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Abstract: Increasing the density of Global Navigation Satellite System radio occultation (RO) with
commercial Smallsats and the next generation COSMIC-2 constellation is expected to improve
analyses of the state of atmosphere, which is essential for numerical weather prediction. High vertical
resolution RO profiles could be useful to observe atmospheric rivers (ARs) over the ocean, which
transport water vapor in shallow, elongated corridors that frequently impact the west coasts of
continents. The multi-year AR Reconnaissance campaign has extensively sampled ARs over the
northeastern Pacific with dropsondes, providing an invaluable dataset to evaluate the reliability
of RO retrievals. These dropsondes, and a reanalysis product that assimilates them, are compared
to three RO datasets: (1) established operational missions, (2) COSMIC-2, and (3) the commercial
Spire constellation. Each RO dataset has biases relative to reanalyses of less than 0.5% N in the
upper troposphere and negative biases in the lower troposphere. Direct colocations with dropsondes
indicate that vertical refractivity gradients present within ARs may be contributing to negative biases
at higher altitudes inside than outside ARs, where the greatest variability and vertical gradients are
at the well-defined boundary layer top. Observations from Spire are overly smooth, affecting the
ability to resolve the low-level structure of an AR. Surprisingly, the depth of penetration into the
lower troposphere is greater inside an AR than outside for all datasets. The results indicate that the
observation errors used for assimilation of RO within ARs should consider the height dependent
biases that are associated with the structure of the atmosphere.

Keywords: radio occultation; dropsonde; atmospheric river; precipitation reanalyses; refractivity

1. Introduction

The vast majority (90%) of the meridional flux of water vapor in the middle latitudes
occurs in narrow filaments called Atmospheric Rivers (ARs) [1]. The physical mechanism
driving this flux of moisture in an AR is typically the strong winds in the low-level jet
found ahead of the cold front in the warm sector of an extratropical cyclone (e.g., [2]).
These low level weather phenomena are much more narrow (<1000 km) than they are
long (>2000 km), with the core of an AR typically centered 1 km above the surface of the
Earth and approximately 75% of the total transport of water vapor occurring in the lowest
3 km of the atmosphere (e.g., [2]). The main impacts from ARs are on the west coasts of
continents in the middle latitudes (e.g., [3]), where they provide valuable contributions to
the water supply [4–8]. However, they are also associated with extreme precipitation and
most major flooding events in the western United States (e.g., [9–13]), as well as the most
damage caused by flooding [14].

Despite great advances in numerical weather prediction (NWP) in the last few decades
(e.g., [15,16]), major challenges remain in accurately forecasting the intensity and track of
ARs. For example, in the ensemble system used by the European Centre for Medium-Range
Weather Forecasts (ECMWF), on average only 75% of ensemble members accurately predict
the location of AR landfall within 250 km for a two day lead time, dropping to less than
25% for a five day lead time [17]. An important step toward improving forecasts of ARs is
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more accurate analyses of the state of the atmosphere, as these analyses serve as the initial
conditions for NWP models and errors tend to grow as a model is iterated forward due to
the chaotic nature of the atmosphere [18]. Improving analyses is critical over the global
oceans where in situ observations are relatively sparse (e.g., [19]). Observing moisture is
particularly important over the oceans as sensitivity experiments employing an adjoint
model have shown that errors in short-term forecasts of precipitation from landfalling ARs
are highly sensitive to initial errors in the moisture within and near ARs [20–23].

A promising remote sensing technique for measuring the water vapor within ARs is
Global Navigation Satellite System (GNSS) radio occultation (RO). The refractive bend-
ing of GNSS radio signals through the atmosphere is exploited in this technique as the
signals are transmitted from GNSS constellations to receivers onboard low-Earth-orbiting
(LEO) satellites [24]. The observed phase delays from these occulted signals are converted
to profiles of bending angle and then into refractivity using an Abel transform [24,25],
from which temperature and water vapor in the troposphere can be derived using the
following relation:

N = (n − 1)× 106 = a1
P
T
+ a2

e
T2 (1)

where N is refractivity in N units, n is refractive index, P is atmospheric pressure in hPa, e is
water vapor pressure in hPa, T is temperature in Kelvin, and the constants a1 = 77.6 K hPa−1

and a2 = 3.73 × 105 K2 hPa−1 were derived empirically [26]. The result is a sounding of
the thermodynamic structure of the atmosphere with high vertical resolution and little
measurable interference from clouds and precipitation [27].

Observations from numerous GNSS RO missions have been used in research and
operational NWP applications since it was first demonstrated in the Earth’s atmosphere
by the Global Positioning System Meteorology (GPS/MET) mission [28]. The ambitious
Formosa Satellite Mission 3 (FORMOSAT-3)/Constellation Observing System for Mete-
orology, Ionosphere and Climate (COSMIC-1) mission (hereafter COSMIC-1) [29] made
the largest contribution to the number of global RO profiles available for operations until
relatively recently, providing at least 1000 soundings per day over the period 2006–2016
and roughly triple this number during its peak years [30]. The addition of these RO ob-
servations to the suite of observations used in creating atmospheric analyses for global
NWP systems has had a significant positive impact on forecasts [31–38], particularly in the
stratosphere. Though the COSMIC-1 mission exceeded its planned lifetime by many years,
it has now ceased operations, though other smaller missions are carrying on, in particular
the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)’s
Meteorological Operational satellites program (MetOp) satellites [39] which now provide
approximately 1800 profiles per day.

The follow-on to the successful COSMIC-1 mission is the FORMOSAT-7/COSMIC-2
(hereafter COSMIC-2), which was launched in June 2019 and is focused on the tropics
and subtropics, producing approximately 4000 RO profiles per day mostly between 35◦ N
and 35◦ S [30,40,41]. The increase in the number of profiles collected is partially due to
the advanced TriG RO Receiver System (TGRS) employed by COSMIC-2, which is able
to receive signals from multiple GNSS constellations, whereas previous GNSS RO mis-
sions were limited to the United States of America’s Global Positioning System (GPS).
The COSMIC-2 beam-forming antennas provide a significantly increased signal-to-noise
ratio that is nearly double that of the COSMIC-1 mission and facilitate deeper penetration
into the lower troposphere [40–42]. A comparison between retrievals of refractivity from
COSMIC-2 with in situ observations derived from co-located radiosondes and dropsondes
shows similar biases in the troposphere to that of previous missions, such as COSMIC-1,
that is commonly attributed to the difficulty in tracking the GNSS signals in superrefraction
and/or multipath conditions in the lowest troposphere, where the complete spectral spread
of the signals is difficult to capture. COSMIC-2 has a positive mean bias in the middle
latitudes of the Northern Hemisphere between 2 and 6 km peaking at 1% of N near 3 km
and rapidly decreasing with height to −4% of N near the Earth’s surface [40]. Assimila-
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tion of COSMIC-2 RO profiles into the operational Navy Global Environmental Model
[NAVGEM; [43]] show comparable impact per observation to that of the GRAS receivers
aboard the MetOp satellites [44]. Initial analysis of COSMIC-2 RO profiles assimilated into
the ECMWF’s operational Integrated Forecast System (IFS) and NAVGEM models both
show positive impacts on forecasts of temperature and winds, especially for short time
ranges (12 h forecasts) in the core GNSS RO sampling heights of the upper troposphere
and lower stratosphere, with the greatest regional impact in the Tropics where COSMIC-2
observations are concentrated [44,45]. These forecast improvements also extend to tropical
humidity, as measured by radiosondes and radiances sensitive to tropospheric humidity
from the Advanced Technology Microwave Sounder (ATMS).

Several companies in the private sector have designed piggy-back or dedicated mis-
sions to collect GNSS RO observations using receivers aboard their own commercial satel-
lites in low Earth orbit. Among these companies, Spire has deployed enough small satellites
to have amassed what is currently the largest constellation for Earth observation. They
have been delivering approximately 7000 RO profiles per day during 2020 in near real time
with global coverage [46]. The sharp increase in the number of global RO observations
generated by Spire and other private companies has the potential to significantly improve
NWP forecasts through data assimilation into NWP models due to their enormous volume
(e.g., [47]). The impact of assimilating Spire RO observations into the United Kingdom Met
Office Unified Model [48] was assessed by [49], who found a substantial benefit from their
addition to the existing suite of global observations in their numerical experiments. Ref.
[49] also found the difference between Spire RO observations and short-range forecasts
(i.e., the innovations) to be comparable to the operational RO observations below 30 km,
which did not include COSMIC-2 as they were not yet available at the time of their study.
Initial results from the assimilation of Spire RO profiles into the NAVGEM show small pos-
itive impact on forecasts and comparable impact per observation to that of the COSMIC-1
mission [50].

Observing the lowest 3–5 km of the troposphere using GNSS-RO has proven challeng-
ing. This is due in part to atmospheric ducting at the top of the planetary boundary layer
(PBL) which leads to a systematic negative bias in refractivity in RO retrievals at and below
the top of the PBL [51]. While the ducting greatly complicates observing below the PBL, the
large bending angle and sharp gradient in refractivity associated with this ducting provides
a reliable way to detect the height of the PBL [52,53]. Techniques for correcting the negative
bias in refractivity within the PBL have been proposed using collocated observations of
total precipitable water [54], though this is only possible for the limited cases when these
supplementary observations are available, or incorporating additional information from
low-angle reflected GNSS-RO signals from the given occultation [55].

The goal of this study is to evaluate the performance of GNSS RO observations in the
dynamically active environment in and around ARs and their associated extra-tropical
cyclones. The various sources of spaceborne RO observations currently available for use in
research and operations are compared to in situ observations from dropsondes collected
during multi-year field campaigns over the northeast Pacific. The ability of RO to obtain
accurate measurements, particularly in the lower troposphere within ARs, is described.

2. Data & Methods
2.1. Atmospheric River Reconnaissance

Weather reconnaissance flights targeting ARs have routinely taken place over the
northeastern Pacific during the winter starting in 2018 as part of the AR Reconnaissance
(AR Recon) program [56–58]. The main objective of AR Recon is to collect supplementary
weather observations to aid and support NWP forecasts of the ARs that impact the west
coast of North America and their associated precipitation. This is accomplished by sampling
nascent and mature ARs and the weather features that drive them over the relatively
data sparse northeastern Pacific Ocean. The primary observations collected in AR Recon
are vertical profiles of temperature, moisture, and winds in the troposphere as sampled
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by dropsondes, and these observations have been shown to beneficially impact NWP
forecasts [22,59]. In addition, profiles of refractivity retrieved from an airborne radio
occultation (ARO) system [60] are also routinely collected during AR Recon, as well as
observations of surface pressure from drifting buoys [61].

The present study utilizes a large dataset of 1334 dropsondes collected during AR
Recon over the three recent winter seasons (starting in late January and continuing into
March) of 2018, 2019, and 2020 (http://www.cw3e.ucsd.edu/ARRecon/, accessed on 20
March 2022). This includes observations from 29 intensive observing periods (IOPs) that
were each centered around 0000 Coordinated Universal Time (UTC, approximately 1500
local standard time) from three aircraft, consisting of a combination of the National Oceanic
and Atmospheric Administration(NOAA) G-IV and two United States Air Force C-130
aircraft, which have average cruising altitudes of 14 and 9 km, respectively. The aircraft
flew 17 IOPs in AR Recon 2020 and six IOPs each during AR Recon 2018 & 2019. Not
every IOP was associated with a distinct AR event; several sampled the same AR on
different days. Prior to the 2019 campaign, the Vaisala RD94 model of dropsonde was
used, afterwards it was replaced with the RD41 model with enhanced resolution [62]. The
dropsondes have descent speeds of approximately 11 m s−1 at sea level and 21 m s−1 at
12 km altitude, with a resulting vertical resolution of 5–10 m. The top of each dropsonde
profile is approximately 1 km below the altitude of the aircraft from which it was deployed
and the lowest level of most profiles is 5–6 m above the surface. The precision of the
measurements of pressure, temperature, and humidity are 0.01 hPa, 0.01 ◦C, and 0.1 %
and the uncertainties in these measurements are 0.4 hPa, 0.1 ◦C, and 2 % respectively. The
observed profiles from the dropsondes are converted to refractivity for comparison with
RO observations using Equation (1). The ARO refractivity retrievals shown herein are
from the 13 IOPs during AR Recon 2020 that included the NOAA G-IV equipped with the
ARO system.

2.2. Spaceborne Radio Occultation

Three sources of GNSS radio occultations are compared in this study. The collection
of GNSS RO observations that are used operationally by the National Center for Environ-
mental Prediction (NCEP) for ingest into their Global Data Assimilation System (GDAS)
system and subsequent assimilation into the Global Forecast System (GFS) model as of
January 2020 are hereafter referred to as the operational dataset. This dataset was gath-
ered from the COSMIC Data Analysis and Archive Center (CDAAC) archive and was
comprised of the following GNSS RO missions during the period of study: COSMIC-1,
Fifth Korea Multipurpose Satellite (KOMPSAT-5), MetOp-A, MetOp-B, MetOp-C, and the
Radio Occultation and Heavy Precipitation (ROHP) experiment on board the Spanish Paz
satellite. This operational dataset includes occultations from the GPS GNSS constellation
only. Observations from the relatively recent COSMIC-2 mission were only available dur-
ing AR Recon 2020. These observations were gathered from CDAAC’s COSMIC-2 Near
Realtime dataset (https://data.cosmic.ucar.edu/gnss-ro/cosmic2/nrt/, accessed on 20
March 2022) and include occultations from signals emitted from both the GPS and Russian
GLONASS GNSS constellations and are hereafter referred to as the COSMIC-2 dataset.
Finally, the National Aeronautics and Space Administration (NASA) purchased commercial
SmallSat RO observations from Spire for evaluation and made them available for use in
this study. They are available for the period covering AR Recon 2019, and this dataset is
hereafter referred to as the Spire dataset. This dataset includes occultations from the GPS,
GLONASS, European Union’s Galileo, and Japan’s regional Quasi-Zenith Satellite System
(QZSS) GNSS constellations.

Occultations from each of the aforementioned datasets were gathered over the north-
east Pacific, defined here as 10◦–60◦, N & 170◦–100◦, W, over a 24 h period centered at
0000 UTC on the day of each IOP during AR Recon. Refractivity retrievals for each occulta-
tion were obtained from CDAAC and Spire in their atmPrf files, which are an output from
the level 2 processing performed by these data providers. Observations that failed quality
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assurance as indicated in the atmPrf files were excluded from the analyses. In addition,
clear outlier profiles from the COSMIC-2 dataset that had differences with the reanalysis
product exceeding the threshold of 7% N above 5 km in altitude were excluded from the
analyses; this additional step was not required for any other dataset.

For each occultation in the RO datasets any dropsondes within specified time and
space thresholds were identified. The location of the lowest tangent point in the given RO
and dropsonde profiles were used to determine the spatial separation.

2.3. Reanalysis

The reanalysis product chosen for this study is the ECMWF Renalysis 5 [ERA5; [63]]. It
is available hourly on 37 pressure levels with a horizontal spatial resolution of 0.25◦ × 0.25◦

(∼25–30 km) directly from the ECMWF archive. The ERA5 product is considered to provide
one of the most accurate representations of tropospheric weather phenomenon in general
(e.g., [64]) and for ARs in particular [65]. It also provides high temporal resolution with
hourly output. The AR Recon dropsondes from the vast majority of IOPs were assimilated
in real-time by the ECMWF and subsequently were included in the ERA5 product ([56], see
Table 3) as were the GNSS RO observations from the operational dataset. RO observations
from Spire were under evaluation and thus not yet available for assimilation by operational
NWP centers during the period of this study and were not included in the ERA5 product.
The RO observations from the COSMIC-2 dataset were not made available on the Global
Telecommunication System until 16 March 2020 and were therefore not assimilated by
operational weather prediction centers during AR Recon 2020 [45], and were also not
included in the ERA5 product (Sean Healy 2020, personal communication).

For each dropsonde, a profile of refractivity was calculated from the ERA5 product
from the nearest hour to the observation time using Equation (1). For each occultation,
the reanalysis variables were extracted for the nearest hour to the observation time and
for the nearest horizontal grid point to the latitude and longitude of each tangent point.
Linear vertical interpolation was performed between the height of the two nearest vertical
layers in the reanalysis product to the height of the given profile from a dropsonde or
occultation for thermodynamic variables and logarithmic vertical interpolation was used
for pressure. The result is an analysis profile with the same number of points as the
observed occultation, with points that drift horizontally in the same manner as the given
dropsonde or occultation.

Observed profiles were determined to be inside an AR when the vertically integrated
vapor transport (IVT) calculated from the reanalysis product exceeded the commonly used
threshold to identify ARs of 250 kg m−1 s−1 (e.g., [3]). The IVT criterion was placed on
the vertical column of grid points in the reanalysis product containing the location of the
lowest tangent point. The magnitude of IVT was calculated from the u and v components
(zonal and meridional directions) of the IVT included with the ERA5 product.

2.4. Example Occultation/Dropsonde Pairs

In order to illustrate the quality of the RO observations, a qualitative comparison of
occultations and dropsondes from each RO dataset is shown using pairs of occultations
and dropsondes that were especially close in space and time. The first example pair
includes an occultation from the operational dataset (the MetOp-C mission) that occurred
during AR Recon 2020 IOP13 in the region poleward of a weak AR (Figure 1a). This
occultation/dropsonde pair was just under 200 km apart in space and just under 2 h apart
in time. The observations from the dropsonde are plotted in a standard Skew-T Log P
diagram (Figure 1b) and show a relatively dry atmosphere above approximately 1.5 km
above the surface, where a sharp low level temperature inversion is found. The refractivity
derived from the observations from both the occultation and dropsonde are compared in
Figure 1c, with the refractivity expressed as a difference from a zonal climatological profile
for February at 27◦ N (i.e., observed N minus climatology N) extracted from CIRA-86 [66].
There is good agreement between the refractivity derived from these two observation types
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as well as their corresponding reanalysis profiles (dotted lines of the same color) for the
extent of the profile. The occultation is truncated at approximately 3 km, likely due to a
loss of the GNSS signal from multipath associated with the strong temperature inversion
near this level, however it affects the signal for several km above the inversion.

(c)(a)

(b)

Figure 1. An example occultation from the operational dataset (MetOp-C mission) that was just
under 200 km apart in space and just under 2 h apart in time. (a) Overview of the thirteenth intensive
observing period (IOP13) of AR Recon 2020 with integrated vapor transport (kg m−1 s−1, shaded and
vectors) and mean sea level pressure (hPa, grey contours) shown. The locations of dropsondes are
indicated by grey stars and occultations from the operational, and COSMIC-2 datasets are indicated
by green, and purple circles, respectively, with each of their collocated dropsondes indicated by
enlarged stars of the same color. The location of the occultation/dropsonde pair highlighted for this
example is circled in light blue. (b) A standard Skew-T Log P diagram of the data collected by the
dropsonde in the example pair with the dry bulb temperature indicated by the red curve and dew
point temperature indicated by the blue curve. (c) The difference in refractivity (% N) between a
zonal climatology during February at 27◦ N and the example occultation (solid green line), its nearest
dropsonde (solid red line), and their corresponding reanalysis profiles (dotted lines of the same color
as their observation).

The second example pair includes an occultation from the COSMIC-2 dataset that
occurred during AR Recon 2020 IOP04 within the core of an intense AR with IVT exceeding
1000 kg m−1 s−1 (Figure 2a). This occultation/dropsonde pair was approximately 110 km
apart in space and nearly simultaneous in time. In this case the observations from the
dropsonde show a saturated environment within the core of the AR throughout the middle
and lower troposphere with the temperature (red) and dew point temperature (blue)
curves overlapping throughout these layers (Figure 1b). The refractivity from these two
observation types differs greatly below approximately 8 km in height (Figure 1c), however
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both curves are similar to that of their corresponding reanalysis profiles (dotted lines). This
shows that despite the observations being very close in time and space, the environment
within the core of the AR is inhomogeneous, with large variations in refractivity on small
spatial scales. The reanalysis product captures some of this variability, but there are
significant differences remaining in the lower 2 km where the maximum in IVT transport is
typically located and also in the height of the tropopause.

(b)

(c)(a)

Figure 2. Same as Figure 1 but for an example occultation from the COSMIC-2 dataset (purple) that
was approximately 110 km apart in space and nearly simultaneous in time during the fourth intensive
observing period (IOP04) of AR Recon 2020.

The final example pair includes an occultation from the Spire dataset that occurred
during AR Recon 2019 IOP04 within the subtropical anticyclone often found off the coast of
California (Figure 3a). This occultation/dropsonde pair was approximately 200 km apart in
space and approximately 40 min apart in time. The observations from the dropsonde show
a sharp temperature inversion near 1.5 km above the surface with very dry conditions
above this level (Figure 3b), similar to what was shown in the first occultation/dropsonde
pair (Figure 1b). The refractivity from the Spire occultation is very close to that of its paired
dropsonde above approximately 3 km in altitude (Figure 3c), but these two observations
differ greatly through the inversion layer where the occultation is very smooth and lacks
the fine-scale vertical structure of the dropsonde or the occultations from the other datasets
(Figures 1c and 2c). The occultation from Spire also differs from the corresponding reanal-
ysis profile (dotted line of the same color) below the temperature inversion, where the
reanalysis profile roughly captures the boundary layer height and low level properties mea-
sured by the dropsonde. This smoothness found in the occultation from Spire compared to
the other occultation datasets examined and also the dropsondes is found to be a common
characteristic of the occultations from the Spire dataset examined in this study. While the
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Spire occultation does not match the dropsonde well in the lowest 3 km, it tends to produce
an error that is closer to zero mean than the other RO missions, something to keep in mind
as the statistics are analyzed below.

(c)(a)

(b)

Figure 3. Same as Figure 2 but for an example occultation from the Spire dataset (blue) that approxi-
mately 200 km apart in space and approximately 40 min apart in time during the fourth intensive
observing period (IOP04) of AR Recon 2019.

3. Results

It is commonly explained that RO profiles do not penetrate as deep into the troposphere
in the tropics because the higher moisture there leads to a lower signal to noise ratio (SNR).
This has been documented as far back as the initial GPS-Met mission [67] through to the
COSMIC-1 mission [30]. The COSMIC-2 mission was designed to provide higher SNR
to address this problem [41]. Section 3.1 explores whether that simple interpretation is
also valid for atmospheric rivers, which would suggest that RO profiles would penetrate
lower outside an AR than within the moisture-laden AR. The following sections compare
co-located dropsondes and profiles from the three RO datasets, and then both observation
types with the ERA5 reanalysis within and outside an AR.

3.1. Density of Sampling and Depth of Penetration of RO

The spatial density of the occultation datasets over the study region is shown in
Table 1. The total samples column sums the number of occultations that were available
in the northeastern Pacific Ocean study domain, for all days that had an AR Recon IOP,
for the 24 h period centered at 0000 UTC each day. The average number of occultations
per IOP was calculated by taking that total number of occultations (samples) and dividing
by the number of IOPs, although the occultations may not have sampled near the AR that
was targeted in the IOP. The density per IOP was calculated by dividing by the area of the
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study region in units of square degree of latitude and longitude. The Samples/IOP inside
an AR (Table 2) divides the total number of profiles that sample areas with IVT greater than
250 kg m−1 s−1 by the number of IOPs.

Table 1. Observation sampling and density by dataset.

Dataset Samples (#) IOPs (#) Samples/IOP Density/IOP
(# deg−2)

Operational RO 3735 29 128.8 0.037
COSMIC-2 RO 4517 17 265.7 0.076
Spire RO 342 6 57.0 0.016
Combined 8594 29 296.3 0.085

Table 2. Observation sampling and density within an AR.

Dataset Samples (#) IOPs (#) Samples/IOP Density/IOP
(# deg−2)

Operational RO 727 29 25.1 0.007
COSMIC-2 RO 1072 17 63.1 0.018
Spire RO 51 6 8.5 0.002
Combined 1850 29 63.8 0.018

The COSMIC-2 dataset contains roughly twice the number of occultations per IOP of
the operational dataset over the study region, despite the fact that COSMIC-2 satellites are
in a “tropical” orbit with maximum latitude of ±42◦, and only covers the southern part of
the study area. The Spire dataset contains just under half the number of the operational
dataset. The density of occultations over the study region is relatively small in all datasets,
with even the combined dataset only reaching 0.085 deg−2.

The distribution of data points with height for each of the occultation datasets is
shown in Figure 4. The number of points that fell within each vertical bin of 200 m was
calculated separately for profiles that sampled inside and also outside an AR (Figure 4a). It
is evident from the number of observations per bin that many more occultation profiles
were available from COSMIC-2 than from Spire dataset, with the number of profiles in
the operational dataset falling between these two. All three datasets have many more
observations per bin outside an AR than inside. The number of observations begins to
decrease below approximately 6.5 km in height in the operational dataset, and all datasets
rapidly decrease in number of samples with height below approximately 3 km.

The proportion of occultation profiles that sampled within each of the aforementioned
vertical bins was calculated relative to the total number of occultations that sampled the
topmost bin at 10 km for each dataset (Figure 4b). The proportion of occultations that are
able to sample within the lowest 2 km of the atmosphere within an AR is higher than the
proportion of occultations that sample within the lowest 2 km outside an AR, for each
constellation. The COSMIC-2 dataset has the highest proportions throughout the lower
troposphere, both inside and outside an AR. The operational dataset has much lower
proportions of observations than the other datasets, not only in the lowest 2 km but in the
region between 2 and 6 km, where the proportions in the COSMIC-2 and Spire datasets are
both close to 100%. Inside an AR, the COSMIC-2 constellation has ∼5% higher proportion
of occultations at 2 km than outside an AR, and 10% more at 1 km. Inside an AR, the
Spire data set has about the same proportion of profiles as COSMIC-2 at 2 km, however
it has about 10% lower proportion of profiles outside an AR at 1 km. Inside an AR, the
operational dataset has ∼5% higher proportion of occultations at 2 km, than outside an AR,
and ∼10% higher proportion of occultations at 1 km. The operational dataset also differs
in the region between 2 and 6 km, where there are a higher proportion of observations
outside an AR than inside. The general conclusion here is that RO samples deeper inside
the high moisture environment of an AR than outside an AR. This is in stark contrast to
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generally accepted behavior in the moist tropical environment where RO sampling in the
lowest troposphere is limited, and it is significant in that GNSS RO is performing well with
respect to penetration in the region of most interest for forecasting ARs [20–23].
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Figure 4. Comparison of (a) total count (# bin−1) and (b) proportion of the total count (% bin−1) of
radio occultation observations in vertical bins (200 m width) for each dataset both within (dashed
lines) and outside (solid lines) the atmospheric river. The operational (green lines), COSMIC-2 (purple
lines), and Spire (blue lines) datasets are shown.

3.2. Comparison with Dropsondes

In order to evaluate the quality of the occultations, a quantitative comparison was
made using the full dataset of occultation/dropsonde pairs where the occultations and their
nearest dropsonde were within given thresholds in space and time. The statistics for a dis-
tance threshold of 300 km and a time threshold of 2 h are shown for each dataset in Figure 5.
These thresholds are the same as was used in previous studies comparing occultations
and dropsondes (e.g., [40]). For each pair, the difference between the profile of refractivity
from the occultation and its corresponding dropsonde was calculated (occultation minus
dropsonde) along with the percent difference in refractivity (grey lines). The mean (solid
colored lines) and standard deviation (dashed colored lines) of these differences were also
calculated using vertical bins of 200 m. These mean and standard deviation curves are also
replotted in Figure 6 with each dataset shown in the same panel for ease of comparison.

For the 29 pairs identified in the operational dataset, the mean difference (bias) in
refractivity is −1% near the surface (Figures 5a and 6) and becomes positive at 1.42% near
2 km then quickly becomes negative at −1.3% near 3 km. Above 3.5 km the magnitude of
the bias decreases to below 0.6% in absolute magnitude. The standard deviation is 2–4% N
near the surface, increases to a maximum at 2 km of 4.8% N and steadily decreases with
height to below 2% above 6.5 km. The negative bias near the surface (occultation minus
dropsonde) represents a tendency for occultations to underestimate refractivity near the
surface, as has been observed in other statistical studies for dropsondes and reanalysis [68].
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Figure 5. Statistical comparison between occultations and their nearest AR Recon dropsonde that
was within a distance threshold of 300 km and a time threshold of 2 h. The percent difference in
refractivity (% of N) is shown between each occultation in the (a) operational, (b) COSMIC-2, and
(c) Spire dataset and its corresponding dropsonde profile (grey lines), along with the mean and
standard deviation of these differences (solid and dashed colored lines, respectively) computed in
vertical bins with width of 200 m. The thick dashed black line highlights the line of zero difference
and the number of sample pairs, n, for each dataset is indicated.

For the 56 pairs identified in the COSMIC-2 dataset, the sign of the bias is negative
throughout the lower half of the troposphere, with a maximum of −2.3% near the surface
decreasing to 0.6% above 6.5 km (Figures 5b and 6). The standard deviation of the COSMIC-
2 dataset follows a similar pattern with height to that of the operational dataset but with
much larger magnitude with a maximum of just over 7% near the surface and decreasing
to 1% at 7 km. Profiles that were labeled with poor quality were excluded from the
comparison, however the COSMIC-2 profile with over 30 % difference in refractivity in the
lower troposphere in Figure 5b was not properly flagged in the NRT dataset, illustrating
the need for additional quality checking at the ingest level.

For the 8 pairs identified in the Spire dataset the bias is positive in the lower tropo-
sphere in contrast to the other datasets examined (Figures 5c and 6). This positive bias is
near 2.8% near the surface, decreases to 0% at 1 km, then increases to 2.8% at 4 km, and
decreases to below 0.5% above 7 km. The standard deviation of the differences is 3.8%
near 1 km and slowly decreases to less than 1.5% above 5 km. Although the number of
occultation/dropsonde pairs for the Spire dataset is small, the result indicates that the
feature seen in Figure 3c due to oversmoothing contributes to a systematic positive bias,
and will be investigated further in the ERA5 comparisons.

To get a qualitative indication of the relationship of occultation/dropsonde differences
in the different regions of the AR environment, the comparison is broken down into occulta-
tion/dropsonde pairs where both observations are within an AR (Figure 7), and where both
observations are outside an AR (Figure 8). There are not enough co-located pairs in each
subset for quantitative analysis. Of note is the abrupt decrease in the bias in refractivity
at 1.2 km for the COSMIC-2 dataset outside an AR, and the more gradual decrease in
bias in this dataset starting at 4 km inside an AR. Negative biases in RO observations at
low altitudes have been shown to be linked to sharp refractivity gradients. One cause is
superrefraction of the RO signal at an interface where the gradient in refractivity exceeds a



Atmosphere 2022, 13, 1495 12 of 34

critical level, for example at a sharp boundary layer with a layer of low humidity above it.
This leads to nonuniqueness in the retrieval process and underestimation of refractivity
in the layers below the top of the boundary layer [69]. Another identified cause in the
RO spectral inversion processing is the filtering of noise, if low amplitude subsignals
due to atmospheric multipath propagation associated with variations in the gradient of
refractivity are present. Subsignals that are not fully separable from the noise can also be
unintentionally removed, which leads to a negative bias in refractivity [70].
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Figure 6. Comparison of the (a) mean and (b) standard deviation of the percent difference in
refractivity between each of the observed datasets and their nearest AR Recon dropsonde that was
within a distance threshold of 300 km and a time threshold of 2 h. The operational (green lines),
COSMIC-2 (purple lines), and Spire (blue lines) datasets are shown. The thick dashed black line in
panel (a) highlights the line of zero difference.

The difference in the height at which the COSMIC-2 profiles begin to show this bias
suggests that there are features within an AR that have strong gradients at higher levels
than in the background maritime air mass found outside an AR. This is further explored
in Figure 9, where the vertical gradients of refractivity (dN/dz) are calculated from the
available dropsonde profiles and plotted as a function of height. There is a high occurrence
of large negative dN/dz at 0.5–1.0 km for profiles outside an AR. The distribution of
dN/dz in regions of the core of the AR with IVT >500 kg m−1 s−1 is less than about
±250 N-units km−1 above 3 km. Below about 3 km there is a distinct increase in the
occurrence of profiles with larger negative refractivity gradient. This is approximately the
height where COSMIC-2 profiles begin to show a consistent negative bias in refractivity
in Figure 7b, whereas outside the AR the COSMIC-2 profiles begin to show a negative
refractivity bias (Figure 8) closer to 1 km, where there is a high occurrence of large negative
dN/dz. The fact that dN/dz within the core of the AR does not get as large as outside the
AR helps to explain the conclusion that RO penetrates deeper within an AR than outside
an AR as seen in Figure 4.



Atmosphere 2022, 13, 1495 13 of 34

30 20 10 0 10 20 30
Difference in Refr.  [%]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

He
ig

ht
 a

bo
ve

 th
e 

W
GS

 8
4 

El
lip

so
id

  [
km

] n = 14

 0.6 km 
 = 0.00
 = 3.12

 2.0 km 
 = 0.39
 = 4.18

(a) Occ.

30 20 10 0 10 20 30
Difference in Refr.  [%]

n = 42

 0.6 km 
 = 1.43
 = 6.64

 2.0 km 
 = 1.96
 = 7.15

(b) Occ.

30 20 10 0 10 20 30
Difference in Refr.  [%]

n = 3

 0.6 km 
 = 4.40
 = 0.00

 2.0 km 
 = 1.90
 = 3.18

(c) Occ.

Figure 7. The percent difference (occultation minus dropsonde) in refractivity (% N) for pairs from
the (a) operational, (b) COSMIC-2, and (c) Spire dataset where both observations were inside an AR
and were within a distance threshold of 300 km and a time threshold of 2 h. Labels are the same as
Figure 5.
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Figure 8. Same as Figure 7 but for occultation-dropsonde pairs that were outside an AR and were
within a distance threshold of 300 km and a time threshold of 2 h. Labels are the same as Figure 6.
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(c) (d)

IVT < 250 IVT ≥ 250

IVT ≥ 500 IVT ≥ 750

Figure 9. Vertical refractivity gradient dN/dz (N units km−1) from dropsondes collected dur-
ing AR Reconnaissance that sampled (a) outside an AR, (b) inside an atmospheric river based
on integrated vapor transport (IVT) >250 kg m−1 s−1, (c) inside an atmospheric river based on
IVT >500 kg m−1 s−1, (d) inside an atmospheric river based on IVT >750 kg m−1 s−1, (grey circles),
along with the mean and standard deviation of the vertical refractivity gradient (solid and dashed
red lines, respectively) computed in vertical bins with width of 200 m. The thick dashed black line
highlights the line of zero difference and the number of dropsondes, n, is indicated.
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This would then imply that errors assigned to the RO observations are dependent
on the background atmospheric structure. This is an important area to investigate, for
example, it would affect how the observation errors used in data assimilation algorithms
should be assigned. Without a significantly greater number of profile pairs, however, it
is not possible to investigate this hypothesis directly Therefore, in the next section, we
compare dropsondes to the ERA5 reanalysis product to establish that the ERA5 is accurately
representing the key structure of an AR in the lower troposphere. Then, assuming the
ERA5 captures that structure realistically, we search for any systematic biases in the RO
datasets relative to the ERA5 inside and outside an AR. There are sufficient numbers of
occultation profiles within an AR to carry out a more robust comparison using ERA5.

To attempt to create a larger and more robust dataset of occultation/dropsonde pairs,
the statistics for the comparison in Figure 5 were recalculated using a distance threshold
of 500 km and a time threshold of 4 h (Figure 10). With the relaxed threshold there were
approximately triple the number of occultation/dropsonde pairs identified in each dataset
to calculate the mean and standard deviation (Figure 11). The biases for all datasets now
decrease more smoothly with height, however are greater near the surface (Figure 11).
The COSMIC-2 dataset’s negative bias is −2.8% near the surface (Figure 10a) and the
operational dataset is −1.8% near the surface (Figure 10b). The Spire dataset’s bias retains
the large fluctuations with >2% near the surface, −1% at 2 km and 1.7% at 4 km (Figure 10c).
The standard deviation is now similar for all datasets, with a maximum of 5.6% near 2 km
(Figure 11), however that comes at the expense of mixing observations inside and outside
an AR, and seems to be capturing the variability of the entire domain containing the AR
rather than any systematic differences in errors. This further supports the approach of
the next section to perform an indirect comparison of dropsondes to the ERA5 and then
the ERA5 to the occultations. Subsets of occultation/dropsonde pairs inside and outside
an AR for the increased distance and time thresholds are included for completeness in
Figures S3 and S4.
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Figure 10. Same as Figure 5 but for occultations and their nearest dropsonde that were within a
distance threshold of 500 km and a time threshold of 4 h.
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Figure 11. Same as Figure 6 but for occultations and their nearest dropsonde that was within a
distance threshold of 500 km and a time threshold of 4 h.

While the number of dropsondes paired with the available spaceborne RO datasets
is relatively small, there are many more dropsondes paired with the airborne RO (ARO)
observations collected during AR Recon. There were 487 ARO profiles paired to dropsondes
for the single season of AR Recon 2020 (Figure 12), which included 13 IOPs with ARO
retrievals, for the same distance threshold of 300 km that was used for Figure 6. Most of
these airborne occultations occurred within minutes of their paired dropsonde and thus
represent the best possible representation of the level of agreement that is possible between
the disparate datasets. The highest tangent points in each ARO profile are at the location of
the aircraft when the occultation began, while the lower tangent points drift away from
the aircraft. These airborne occultations have comparable bias in retrieved refractivity to
that of the operational and COSMIC-2 datasets. In the lower troposphere, the airborne
occultations have lower standard deviation with respect to dropsondes then the COSMIC-2
occultations, at 5% N compared to 6.5% N at 2 km, and comparable standard deviation
to the operational RO dataset. ARO has slightly larger standard deviation than Spire,
however the statistics are not as reliable for the small number of Spire profiles. The airborne
occultations have higher standard deviations in the upper troposphere above 8 km, as is
expected, due to the increased noise due to uncertainty in the velocity of the aircraft they
are collected from [71,72].

3.3. Comparison with Reanalysis

This section explores further the characteristics of AR profiles in the lower troposphere
inside and outside an AR. It is based on comparisons with reanalysis because there are not
enough paired profiles to address this quantitatively in direct dropsonde to RO comparisons.
The larger number of profiles included in the comparisons is interesting and informative,
however there is a caveat in that the Operational RO and dropsondes were assimilated
operationally into the ERA5 reanalysis, but the COSMIC-2 profiles and Spire profiles were
not. Therefore one would anticipate that the agreement of Operational RO and dropsondes
with ERA5 would be better than the other datasets. Given this caveat, the analysis focuses
primarily on the features of the statistics as a function of height and their dynamical
interpretation in addition to the absolute level of agreement.
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Figure 12. Same as Figure 5 but for airborne radio occultations (ARO) during AR Recon 2020 and
their nearest dropsonde that was within a distance threshold of 300 km.

3.3.1. Outside and Inside an Atmospheric River

A quantitative comparison between the reanalysis product and the dropsondes estab-
lishes the baseline statistics, with 537 dropsondes from AR Recon that sampled outside
of an AR shown in Figure 13a and 820 dropsondes that sampled inside an AR shown
in Figure 13b. The full refractivity profile derived from each dropsonde was calculated
and then the reanalysis refractivity profile was subtracted. Above 5 km there are some
positive differences, possibly because the dropsondes contain more detailed information
about the tropopause height in the environment of the frontal systems than is present in
the reanalysis. The mean of these differences (solid red lines) and the standard deviation
(dotted red lines) are computed in vertical bins of 200 m.
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Figure 13. Statistical comparison between dropsondes collected during AR Reconnaissance that
sampled (a) outside and (b) inside an atmospheric river and the ERA5 reanalysis product. The
percent difference in refractivity (% of N) is shown between each dropsonde and its corresponding
reanalysis profile (grey lines), along with the mean and standard deviation of these differences (solid
and dashed red lines, respectively) computed in vertical bins with width of 200 m. The thick dashed
black line highlights the line of zero difference and the number of dropsondes, n, is indicated.

The same quantitative comparison was made for the operational dataset for the 3008
occultations that sampled outside of an AR (Figure 14a) and 727 that sampled inside an
AR (Figure 14b). The differences in refractivity (occultation minus reanalysis) increase
considerably below approximately 7 km (Figure 14a) and are negative with a greater
increase within an AR (Figure 14b). The mean difference curve becomes increasingly
negative below 3 km in height.
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Figure 14. Statistical comparison between the operational dataset occultations (green lines) during
AR Recon that sampled (a) outside and (b) inside an atmospheric river and the ERA5 reanalysis
product. Notation the same as Figure 13.

The comparison for the COSMIC-2 dataset is shown for the 3445 occultations that
sampled outside of an AR in Figure 15a and 1072 occultations inside an AR in Figure 15b.
The differences between the observations and reanalysis (grey lines) follow a very similar
pattern to that of the operational dataset with respect to height but with a larger standard
deviation in the troposphere below 7 km.
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Figure 15. Statistical comparison between the COSMIC-2 dataset occultations (purple lines) during
AR Recon that sampled (a) outside and (b) inside an atmospheric river and the ERA5 reanalysis
product. Notation the same as Figure 13.

The comparison for the Spire dataset is shown for the 291 occultations that sampled
outside an AR in Figure 16a and the 51 occultations that samled inside an AR in Figure 16b.
The differences between the observations and reanalysis (grey lines) follow a very different
pattern to any other observational dataset examined. The mean difference curve (solid blue
lines) have a shape that swings between positive and negative values with height with
much more extreme changes outside an AR.
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Figure 16. Statistical comparison between the Spire dataset occultations (blue lines) during AR
Recon that sampled (a) outside and (b) inside an atmospheric river and the ERA5 reanalysis product.
Notation the same as Figure 13.

3.3.2. Intercomparison

The mean differences between the profiles in each of the observational datasets and
their corresponding reanalysis profiles described above are plotted side-by-side for detailed
comparison in Figure 17a. These statistics for the three RO datasets are also summarized
in Tables S1–S3 with 1 km spacing in the vertical. The dropsonde dataset (red curves)
has a positive bias from 1 to 2 km that suggests the reanalysis may not capture the sharp
change in higher humidity below the boundary layer, and this feature is greater inside
an AR than outside an AR. The dropsonde dataset has the smallest mean differences of
the observational datasets examined in the range 2 to 5 km. There is a negative bias
(lower refractivity, higher temperature) in the upper troposphere from approximately
5–9 km in altitude, reaching magnitudes of −0.25 and −0.5% N outside and within the
AR, respectively, that is larger than the other datasets. The small systematic positive bias
in refractivity of the dropsondes relative to the ERA5 reanalysis between 0.5 and 2 km of
magnitudes of 0.2–0.5% N can be interpreted as the reanalysis product underestimating
the moisture in the PBL, and this effect is greater within an AR than outside an AR. The
fact there is no bias above 2 km indicates on average the ERA5 has little bias in the PBL
height. It is interesting to consider this in terms of studies that have drawn attention to
a systematic bias showing GPS RO derived PBL heights were higher than the ECMWF
Interim Reanalysis [73] by 500 m [53,74]; the newer ERA5 product may agree better with
RO derived PBL heights as well.
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Figure 17. Comparison of (a) the mean difference in refractivity (%) and (b) the standard deviation
(%) of the differences between each of the observed datasets and the ERA5 reanalysis product for
both within (dashed lines) and outside (solid lines) the atmospheric river. The operational (green
lines), COSMIC-2 (purple lines), Spire (blue lines), and dropsonde (red lines) datasets are shown. The
thick dashed black line highlights the line of zero difference.

The profiles of mean differences for the COSMIC-2 and operational RO datasets
are near zero above 3 km, and then are characterized by negative values below that in
both datasets (Figure 17a). The positive bias with respect to the reanalysis found in the
dropsonde dataset in the lower levels is not reproduced in the RO datasets. The largest
negative mean differences are centered between 0.5 and 1 km for all RO datasets, with
the largest magnitudes for COSMIC-2. In the COSMIC-2 and operational datasets, the
mean difference is increasingly more negative inside an AR from 2 to 3 km. The mean
differences for the occultation datasets all have a sharp decrease at 2 km, at approximately
the top of the PBL. That negative bias is greatest for COSMIC-2 profiles outside an AR, and
could be explained by a sharper gradient at the top of the PBL outside an AR. The trend
toward a negative refractivity bias has been discussed frequently in the literature, due to
the difficulty in reconstructing the full spectral content from all raypaths sampling into
the PBL when the SNR is low [75]. The processing algorithms for the operational centers
tend to take the approach of consistently retrieving bending angle until that SNR limit
is reached.

In contrast, for the Spire dataset, the bias steeply increases downwards in the range
2–5 km, then decreases to negative values below 1 km. Inside an AR it decreases to −0.5%
N and outside an AR it decreases more sharply to −1.2% N. Judging from the examples
typical of Figures 3, 5 and 10, the Spire processing algorithm appears to favor smoothing
out the entire profile below 4 km in order to achieve zero mean on average below 4 km,
at the expense of severely contaminating the profile above 2 km with a positive bias. One
could argue that the better approach would be to provide near zero mean bias observations
above 2 km and reject or flag as questionable quality those below 2 km, rather than to
provide biased observations over the entire range.

The standard deviation of the differences between the profiles in each of the obser-
vational datasets and their corresponding reanalysis are plotted side-by-side for detailed
comparison in Figure 17b. All datasets have standard deviation of ∼0.5 to 0.6% N at the
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top of the profile with little variation until 7 km at which point the standard deviation
increases more steeply and relatively smoothly towards the top of the PBL. We describe the
differences among datasets by the value of the standard deviation at 2 km altitude, below
which there is considerable variability in the behavior. The dropsonde dataset (red curves)
has the smallest standard deviation of the observational datasets examined. The standard
deviation at 2 km is ∼2% N outside an AR and ∼2.5% N inside an AR, then in both regions
decreases to ∼1.5% N near the surface. We suggest that the large difference in standard
deviation between 2 km and 7 km is due to high variability of moisture in the mid-levels
within an AR that is difficult for the reanalysis to capture, even though the dropsondes
have been assimilated into the ERA5. We suggest the reanalysis captures the moisture more
accurately in the lowest level where it is controlled by the interaction with the sea surface
and has less variability.

The profiles of standard deviation of the refractivity differences for the occultation
datasets follow a similar pattern to that of the dropsonde dataset above 2 km (Figure 17b)
and the overall magnitude is different for each dataset. All have greater standard deviation
for profiles inside an AR, by 0.5 to 1.0% N, than outside an AR. The smallest standard
deviations are found in the operational dataset, where both outside and within the AR
above 2 km the magnitude of the deviations are very similar to that of the dropsondes.
Below this level they are much larger than found in the dropsondes, at ∼2.5% N within
and nearly ∼3% N outside an AR. This can be explained if one considers that the standard
deviation for the RO datasets also includes variability of the atmosphere integrated along
the horizontal raypath, so would be expected to be higher for RO than dropsonde point
measurements. The largest standard deviations are found in the COSMIC-2 dataset, with
values reaching ∼3% N at 2 km outside an AR and ∼3.3% N inside an AR. The standard
deviations for the Spire dataset reach ∼3% N at 2 km outside an AR and ∼3.5% N inside
an AR. The standard deviations for Spire have similar magnitudes to the dropsonde
and operational dataset within an AR in the mid-troposphere between 7 km and 3 km,
however much larger standard deviation below 3 km. As mentioned above, the two peaks
of ∼3.5–4% N below 3 km appear to be associated with differences between the overly
smoothed Spire profiles and the typical discontinuities present at the top of the PBL. In
the lowest 2 km outside an AR, the operational, Spire, and COSMIC-2 standard deviation
reach ∼2.8, 3.5 and 3.7% N, respectively. We suggest that all the occultation datasets are
affected by the artifacts that produce the large negative biases noted earlier, and advise
caution if these are to be used.

4. Analysis of the February 2019 Intense AR Event

The differences in refractivity inside versus outside an AR are explored using the
example of the AR event that was sampled during AR Recon 2019 IOP03 on 13 February
2019 at 0000 UTC. This long-duration and high-intensity AR made landfall over California
bringing AR4 conditions on the Atmospheric Rivers scale [76] and caused widespread
impacts [77–79]. Figure 18 shows an overview of this IOP, which sampled the AR approxi-
mately one day before it made landfall using dropsondes from two aircraft (grey stars). The
easternmost aircraft sampled a transect of the AR, and the westernmost aircraft sampled a
transect reaching into the axis of the upper level trough (not shown). Several spaceborne
RO observations (colored open circles) were paired with individual dropsondes (colored
stars of the same color as its paired occultation) that occurred within 2 h and 500 km
of the given occultation. Upper-level potential vorticity (PV) anomalies associated with
upper-tropospheric waves have been shown to generate mesoscale frontal waves (MFWs)
that affect the development and growth of extratropical cyclones and associated frontal
systems and ARs [80–82]. In this case a MFW led to the formation of a secondary cyclone
(evident in the closed mean sea level pressure contours to the north and northwest of the
IVT maximum in Figure 18) and split the atmospheric river into two separate lobes of high
IVT [79].
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Figure 18. Overview of the third intensive observing period (IOP03) of AR Recon 2019 with inte-
grated vapor transport (kg m−1 s−1, shaded and vectors) and mean sea level pressure (hPa, grey
contours) shown. Overlain are the locations of dropsondes (grey stars), and occultation-dropsonde
pairs identified along the easternmost transect of the AR that were within 2 h and 500 km of one
another, indicated by colored circles with the corresponding dropsonde indicated by a star of the
same color. Occultations from the Spire and operational RO constellations are colored blue and
green, respectively.

The easternmost transect of dropsondes, which passed through the region of maximum
IVT (>1000 kg m−1 s−1) within the AR, and then traversed the tail end of the second lobe of
IVT, is plotted in Figure 19. The transect is depicted in terms of the observed temperature,
humidity, and derived refractivity anomalies from the dropsondes, all shown relative to a
zonal climatological profile at 27◦ N during February from CIRA-86 [66]. The transect of
absolute temperature, humidity and refractivity is also shown in Supplemental Figure S5
along with the transect of winds from the dropsondes in Supplemental Figure S6. The
profiles of refractivity anomaly derived from the occultations that were paired with the
dropsondes in this transect are also overlain (green dashed lines) over their corresponding
dropsonde. Along the transect horizontally, the characteristic poleward decrease in temper-
ature and low level moisture (right to left in the figure) in baroclinic systems is apparent. In
the vertical, there are few sharp gradients in temperature anomaly along the transect but
there are many profiles with strong gradients in moisture anomaly, with these gradients
becoming even more pronounced in the derived refractivity anomaly, which is a function
of both variables.
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Figure 19. Vertical profiles derived from the easternmost dropsonde transect through the atmospheric
river shown in Figure 18. The dropsonde profiles are arranged starting with the northwestern-most
on the left and southeastern-most on the right, and the difference in (a) temperature (red lines),
(b) derived specific humidity (blue lines), and (c) derived refractivity (purple lines) with a zonal
climatological profile at 27◦ N during February is shown for each dropsonde. The derived refractivity
from a radio occultation paired to the given dropsonde is overlain (green dashed lines) on the derived
refractivity from the dropsonde, when available. The locations of these pairs are indicated in Figure 18.
The thick dashed black lines highlight the line of zero difference with the zonal climatology and the
latitude and longitude of the release point of each dropsonde is indicated.

A corresponding cross section through the ERA5 reanalysis product along the drop-
sonde transect but extending further poleward and equatorward is shown in Figure 20.
The difference in the three dimensional refractivity field depicted by ERA5 and a monthly
zonal climatology of refractivity at 27◦ N (referred to as the refractivity anomaly) is shaded.
The location of the core of the AR is roughly in the center of the cross section at the 10th
dropsonde profile counting from the left, at 25◦ N, within the low-level jet (Figure S6) on
the equatorward side of the upward sloping frontal zone as indicated by the potential
temperature contours (grey lines). The two lobes of IVT identified in Figure 18 are evident
in the cross-section with the poleward-most (left side of the figure) lobe of IVT depicted as
a shallowly dipping high refractivity (red shading) zone with a low level wind maximum
at 1.5–2 km in Figure S6, and the equatorward IVT lobe depicted as a triangular zone
of high refractivity with a low level wind maximum at 0.5–1.5 km altitude with a more
steeply dipping northern boundary and a more shallow dipping boundary on the southern
boundary showing the region of convective outflow. Outside of the AR on the equatorward
side, high refractivity anomalies (red shading) are constrained to within the PBL (below
approximately 2 km) and are capped by negative anomalies (blue shading) resulting in
a large vertical gradient in refractivity near the top of the PBL. However, within the AR
these high refractivity anomalies found near the surface extend to the middle troposphere,
due to the moist convection and subsequent middle level moisture characteristic of the
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core of an AR (e.g., [2,62]). An example is shown in Figure 2, and statistically greater
penetration is illustrated in Figure 4. Within the AR core, the environment is conducive
to deeper penetration of RO profiles, without the extremely sharp vertical gradients of
refractivity that are known to cause ducting and the loss of the GNSS signal beneath the
PBL (e.g., [51]), and which appear so prominently in the distribution of extreme negative
vertical refractivity gradients outside an AR in Figure 9a. Figure 9b–d show progressively
lower occurrence of sharp vertical gradients of refractivity with higher IVT values in the
AR core. We emphasize the vertical refractivity gradients because the nearly horizontal ray
paths are susceptible to superrefraction if the angle of intersection with the layer is near
critical at angles subparallel to the gradient. Although moderate horizontal gradients exist
near the cold front and AR core, the raypaths are unlikely to be nearly subparallel to these
gradients so unlikely to cause the severe atmospheric multipath often encountered in the
case of strong gradients in the vertical.

Returning to the dropsonde transect in Figure 19, the two dropsondes that sampled
the core of the AR along the transect (between 24.1 and 25.1◦ N) have relatively weak
vertical gradients in both humidity and refractivity. These weak vertical gradients sampled
by the dropsondes are depicted in the reanalysis cross section (Figure 20) by positive
refractivity anomalies throughout the entire depth that the dropsondes sampled (lowest
8 km of the troposphere). There was no corresponding occultation paired to either of
these dropsondes in the core of the AR, but the refractivity anomaly from the example
occultation from the COSMIC-2 dataset that sampled the core of the AR during IOP04
of AR Recon 2020 (Figure 2) shows similar weak vertical gradients of refractivity and
was able to sample down to the surface. The profiles on the flanks of the AR all have
strong vertical variations in refractivity between 1 and 4 km in height, corresponding to
the regions of negative refractivity anomalies (blue shading) directly adjacent to the AR
core on the equatorward and poleward sides, respectively, in the reanalysis cross section.
The paired occultation that sampled on the equatorward flank of the AR has a very similar
refractivity profile to that of its corresponding dropsonde above 4 km and while it deviates
a little bit below this level, it roughly follows the refractivity of the dropsonde before
being cut off near 1 km, near the level of sharpest refractivity gradient associated with
the top of the PBL. The paired occultation that sampled on the poleward flank of the AR
reproduces the extreme refractivity variations between 0 and 5 km in height observed by its
corresponding dropsonde. This pair sampled in the region of strongest refractivity gradient
along the transect, indicated by the region of strong negative refractivity anomaly capping
the positive refractivity anomaly in the PBL centered on 27◦ N. The transect from 29◦ to 15◦

N is very similar to the classical AR transect as described in [60], with the negative anomaly
on the poleward side representing the cold air behind the cold front. However, this transect
is more complicated in that on the poleward side of 29◦ the transect is cutting across the
displaced frontal system associated with the mesolow to the northeast. Here the core of the
shifted AR is seen in the sloping positive refractivity anomaly between 35 and 27◦ N. The
shift in the AR core is evident in Figure 18 by the longer IVT vectors at the transect near the
5th dropsonde and 10th dropsonde (counting from the northwestern end of the transect).

This creates complicated vertical variations in refractivity, which are exceptionally well
captured by the occultation’s refractivity anomaly profile in comparison to the reanalysis
cross-section (Figure 20) as well as the closest dropsonde in the transect (Figure 19).
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Figure 20. Cross section of the difference in refractivity (shaded, %) between the ERA5 reanalysis
product and a zonal climatological profile at 27◦ N during February for the third intensive observing
period (IOP03) of AR Recon 2019. The cross section follows the easternmost dropsonde transect
through the atmospheric river shown in Figures 18 and 19. Potential temperature (grey contours, K)
and the 2 PVU contour representing the dynamic tropopause (thick black dashed line) are overlain.
The location of the dropsondes along this transect (see Figure 19) are indicated by black dashed
vertical lines. The refractivity from the paired occultations is overlain on the lines indicating the
dropsonde profiles using filled circles every 0.5 km in the vertical along the given profile. The
difference in refractivty between the occultations and the same climatological profile is indicated
using the same color scale to fill the circles as was used for the shaded refractivity.

5. Discussion

Of the RO datasets examined in this study the refractivity profiles from the operational
dataset are the most similar to the refractivity derived from the dropsonde dataset. This is
most evident in the comparison of the standard deviation curves with respect to the ERA5
reanalysis product for these two datasets (Figure 17b), where the curves are very similar
in shape and magnitude until reaching 2 km in height, near the top of the boundary layer.
This agreement is found both inside and outside an atmospheric river (AR) highlighting the
consistency of the operational RO dataset. The very different magnitudes of the standard
deviation curves in the COSMIC-2 and Spire RO datasets indicate that the general approach
of using different observation errors as a function of height for each constellation in data
assimilation is a reasonable approach (e.g., [83,84]).

The comparison of the state-of-the-science COSMIC-2 RO dataset to the reanalysis
product has shown an overall similar shape of the mean bias and standard deviation
curves to that of the operational RO dataset (Figure 17). However, the COSMIC-2 dataset
has the largest negative biases in the lower troposphere as well as the largest standard
deviations throughout most of the troposphere. The main differences between the COSMIC-
2 and the previously launched RO missions that make up the operational RO dataset are
(1) COSMIC-2 is more focused on tropical latitudes, (2) the advanced TGRS receiver
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employed by COSMIC-2, with its much higher signal-to-noise ratio (SNR), and (3) that the
occultations from COSMIC-2 were not assimilated into the ERA5 product over the time
period of this study. The TGRS receiver with higher SNR had been expected to provide
more accurate data, and the source of this noise remains unresolved [41]. The consequence
of not assimilating COSMIC-2 into ERA5 would have most effect in the upper troposphere
(above 5 km), where the weighting of RO observations used in assimilation systems is
much higher than in the lower troposphere. In the lower troposphere, RO observations are
assigned large observation errors in the operational global models, including the ECMWF
forecast model [44,85] on which the ERA5 reanalysis product is based. On the other hand,
the dropsondes are assimilated in the ERA5, with smaller observation errors, and would
have a stronger influence on the reanalysis. The larger negative biases and standard
deviations in the lower troposphere could be related to COSMIC-2 sampling consistently
deeper than the other RO datasets examined, due in part to its much higher signal-to-noise
ratio. This successful reporting of deeper penetration of profiles would result in COSMIC-
2 occultations more frequently encountering atmospheric super-refraction and ducting
conditions, due to the presence of sharp temperature inversions, such as the trade wind
inversion (e.g., [86], and strong horizontal gradients in moisture associated with the deep
convection that characterizes the tropics.

The bias in the commercial Spire RO dataset with respect to the reanalysis product is
radically different than that of any other RO dataset examined in this study throughout
much of the troposphere. The operational and COSMIC-2 datasets have negative biases
with respect to the reanalysis that peak near 0.5 km above the surface (Figure 17a), in general
agreement with previous studies [29,40–42,51]. In contrast, the unusual pattern of bias in
the Spire profiles reflects systemic differences in the occultations. The individual refractivity
profiles from the Spire dataset are unrealistically smooth compared to that of the other RO
datasets and also the dropsondes, with this being most evident in the lower troposphere
and especially outside of an AR (see Figure 3c and grey lines in Figures 5, 10 and 16).
The profiles in the Spire dataset smooth away the variability associated with the PBL,
thus reducing the standard deviation; however, it produces a compensating positive and
negative bias above and below the PBL, with the positive bias above the PBL unacceptably
large. These apparently unphysical artifacts are possibly related to issues in the processing
of the GNSS RO observable to retrieve refractivity, but what may be causing them is unclear
as the details of the processing method employed are not made public by Spire. Despite
these issues, recent numerical experiments using Spire RO profiles have shown them to
have similar quality to operational RO observations and positive impact on forecasts [49,50].
This is likely due to the aforementioned general down weighting of RO observations in the
lowest parts of the troposphere [32,44,85,87].

The RO datasets examined in this study all had very low spatial densities over the
northeastern Pacific Ocean. The combined density of all RO datasets of 0.084 # deg−2 is not
sufficient for sampling within a given AR with enough occultations for detailed case studies
and cross sections. Note that the density shown in Table 2 is actually an overestimate given
that in the calculation the RO profile may have been in a different AR within the study
region than the one being targeted in the IOP. The individual RO datasets all had very
different spatial densities from one another. The COSMIC-2 dataset has more than double
the average number of occultations per IOP of the operational dataset despite the COSMIC-
2 mission being centered on the tropics and providing very few occultations poleward of
35◦ in the study region. These were often located in the general region of tropical moisture
export, which can often have high IVT values, and not necessarily in the targeted AR.
These densities of sampling will likely remain consistent for the operational and COSMIC-2
dataset but are likely underestimates of the current density of Spire occultations as more
satellites have been added to this GNSS constellation. Additionally, Spire is only a single
commercial GNSS constellation among several others that have been launched recently, so
statistics in this study underestimate the density of commercial occultations considerably.
Even with increases in the number of commercial RO observations, the use of an airborne



Atmosphere 2022, 13, 1495 29 of 34

radio occultation (ARO) system is the most effective way to consistently sample a given
synoptic to mesoscale atmosphere feature like an AR with high spatial density at a given
time [60].

6. Conclusions

Refractivity profiles derived from the COSMIC-2, Spire, and remaining operational
GNSS radio occultation (RO) datasets were compared to dropsondes, and the ERA5 reanal-
ysis product which assimilates them, in the dynamically active environments in and around
atmospheric rivers (ARs) during winter in the northeastern Pacific. The results provide
insight on the characteristics of RO profiles that are potentially useful, for example, to assess
different observation error models and quality control criteria used to optimize assimila-
tion of RO observations into the analyses used by numerical weather prediction models
forecasting ARs. At present, these findings indicate that assimilation should consider the
height dependent systematic differences among RO observations and other datasets that
sample the structure of the atmosphere, especially in the lowest parts of the troposphere.
To that effect, the results of the statistical comparisons are tabulated in the Supplementary
Information to provide a guide for future efforts.

While the mean differences in refractivity between each of the observed datasets and
the reanalysis product were less than approximately 0.5% N in the upper troposphere
above 5 km, much larger differences were found in the lower troposphere. There the three
RO datasets examined all have different characteristics, though they share a maximum
negative bias, with respect to the reanalysis, below 1 km.

6.1. Comparison of RO with Dropsondes

1. COSMIC-2 refractivity observations are biased low relative to dropsondes, with the
bias becoming more negative near the surface, whereas the operational RO dataset is
closer to zero mean. The standard deviation for COSMIC-2 relative to dropondes is
almost twice as big as the standard deviation for the operational RO dataset.

2. Although the number of RO profiles from Spire collocated with dropsondes is rel-
atively samll, comparisons show the Spire profiles are overly smooth in the lower
troposphere with radically different characteristics than the other RO constellations,
affecting the ability to resolve sharp boundaries. In consequence, the bias of refractiv-
ity profiles from Spire relative to dropsondes that would normally be expected to exist
only below the boundary layer, for example, tend to contaminate the profiles at higher
altitudes, and specifically contaminates the profiles difference with the reanalysis up
to 5 km in height.

3. Refractivity gradients are smaller in absolute magnitude within the core of an AR
than they are in the surrounding environment, leading to deeper penetration of RO
profiles within the AR than outside an AR.

4. Based on limited collocations, the COSMIC-2 bias relative to dropsondes abruptly
decreases at 2.8 km inside an AR and decreases at 1.2 km outside an AR. These heights
correspond to where the variations in the vertical gradient of refractivity (dN/dz)
become larger and more negative.

5. Regions with relatively high moisture at mid-levels, such as beneath the convective
outflow within an AR and behind and near the cold front, effectively lift the height of
the maximum vertical gradient of refractivity and tend to reduce it. This is in contrast
to regions with a well-defined top of the planetary boundary layer (PBL) and little
middle level moisture above, such as adjacent to an AR, which have a much lower
and larger maximum vertical gradient in refractivity.



Atmosphere 2022, 13, 1495 30 of 34

6.2. Comparison of Dropsondes with Reanalysis

1. The dropsonde dataset showed a positive mean difference with respect to the ERA5
reanalysis of 0.5% N between 1 and 2 km indicating a potential dry bias of ERA5 below
the PBL in this environment. In contrast, the three RO datasets had large negative
bias with respect to ERA5 greater than −1% N below 1 km, making it unrealistic to
expect they are reliable at these levels without further study.

2. The standard deviation of the difference between the dropsonde and reanalysis prod-
uct peaks at 2 km, approximately at the PBL height, and decreases to 1.5% N at
the surface. This may indicate that the general decrease in apparent error at about
0.5–1 km often observed in GNSS RO datasets may be realistic and may not be an
artifact of the reduced number of profiles (i.e., [83]).

3. The standard deviation of the difference between the dropsonde dataset and reanalysis
is approximately 0.5–1% N larger within an AR than outside over the height range
1.5–6 km. This indicates the ERA5 does not capture the full variability of humidity
within an AR. The operational RO dataset closely follows this pattern above 2 km.

6.3. Comparison of RO with Reanalysis

1. The standard deviation of the differences with the reanalysis product for the three
RO datasets is nearly constant above 7.5 km and increases approximately linearly
towards the surface, peaking between 1 and 2 km. In general the differences follow
the type of error model described in [83] but suggest a lower observational error could
be used in this AR environment in the range 7.5 to 10 km than is commonly assumed
for operational models [88,89].

2. The standard deviation of the difference with the reanalysis for the dropsonde and
the three RO datasets are all larger inside an AR compared to outside, with the largest
values in the COSMIC-2 and Spire datasets.

3. The individual refractivity profiles within the Spire dataset are extremely smooth
compared to that of the other RO datasets and dropsondes, particularly in the lower
troposphere, and are likely contributing to the artifacts seen in the mean difference.

4. The COSMIC-2 and Spire RO datasets have much larger standard deviations than that
of the operational RO and dropsonde datasets throughout most of the troposphere,
with the largest values found in the COSMIC-2 dataset. Spire and COSMIC-2 reach a
standard deviation of ∼3.5% N below 2 km, compared to ∼2.8% N for operational RO.

6.4. Characteristics in the Lowest Parts of the Troposphere

1. The negative refractivity bias relative to reanalysis below 1 km is larger outside an AR
than inside an AR for all three RO datasets. This may indicate that super-refraction or
ducting may be worse outside the AR where the refractivity gradient is sharper at the
top of the PBL.

2. The depth of penetration among the RO datasets is highest in the COSMIC-2 dataset
with >90% of occultations reaching down to 1 km, next highest in the Spire dataset
(>85% at 1 km), and the lowest in the operational dataset (>65% at 1 km).

3. The depth of penetration into the lower troposphere is greater inside an AR than
outside in all RO datasets examined. There are approximately 10% more profiles
reaching 1 km above the surface inside an AR than outside an AR in all datasets.

4. The deeper penetration of RO within an AR is likely due to the fact that the dis-
tribution of the vertical gradient in refractivity (dN/dz) is narrower (i.e., less than
500 N-units km−1) for dropsondes within the AR core where integrated vapor trans-
port (IVT) is >750 kg m−1 s−1, and progressively wider for lower values of IVT. This
could be due to a reduction in dN/dz from greater mixing of humidity into higher
levels by moist convection within the core of an AR, compared to outside an AR
where there is less variation above the very strong refractivity gradients at the top of
the PBL.
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