods, and thus adverse health effects, especially respiratory
diseases, are suspected among residents.

Bandung has significantly evolved from a small-sized city to an extensive and popu-
lous city, where the urban economic activities have expanded, together with the develop-
ment of residential areas, businesses, and basic infrastructures [32]. Currently, Bandung is
the third-largest city in Indonesia, where there are 121 neighborhoods, which are catego-
rized as kampungs. Whereas the proper urban infrastructure has not yet been provided,
most kampungs are highly dense, resulting in irregular grid patterns and chaotic neigh-
borhoods. Bandung also experienced an increase in average air temperature, urban heat
island phenomenon, and high humidity level [31,33]. Furthermore, compared to Jakarta
and Surabaya (the first and second-largest cities in Indonesia), there were fewer Kampung
Improvement Programs (KIP) implemented in Bandung [34]. Therefore, these conditions
made it essential to investigate Bandung as the study area where the dampness and IAQ
problems might occur in unplanned houses, kampungs.

Previous studies analyzed IAQ and dampness, mainly focusing on the region of
the global north [7,35] and four-season counties [36], which have very distinct climatic
features compared to the tropics. The limited studies related to this topic within the topics
focused on non-residential buildings, such as schools and offices, with children as the
primary samples [37–41] had limitations in the assessment method, which was based
on self-reported information [23] and focused only on investigating the current indoor
environment condition of the schoolchildren’s houses [42]. Meanwhile, this study applied
a combination of objective measurements and self-reported surveys to assess dampness in
health-related epidemiological studies [43] and investigated the influential factors that affect
occupants’ respiratory health among children, youths, and adults. This study investigates
the health status and living environment of typical dense unplanned houses, kampungs,
where dampness and health problems, especially respiratory diseases, are suspected among
the residents. The study analyzed the correlation of the living environment in kampung,
such as dampness, mold, and air quality, to a respiratory health condition through a
statistical analysis. In Section 3, first, we analyze the respiratory health of the occupants
and the results of field measurements to reveal the current conditions. Second, the factors
affecting respiratory health and the relationship between the physical environments and
behavior are analyzed.
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2. Materials and Methods

Bandung is the provincial capital city of West Java that is considered one of the
densest cities in Indonesia [44]. A typical kampung neighborhood in the center of Bandung,
Kampung Pasteur, comprising 360 households, was selected as the case study area. These
unplanned houses accounted for 68.5% of the total existing housing stocks in Bandung [45].
It is located close to the main street, in the business district with a large shopping mall
and traditional market nearby. The roads in the kampung were narrow, barely wide
enough for one motorcycle to pass (Figure 1). The total area is 5.3 hectares, comprising
six RTs (sub-neighborhoods). After obtaining consent from the head of the neighborhood
association, the first field measurements and interviews were conducted during the dry
season (September–November 2018) and the rainy season (March–April 2019). The second
additional field measurement of particulate matter (PM) and total suspended particulate
(TSP) was conducted in the next dry season (September–November 2019) based on the
result of the first measurement. We interviewed a total of 599 respondents, i.e., 333 and
266 residents in dry and rainy seasons, respectively. These respondents were randomly
chosen by visiting the houses in every certain interval. A total of 102 samples who agreed to
participate in the measurement were selected for field measurements of mold risk (potential
mold growth in the measured area), air temperature (AT), and relative humidity (RH),
whereas 38 houses were selected for TSP and PM2.5 measurements (Table 1). These surveys
and measurements were conducted before the COVID-19 pandemic and, therefore, there
was no influence on the results.
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Figure 1. Layout of kampung and outdoor and indoor views of kampung case study area.

Table 1. Number of samples.

Samples Dry Season
(September–November 2018)

Rainy Season
(March–April 2019)

Dry Season
(September–November 2019) Total

Questionnaires ATS-DLD-78 333 266 - 599
Measurements Mold risk 34 34 34 102

TSP and PM2.5 38 38
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2.1. Questionnaire Survey: Household Attributes and Self-Reported Health Conditions

The face-to-face interviews were conducted using a questionnaire form, based on the
American Thoracic Society-Division of Lung Diseases (ATS-DLD-78) [46]. The ATS-DLD
questionnaire has been widely used in the literature to investigate general respiratory
health [47–49]. Information about personal attributes, occupational history, building char-
acteristics, cleaning habits, window-opening behavior, and tobacco smoking habits was
inquired (Table 2). Interior features, including envelope features and ventilation conditions
were additionally recorded. Self-reported health symptoms of cough, phlegm, wheezing,
breathlessness, chest colds, and chest illnesses were reckoned by yes/no questions. Simi-
larly, the occurrence of mold, mites, and water leakage were also self-reported by yes/no
question based on the observation of the respondents. The whole survey was carried out
for two target groups, children under 15 years old and youths, and adults and seniors of
15 years old and over. The questions were slightly different between these two groups;
for children, questions about allergies were added, and for adults, questions about work
history and smoking habits were added.

Table 2. Questions interviewed for households.

Questionnaire Factors/Scales Details

House’s and
respondent’s information

Personal
attributes

Age, gender, occupation, asthma (past/present), eczema (past/present),
allergic symptoms (past/present), stress level (10-point scale), other diseases

Household
attributes

Established year, living duration, cleaning habits, furniture conditions,
household income

Indoor air quality
Smell sensation (past/present), humidity sensation (10-point scale), mold
and water leakage occurrence (past/present), mite observation
(past/present), air quality sensation (indoor and outdoor, 10-point scale)

Detailed cooling behavior Windows-opening behavior, AC and fan availability and usage

2.2. Field Measurement: Indoor and Outdoor Air Quality

Various types of sensors with data loggers were deployed in the dwelling units to gain
insight into air pollution and mold conditions (Table 3). The air temperature and humidity
sensors were validated by comparing with the Asman thermometer by the researchers,
whereas the dust meters and the fungal risk detectors were validated in the manufactures
before the measurement. The mold risk measurements were taken at approximately 10 cm
above the floor in the master bedroom during the dry and rainy seasons, respectively
(Figure 2b). The sampler was kept in a dry place with silica gel before the measurement.
The measurement was conducted by exposing the fungal risk detector to the ambient
environment for two days to four weeks, followed by keeping the detector in a container
with silica gel to stop the growth of the hyphae. This sample was then sent to the laboratory
for mold prediction in Japan. Fungal contamination was predicted using a fungal risk
detector developed by Abe [50], which is a device containing the dried fungal spores,
which have different sensitivity to RH (moderately xerophilic Eurotium herbariorum J-183,
strongly xerophilic Aspergillus penicillioides K-712, and hydrophilic Alternaria alternate S-78)
and nutrients. The number of the response unit, ru, was determined from the length of
hyphae in each sensor [51,52]. The fungal index, defined by Abe [50], quantifies the capacity
for mold growth in the environment being examined. Therefore, similar to the previous
study [53], it was considered one of the valuable indices for evaluating microclimates for
potential mold growth in buildings, although a moisture meter is commonly used in the
measurement of a given surface on the other hand [54] (p. 5). AT and RH were measured
simultaneously using a sensor (T&D 72ui, 72wf & 73u) at five minutes intervals for seven
days. Meanwhile, a digital dust meter (SIBATA, LR-5R) was also deployed to measure
the TSP and PM2.5 at 1.1 m above the floor in indoor (bedroom) and immediate outdoor
environment for 24 h with an interval time of one minute (Figure 2a,c). This device applied
a dust indicator based on the light scattering methods, which enabled the calculation of
particles and fumes that can output the average particle size in air based on the specific
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sensor for particle size [55]. It is suitable for a measurement in a specific location for an
extended period [56]. The outdoor measurement was recorded in front of the house at a
roofed place facing the front alley.

Table 3. Instruments for field measurement.

Measured Variable Instrument Model Accuracy

Air temperature,
relative humidity T&D TR-72Ui

Accuracy: ±0.3 ◦C, ±5% RH
Resolution: 0.1 ◦C, 1% RH
Range: 0~50 ◦C, 10~95%

Air temperature,
relative humidity, air pressure T&D TR-73U

Accuracy: ±0.3 ◦C, ±5% RH
Resolution: 0.1 ◦C, 1% RH, 1 hpa
Range: 0~50 ◦C, 10~95%, 750~1100 hpa

TSP, PM2.5
SIBATA LD-5R

cyclone granulator for PM2.5

Accuracy: ±10% (relative to standard particles)
Range: 0.001~10,000 mg/m3 (for standard particles)

Mold risk Fungal risk detector

The error range for mold index measurement at constant
temperature and humidity is a few percent (up to 20 percent).
Measurable range: fungal index from 8 to 70.5 for one week
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(b) fungal risk detector for mold risk measurement, and (c) PM2.5 and TSP sensor installed indoor.

2.3. Statistical Analysis

A path analysis using the results of the questionnaire survey was performed to find
the causal structure, influencing particularly the persistent cough among the Kampong res-
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idents in Bandung. Here, the self-reported respiratory disease symptoms were considered
as the dependent/objective variable. The path analysis clearly presents the strengths of
mathematical relationships between variables, which helped to simultaneously assess the
structure of relations among variables [57]. In order to depict the relationships between vari-
ables, this method uses various types of models, based on the hypothesis of the researcher.
Direct and indirect relationships among variables are the parameters used to describe the
amounts of variances. In this study, first, a linear regression analysis was conducted to
find the hypothesis variables involved in the path analysis model. The regression analysis
was conducted from the dependent variable (downstream) to the upstream (explanatory
variables/independent variables). Second, the path analysis was conducted based on the
results of the linear regression. The best fit model was found by trial and error based on
the indicators, including CFI (>0.8), RMSAE (<0.05), and chi-square values of the model.
All the statistical analyses were conducted using the SPSS program.

3. Results and Discussion
3.1. Household Survey

Table 4 demonstrates that the average age of respondents was 36.3 years old, with
17.9% of children aged under 15 years old. Male respondents were more frequent than
females (52.3/47.7%) in the children group, whereas female respondents (44.7/54.5%)
prevailed in larger numbers in the group of 15 years old and over. It is noted that working
population is defined to be 15 years old and over in Indonesia [58]. These demographic
profiles almost correspond with those of the general Indonesian population, in which the
percentage of children was 26.8% and the male/female ratio was 51.1/48.9% for children,
while that for 15 years old and over was 49.9/50.1% [59]. The majority of the respondents
(56.3%) belonged to the income group of USD 150–450, whereas the average monthly
household income in Bandung was approximately USD 190 [60].

It was observed that the respondents tended to open windows for approximately 9 h in
the bedroom and 12 h in the living room, particularly during the daytime. Approximately
46.2% of the respondents (active; 31.9%, passive; 36.5%) were exposed to environmental
tobacco smoke (ETS) during the dry season, while more than 62.9% (active; 50.0%, passive;
47.1%) were exposed to those during the rainy season. The main difference between active
smoking and passive smoking is the type of smoke inhaled. Active smoking breathes in
the mainstream smoke (MSS) during a puff, whereas the passive smoker inhales the smoke
generated by the lit cigarette between two puffs (SSS) and the smoke exhaled by an active
smoker (EXS) [61]. Children are commonly exposed to the environment where there is an
adult smoker around them, which categorizes them as a passive smoker. It is a frequent
habit in Southeast Asia, where the smoking rate is 29.0% [62].

As indicated in Table 5, the sample size for the dry season was 333, whereas that for
the rainy season was 266. As shown, there was little difference between the two samples in
terms of socio-economic profiles, such as gender, age, income as well as building age, and,
therefore, these two samples are considered comparable. Among the whole sample, the
average building age was 40.7 years, with 36.5% of more than 50 years old. It should be
noted that, overall, approximately 24.8% and 32.1% of houses did not have any windows
in the master bedroom and the living room, respectively.

Dampness was prevailed in the kampung houses. Visible mold was reported in 48.9%
of the houses, whereas 64.0% of dwellings in the children group indicated the presence of
mold. Furthermore, about 18% of houses reported mite problems; water leakage (59.9%)
along with smell and odor (60.6%) was reported, particularly in the rainy season. Overall,
IAQ was perceived to be ‘dirty’ by 15.3% of the respondents of 15 years old and over and
18.7% of those under 15 years old; about 19.3% (≥15 years old) and 12.0% (<15 years old)
of the respondents perceived outdoor air quality (OAQ) to be ‘dirty’. Approximately 10.1%
of the respondents expressed the feeling of being annoyed by the outdoor air pollution.
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Table 4. Profile of respondents.

Whole <15 Years ≥15 Years
Sig.

Dry Season Rainy Season
Sig.

n = 599 n = 101 n = 497 n = 333 n = 266

Personal attributes

Age Years (mean) 36.3 6.9 42.4 0.000 35.9 36.9 0.617
Duration Years (mean) 26.4 22.9 26.8 0.036 28.3 23.6 0.005

Gender (%) Male/Female 45.8/53.5 52.3/47.7 44.7/54.5 0.020 45.1/53.6 46.7/53.3 0.824

Income (US$) (%)
<150 27.9 23.1 28.8

0.076

34.9 18.8

0.984150–450 56.3 60.0 55.7 48.3 67.0
450–750 10.3 9.2 10.4 8.8 12.2

>750 5.5 7.7 5.1 8.0 2.0

Occupation (%)

Government 0.9 1.1

0.082

0.9
Private 18.9 21.6 18.9

Entrepreneur 15.5 18.3 15.5
Student 20.1 81.6 10.6 20.1

Housewife 26.9 31.1 26.9
Retired 6.5 7.7 6.5
Other 10.5 18.4 9.2 10.5

Worked for a year or more in dusty job (%) 39.9 39.9 0.439 29.1 49.0 0.001
Exposed to gas or chemical fumes in work (%) 19.7 19.7 0.616 16.9 22.3 0.299

Behavior

Window opening in bedroom Hours
(Average) 9.0 8.3 9.1 0.424 8.6 9.6 0.234

Window opening in living room Hours
(Average) 12.1 13.5 11.8 0.301 13.8 9.0 0.000

Smoking behavior (%) Active 39.7 38.5 35.9 32.3 49.7 0.000
Passive 13.6 30.8 15.4 13.9 13.2 0.018

Non-smoker 46.7 30.8 48.7 53.8 37.1

Frequency of cleaning rooms (%)

Every day 90.8 92.6 90.5

0.630

87.3 96.6

0.057
Several times per week 5.3 2.5 5.8 7.9 1.0

Every week 0.8 1.2 0.7 1.2 0.0
2–3 times per month 1.7 2.5 1.5 2.7 0.0

Once per month or less 1.5 1.2 1.5 0.9 2.5

Frequency of cleaning bathroom (%)

Every day 63.2 72.7 62.3

0.118

62.2 64.0

0.060
Several times per week 25.9 27.3 25.8 20.5 30.0

Every week 8.6 9.5 12.8 5.4
2–3 times per month 1.1 1.2 2.6

Once per month or less 1.1 1.2 1.9 0.5

Health

Asthma (%) 13.8 15.7 13.5 0.878 13.8
Hay fever (%) 30.8 20.7 33.0 0.199 30.8
Eczema (%) 13.5 10.9 14.1 0.433 13.5
Allergy (%) 13.6 9.4 14.4 0.468 13.6
None (%) 55.2 61.0 49.5 55.2

Disease (%) 18.0 1.8 21.6 0.000 18.0
SBS (%) 4.3 0.0 5.2 0.148 4.3

Stress (mean: 0 = no stress, 10 = very stressful) 1.5 0.4 1.8 0.000 1.5
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Table 5. Overview of building attributes, interior sources, and perceived indoor air quality levels.

Whole <15 Years ≥15 Years
Sig.

Dry Season Rainy Season
Sig.

n = 599 n = 101 n = 498 n = 333 n = 266

Building
attributes

Building age Average age (years) 40.7 39.7 40.8 0.264 39.0 41.9 0.305

No. of windows in master
bedroom (%)

0 24.8 20.9 25.6
0.339

29.9 16.8
0.6301 51.6 58.2 50.3 48.0 57.1

>1 23.6 20.9 24.1 22.0 26.1
No. of windows in living

room (%)

0 32.1 34.4 31.7
0.141

37.6 22.5
0.0001 38.3 46.9 36.6 41.6 32.4

>1 29.6 18.8 31.7 20.4 43.0

HVAC system (%)
AC 6.7 8.7 6.4 0.789 4.7 10.6 0.015

Fan in bedroom 65.7 66.7 65.6 65.7
Ceiling/stand fan 47.3 45.7 47.7 0.125 47.3

Exhaust fan 17.9 27.3 19.7 0.062 17.9

Number of furniture in
living room (%)

0 4.3 2.0 4.8
0.975

4.3
1–5 86.2 88.2 85.7 86.2
>5 9.6 9.8 9.5 9.6

Number of furniture in
bedroom (%)

0 1.1 2.2 0.9
0.574

1.1
1–5 90.6 84.4 91.9 90.6
>5 8.2 13.3 7.2 8.2

Vehicle frequency (%)
Constantly 22.7 22.7

0.013
13.0 31.9

0.000Frequency 46.0 46.0 56.7 39.3
Seldom 29.1 29.1 27.9 27.4
Never 2.2 2.2 2.3 1.5

Dampness

Visual mold (%) 49.8 64.0 47.3 0.039 55.9 39.2 0.000
Mite (%) 17.9 23.8 16.9 0.933 19.9 15.0 0.110

Water leakage (%) 53.7 58.4 52.8 0.344 50.2 59.9 0.033
Smell/Odor (%) 47.8 57.5 46.1 0.098 39.8 60.6 0.000

Humidity (%)
0–3: (rather) dry 21.6 19.4 22.0

0.045
21.4 22.1

0.5444–6: neutral 46.6 43.1 47.2 44.3 50.3
7–10: (rather)

humid 31.7 37.5 30.8 34.3 27.7

Perceived
IAQ

IAQ (%)
0–3: (rather) clean 38.2 34.7 38.7

0.374
35.6 42.3

0.9374–6: neutral 46.1 46.7 45.9 47.1 44.4
7–10: (rather) dirty 15.8 18.7 15.3 17.3 13.3

OAQ (%)
0–3: (rather) clean 30.2 24.0 31.2

0.682
28.0 33.8

0.3914–6: neutral 50.4 57.3 49.2 49.7 51.5
7–10: (rather) dirty 19.2 12.0 19.3 22.0 9.1

Annoyance from outdoor
air pollution (%)

0–3: not annoyed 63.8 63.8
0.689

57.6 69.4
0.3264–6: neutral 26.0 26.0 34.3 18.7

7–10: annoyed 10.1 10.1 8.1 11.9

3.2. Self-Reported Respiratory Health

The questionnaire of the ATS-DLD-78 investigates the magnitude of symptoms on
respiratory health, including asthma, persistent cough, and persistent phlegm. Compar-
isons were made for different seasons and ages, with those under 15 years old and 15 years
and over, respectively, because the questionnaire form for children and adults was initially
constructed differently in the ATS-DLD-78. As shown in Figure 3a, overall, those under
15 years old exhibited a higher percentage of severe symptoms (i.e., sickness) except asthma
in the dry season. In the dry season, the percentages of sickness and some symptoms
among those under 15 years old were found to be 19.2% (asthma), 24.4% (cough), and
17.0% (phlegm), respectively, whereas the incidence rate increased in the rainy season,
especially in persistent cough and phlegm, with 13.0% (asthma), 41.3% (cough), and 22.2%
(phlegm). The percentage on persistent cough was also found to be the highest among
those of 15 years and over, with 23.8% and 27.1% in dry and rainy seasons, respectively.

Figure 3b compares the magnitude of symptoms between smokers, including active
and passive smokers, and non-smokers for those under 15 years old and 15 years and
over, respectively. As shown, the magnitudes are higher for smokers among those under
15 years old for asthma, cough, and phlegm, although significant differences were not
obtained, mainly due to the small sample sizes.
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3.3. Field Measurement

Figure 4 illustrates the results of mold risk measurement associated with the measured
thermal conditions. Mold risk is expected to turn apparent when the RH exceeds 70%
and air temperature is below 27 ◦C (Figure 4b,c). The mold risk A means that there is no
possibility of fungi propagation while D indicates a high possibility of propagation. The
mold risk was found to be severe, mostly in the rainy season of 2019, with 97% of houses
experiencing a high risk of propagation. In the dry season of 2018, 67% of houses were
exposed to the high risk of mold, although owing to exceptionally low humidity (average
65%), 91% of houses showed no possibility of mold propagation in the dry season of 2019.
In the dry season of 2019, indoor air temperature was higher on average (26 ◦C) and often
exceeded the above threshold point of temperature. However, the measured mold indexes
were found to vary in a negligible magnitude even when the indoor RH was observed to
be more than 70%. This can be attributed to the other conditions, such as surface material
properties and dampness conditions.
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Figure 4. (a) Measured fungal indexes in kampung houses. (b) Relationship between thermal condi-
tions and mold risk. (c) Measured fungal indexes in psychrometric charts (indoor thermal conditions).

Figure 5 presents the 24 h average indoor and outdoor particle concentrations for
each dwelling. As shown, in most houses for both TSP and PM2.5, indoor concentrations
correspond with those of outdoors with several exceptions (i.e., outliers), where indoor
concentrations significantly exceeded that of outdoors. Similar results were obtained in
a field measurement conducted by Lueker et al. [1], where indoor and outdoor PM2.5
concentrations were correlated in slum tenements of Dharavi, Mumbai, India, except for a
few indoor cooking induced particulate spikes. In this study, the average indoor TSP was
reckoned at 70.5 µg/m3, with approximately 65% of houses exceeding the WHO standard
(24-h PM10) for indoor TSP concentrations (50 µg/m3) (Figure 5a). Besides, the average
indoor PM2.5 was recorded at 61.9 µg/m3, with approximately 87% of houses exceeding
the standard threshold concentration of PM2.5 (25 µg/m3) (Figure 5b), indicating severe
indoor pollutions. Interestingly, for 58% of the houses, the average outdoor concentration
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of PM2.5 exceeded that of the indoor (Figure 5b(3)). Meanwhile, in TSP, 47% of the average
outdoor concentration was higher compared to average indoor TSP concentration. This
can be attributed to the emissions from diesel engines and hydrocarbons, particularly from
2-stroke motorcycles, and air pollution, such as haze from open burning.
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Figure 5. Cumulative frequency of (a) TSP and (b) PM2.5; (1) indoor, (2) outdoor, and (3) association
between indoor and outdoor.

3.4. Factors Impacting Occupant Respiratory Health Symptoms

The path analysis was performed using the IBM AMOS to identify the factors affecting
occupants’ respiratory health problems. In this study, the persistent cough was selected
as the major dependent variable for the path analysis, due to its highest occurrence rate
among the self-reported respiratory health symptoms (see Figure 3). In a path analysis, the
impacts of an explanatory variable on the dependent variable are analyzed in the following
three categories, i.e., direct effect, indirect effect, and total effect. The direct effect indicates
the amount of changes in the independent variable, due to a unit change in a dependent
variable. The indirect effect measures the magnitude of predicted changes in the dependent
variable through interceding variables if one unit of an independent variable changes. It
can be calculated by multiplying path coefficients that construct the causal path. The total
effect is the addition of direct effect and indirect effect [58].

Figure 6 shows the results of the path analysis for those under 15 years old with
persistent cough symptoms. The conformance values of the model are reported as follows:
CFI = 0.855, NFI = 0.572, and RMSEA = 0.042, indicating that the model was moderately
fitted. The multiple correlation coefficient for persistent cough symptoms is 0.36, indicating
that 36% of persistent cough symptom factors among those under 15 years old can be
explained through this diagram. As shown, the highest total effect is “allergies” (0.357),
followed by “humidity” (0.262), “income” (−0.217), “smell” (0.203), “mite” (0.191), and
“window opening in bedroom” (−0.136).
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Figure 6. Path diagrams for persistent cough among those under 15 years old.

In this survey, persistent cough symptoms were found to be prevalent among those
under 15 years old who suffered from allergies (Figure 6). This indicates that pre-conditions
concerning health have a strong effect on cough symptoms. The allergic conditions can be
caused by the occurrence of mites (0.211) and mold (0.061) in the house [63]. The perceived
occurrence of mites is influenced by the perceived mold occurrence (0.289). Therefore, the
mold occurrence is considered to be one of the key factors affecting the children’s cough
symptoms. The mold occurrence is influenced by the perceived OAQ rates (0.328) and the
perceived water leakage (0.203). Table 6a depicts the significant association between the
perceived occurrence of water leakage in their houses and that of mold. This result implies
that the water leakage may be one of the root causes of the children’s cough, although it
does not directly trigger the cough symptoms (Table 6b).

Table 6. Associations between (a) water leakage and mold growth, and (b) mold growth and persistent
cough for all samples.

(a)

Water Leakage
Mold Growth

Sig.
Yes No

Yes 160 (60.6%) 104 (39.4%)
0.000No 98 (39.2%) 152 (60.8%)

(b)

Mold Growth
Persistent Cough

Sig.
No Symptoms Have a Symptom of Had It Sickness

Yes 166 (77.2%) 46 (21.3%) 3 (1.4%)
0.696No 155 (73.5%) 49 (23.2%) 7 (3.3%)

Furthermore, humidity conditions were also observed to influence directly on the
cough symptoms among those under 15 years old (0.262). These results are supported
by the previous results, where the children were exposed to higher health risks during
the humid rainy season (see Figure 3). Meanwhile, the results show that the indoor
humidity levels were affected by the window-opening behavior, especially in the master
bedroom, with the total effect of −0.325, indicating that the more frequent households
open windows, the less humid the room is. Improved ventilation is considered to increase
removal rates for air pollutants and moisture. Similar results were reported in Fabi et al. [64],
where window-opening behavior significantly changed indoor environmental conditions.
However, window-opening duration in the living room had a positive impact on the
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incidences of mold and mites, respectively, although they are not incorporated in the path
model. This indicates that the more frequent households open windows in the living
room, the higher the chances of perceiving the mold growth and mite occurrence inside
the room. On the other hand, window-opening in the bedroom shows a negative effect
on mite occurrence with the total effect of −0.264. This condition might be related to the
indoor moisture sources. In kampongs, a bathroom and a kitchen, which are major indoor
moisture sources, are usually connected to the living room. Therefore, opening windows
and internal doors would increase the indoor humidity levels. Meanwhile, the OAQ is also
included as one of the influential factors affecting the persistent cough indirectly while the
perceived OAQ rate directly affects that for mold occurrence (0.328). Overall, the results
suggest that children’s persistent cough symptoms were influenced primarily by indoor
environmental conditions, such as high indoor humidity, smell, and the perceived mites
and mold growth, on top of the pre-conditions of allergy. Moreover, the water leakage in
their houses might be one of the root causes of mold and thus children’s persistent cough.

Figure 7 illustrates the results of the path diagram for those of 15 years old and over.
The multiple correlation coefficient for cough symptoms is 0.05, indicating that the diagram
only explains 5% of all persistent cough symptoms. However, the conformance value
was reported sufficiently fit (CFI = 0.931, NFI = 0.750, and RMSEA = 0.026). This can be
attributed to the fact that the percentage of those 15 years old and over suffering from
persistent cough was smaller compared to that of children. As shown in Figure 7, the
persistent cough among 15 years and over is highly affected by “Sick Building Syndrome
(SBS)” (0.210), followed by “smoking (including active and passive smoking)” (0.094).
In this study, the “SBS” indicates whether the health conditions of the occupants were
worsened during the stay in their houses due to unidentified factors. However, these
building-related health problems were found to be directly affected by the perceived OAQ,
which was likely associated with the vehicle frequency with the total effect of 0.152. This
indicates that traffic-related air pollution would degrade the OAQ.
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Figure 7. Path diagrams for persistent cough among those aged 15 years old and over.

Figure 7 shows that the smoking habits, including active and passive smoking, are
significantly related to the gender (−0.445), AC ownership (−0.067), dust exposure (0.213),
and chemical exposure (0.088), which is probably from their working places. These ex-
posures are associated with the gender, i.e., male dominant. The AC ownership had a
negative relationship with smoking habits, indicating that the households with ACs tended
to have a lower probability of smoking inside the houses. This is probably because the other
household members avert themselves from smoking when they operate AC. The detailed
associations between the smoking habits and persistent cough are summarized in Table 7.
Though the multiple correlation coefficient is small, it is concluded that the smoking habits,
as well as the degraded OAQ mainly caused by the traffic-related air pollution, can be
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potential factors influencing the symptoms of persistent cough among those 15 years old
and over.

Table 7. Associations between smoking habits and persistent cough among 15 years old and over.

Gender Smoking Habits
Persistent Cough

Sig.
No Symptoms Have a Symptom or Had It Sickness

Male
Active 53 (76.8%) 16 (23.2%) 0 (0%) 0.775
Passive 10 (71.4%) 4 (28.6%) 0 (0%) 0.437
None 22 (81.5%) 5 (18.5%) 0 (0%) -

Female
Active 23 (76.7%) 7 (23.3%) 0 (0%) 0.703
Passive 19 (70.4%) 8 (29.6%) 0 (0%) 0.891
None 68 (75.6%) 22 (24.4%) 0 (0%) -

3.5. Window-Opening Behavior in Kampung Houses

As described before, window-opening behaviors indirectly affected the persistent
cough among those under 15 years old in kampungs (see Figure 6). Nevertheless, both
positive and negative correlation were seen, depending on the room. Window-opening
in the bedroom negatively affected the persistent cough, whereas that in the living room
positively affected it. Figure 8 shows the results of IAQ measurements analyzed by window-
opening patterns; 1 (24 h open), 2 (open during daytime (12.6 h)), and 3 (open less than
one hour or no windows), in the living room and the bedroom among the households
with children.
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Figure 8. Indoor and outdoor TSP and PM2.5 concentration based on window-opening pattern in
(a) living room and (b) bedroom.

As depicted in Figure 8a, particularly for indoor/outdoor PM2.5 in the living room,
a longer duration of opening windows shows a higher average concentration of PM2.5
(61.9 µg/m3 in Pattern 1, 48.0 µg/m3 in Pattern 2 and 29.3 µg/m3 in Pattern 3). This
indicates that the major sources of PM2.5 in the living room are considered to be outdoor
sources, such as traffic-related air pollution, and they entered the room through open-
ing windows. On the other hand, in the bedroom, Pattern 1 shows the lowest average
concentration of PM2.5 (50 µg/m3) compared to the others (54.9 µg/m3 in Pattern 2 and
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51.2 µg/m3 in Pattern 3). The maximum value of PM2.5 in Pattern 2 (117.2 µg/m3) and
3 (141.2 µg/m3) are more than double that of Pattern 1 (58.6 µg/m3). This indicates that
opening windows in the bedroom helped reduce the concentration of PM2.5 in the room.
The location of the rooms can be a possible reason; bedrooms are commonly located deep
inside of the house, while the living room is located close to the front road [29]. Houses
in kampungs typically have narrow frontage with a relatively small terrace close to the
road [29], which made air pollutants from the road easily reach the living room. Room
arrangement and opening design should be considered in Kampong houses to avoid the
exposure to the traffic-related air pollution. On the other hand, it is also important to
control the traffics inside the densely populated Kampong neighborhood.

4. Conclusions

This study presented the results from field measurements and household surveys
on the severity of indoor mold risk and its impact on respiratory health among residents
in a typical unplanned neighborhood in Bandung. The key findings of this study are
summarized as follows:

• The symptoms of respiratory health problems were higher among children, particu-
larly in the rainy season. The percentage of persistent cough symptoms was found to
be more than 40% among those under 15 years old during the rainy season, whereas
that of 15 years and over was 27%.

• Kampung houses were observed to suffer from severe mold risk. More than 97% of the
houses were highly likely to have a mold propagation in the rainy season. Even in the
dry season, the outdoor RH can be as high as 80% on average and approximately 79%
of houses had a mold risk, and 68% was considered a high possibility of propagation.
The outdoor RH averaged at 83%, while the corresponding indoor RH averaged at
82% during the rainy season. Water leakages were reported by 50% and 60% of the
respondents in the dry and rainy seasons, respectively.

• The concentrations of indoor TSP and PM2.5 far exceeded the WHO standards in more
than 50% of the kampung houses, whereas the outdoor air pollution within kampungs
contributed to the degraded IAQ.

• Opening windows in the bedroom negatively affected mite occurrence and humidity
rate. Furthermore, a longer duration of opening windows in the bedroom showed a
lower concentration of PM2.5, while that in the living room was the other way around,
i.e., a longer duration of opening windows showed a higher concentration of PM2.5.

The deterioration of the health conditions and duration of staying indoors showed
the highest associations with persistent cough among those aged 15 years old and over,
followed by smoking habits. Meanwhile, mold, smell, mite occurrence, and humidity were
found to be influential factors affecting the persistent cough among those under 15 years
old. The water leakage in their houses might be one of the root causes of the mold growth,
and thus children’s cough. It was suggested that the room arrangement and opening design
should be considered in Kampong houses to avoid the exposure to the traffic-related air
pollution. In addition, a proper traffic control for Kampong neighborhood is probably
important to reduce the internal traffic-related air pollution. Moreover, a public policy
of not smoking indoors with children should be considered to prevent the respiratory
problems among children.

Unplanned houses, such as Kampongs, are observed in many countries, especially
in the global south [30]. Although having different connotations and being unique in
their social–cultural aspects, they possess very similar physical characteristics [30]. Hence,
although this study dealt with the city of Bandung as a case study, the results can be
applicable for other similar unplanned houses, particularly in the hot–humid tropical
developing countries. However, a future study is needed to increase samples and case
study cities, making more detailed statistical analyses possible.
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