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Abstract: During the pre-monsoon season (March–April–May), the eastern and northeastern parts of
India, Himalayan foothills, and southern parts of India experience extensive lightning activity. Mean
moisture, surface and upper-level winds, the sheared atmosphere in the lower level, and high positive
values of vertically integrated moisture flux convergence (VIMFC) create favorable conditions for deep
convective systems to occur, generating lightning. From mid-2018, the European Centre for Medium-
Range Weather Forecasts (ECMWF) Integrated Forecasting System (IFS) operationally introduced
lightning flash density on a global scale. This study evaluates the ECMWF lightning forecasts over
India during the pre-monsoon season of 2020 using the Indian Institute of Tropical Meteorology
(IITM) Lightning Location Network (LLN) observation data. Qualitative and quantitative analysis
of the ECMWF lightning forecast has shown that the lightning forecast with a 72-h lead time can
capture the spatial and temporal variation of lightning with a 90% skill score.

Keywords: lightning forecast; ECMWF; Integrated Forecasting System (IFS); pre-monsoon season;
IITM LLN

1. Introduction

Cumulonimbus clouds with vigorous updrafts and downdrafts form thunderstorms.
Severe thunderstorms consist of multiple convective cells at different stages, and the storm
itself has a longer lifetime than individual cells [1–4]. As the convective clouds grow
larger, different microphysical processes inside the cloud trigger the formation of charged
hydrometeors. Negatively charged hydrometeors accumulate in the lower region of the
cloud and positively charged particles in the upper levels, leading to the formation of an
electric dipole structure. When the charge difference between the two poles of the dipole
becomes high enough, lightning occurs through electric discharge [5–7].

Despite uncertainties in the data, the present global estimation of lightning-related
fatalities is about 4000 to 5000 per year [8], with developing countries from tropical and sub-
tropical nations being the most affected. Being part of the tropics, the Indian subcontinent
experience a high number of lightning-related death, with the highest deaths recorded
throughout March, April, and May—with an average of 103 deaths per year in Nepal [9],
an average of 18 deaths per year in Shri Lanka [10], and in Bangladesh an average of
286 deaths per year [11]. In India, lightning has caused more fatalities than any other
natural calamity from 2004 to 2013, according to a report by National Crime Records
Bureau (NCRB), with 38.6% of deaths caused by lightning alone [12,13]. A recent study [14]
has shown that mortality due to lightning alone has increased by 52.8% in the last 20 years.

In addition to its destructive impacts, lightning is a source of NOx in the atmosphere
influencing ozone productivity and oxidization [15]. Lightning strikes are the dominant
cause of forest fires and a significant contributor to biomass-burning aerosols [16]. As light-
ning is responsive to temperature on many time scales, one study [15] has predicted more

Atmosphere 2022, 13, 1520. https://doi.org/10.3390/atmos13091520 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos13091520
https://doi.org/10.3390/atmos13091520
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-2363-2006
https://orcid.org/0000-0002-1967-3382
https://doi.org/10.3390/atmos13091520
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos13091520?type=check_update&version=1


Atmosphere 2022, 13, 1520 2 of 13

lightning in a warmer world based on a general circulation model with enhanced CO2.
Many studies [16–19] have called for enhancements in clustered positive ground flash
activity in the presence of elevated equivalent potential temperature. Nevertheless, the use
of lightning as an indicator of long-term climate issues has also been questioned due to the
diminishing effects of lightning–temperature sensitivity on a longer time scale [20].

The Indian subcontinent experiences severe thunderstorm events and lightning dur-
ing the pre-monsoon months of March–April–May (MAM) [21–25]. There are five dis-
tinctly identifiable thunderstorm-prone regions—Northeast India (NEI), Southern Penin-
sula (SP), Central India (CI), East Coast of India (ECI), and Northwest India (NWI) [26].
Each thunderstorm-prone region is defined based on its trigger mechanism, lightning
structure, microphysical, and dynamical properties [2,26–32].

The India Meteorological Department (IMD), Indian Institute of Tropical Meteorol-
ogy (IITM), and the National Centre for Medium-Range Weather Forecasting (NCMRWF),
under the initiative of the Ministry of Earth Sciences (MoES), have developed a thun-
derstorm prediction system that can deliver a nowcast up to 3 h ahead for 800 stations,
a regional model forecast with a 24-h lead time and thunderstorm-specific products 48 h in
advance from high-resolution (12.5 km) global model. These products use combinations of
high-resolution satellite data, IITM lightning sensors, RADAR observations, high-resolution
mesoscale models, and outputs from the Global Forecast System (GFS, at 12.5 km spatial
resolution). All these efforts have significantly improved accuracy for nowcasting and
short-range forecasting [33]. To address the disaster management aspect of lightning,
the Lightning Resilient India Campaign was launched in 2019 to reduce lightning deaths
by 80% by 2022. The campaign was formed jointly by Climate Resilient Observing Sys-
tems Promotion Council (CROPC), in collaboration with IMD, the Indian Meteorological
Society (IMS), World Vision India, and the Red Cross. Within the first two years, casualties
associated with lightning have been reduced by 60% [34].

In June 2018, the European Centre for Medium-Range Weather Forecasts (ECMWF)
started to predict lightning flash density operationally in their Integrated Forecasting
System (IFS) [35]. The lightning flash density [36] is calculated using convective outputs
from the convective mass–flux scheme [37] of IFS. Verification of the ECMWF lightning
forecasts over Europe has shown that the ensemble lightning forecasts have useful skill
with a lead time of at least 3 days, while the deterministic forecast is in good agreement
with the observations for 6 h temporally and 50 km spatially [35].

Here, using observations from the IITM Lightning Location Network (LLN), opera-
tional over more than 80 locations across India, we evaluate the ECMWF lightning forecast
with a lead time of 3 days over India and analyze the quality of the ECMWF lightning
forecasts with a longer lead time during the pre-monsoon months of March–April–May.
Section 2 of this paper details the data and methodology used in this study. Section 3
includes results and discussion, followed by a summary in Section 4.

2. Data and Methodology
2.1. ECMWF IFS Lightning Forecast Data

ECMWF implemented lightning parameterization in IFS and started operational
lightning forecasts in June 2018 [35]. The parameterization calculates the total of cloud-
to-ground (CG) and Intra-Cloud (IC) lightning as a function of convective hydrometeor
amounts, convective available potential energy (CAPE), and convective cloud base height
diagnosed by the convection scheme of ECMWF [36]. The total lightning flash density is
given by

fT= αQR
√

CAPEmin(zbase, 1.8)2, (1)

where α is a tunable coefficient, currently set to 37.5, to match the annual global mean
flash rate obtained from Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD)
gridded climatology [38]. The variable zbase is the convective cloud base height.

The mixed-phase region of a convective cloud consists of graupel and super-cooled
water and is typically found between 0 ◦C and −25 ◦C isotherm. These microphysical
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processes, such as collision, and sublimation, lead to the charge separation of cloud parti-
cles [39–42]. The region between the 0 ◦C and−25 ◦C isotherm is assumed to correspond to
the charge separation region [36] (Figure 1, p. 3058). In Equation (1), QR provides a proxy
for the charging rate generated by the collisions between different hydrometeors within the
charge separation region:

QR =
∫ z−25

z0

qgraup(qcond + qsnow)ρdz, (2)

where qgraup and qsnow denote the amount of graupel, and snow, respectively, while qcond
is the cloud condensate amount within the convective updraft region. ρ is the ambient air
density at altitude z. z−25 represents the altitude of −25 ◦C isotherm and z0 is the altitude
of 0 ◦C isotherm.

This parameterization provides both instantaneous and time-averaged total lightning
flash densities and was made operational from the IFS model cycle 45r1 for both the
highest resolution “HRES” configuration and the 51-member ensemble system “ENS”.
The horizontal resolution was 9 km for HRES and 18 km for ENS, with 137 vertical levels.

For our analysis, we considered pre-monsoon months March, April, and May (MAM)
2020 total (CG and IC) hourly lightning flash density (km−2 day−1) from daily ECMWF IFS
HRES runs up to the 72 h range. In this paper, IFS Day 1 lead time refers to the first 24 h
forecast, Day 2 lead time refers to the forecast from 25 h to 48 h, Day 3 from 49 h to 72 h.

2.2. Lightning Location Network

IITM LLN currently consists of 82 lightning-detecting sensors. Each sensor can detect
the arrival time of the radio waves (up to 100 MHz) generated by lightning at nanoseconds
accuracy from as far as 1000 km away (Figure 1). CG and IC lightning strikes can be
detected with 90% and 50% detection efficiency, respectively [43–46].
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Figure 1. The locations of Indian Institute of Tropical Meteorology (IITM) Lightning Location Network
(LLN) stations (marked by white stars). Overlaid colored boxes are 5 thunderstorm-prone regions (as
defined by [26]).

An algorithm has been built mainly for this study to calculate the total lightning
flash density that occurred in the last hour (in flash km−2 h−1) on a 0.1◦ × 0.1◦ grid for
MAM 2020.
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2.3. Other Datasets

In addition to IFS lightning forecasts and LLN observation data, we have also used
the LIS/OTD Gridded Climatology data set, which consists of the gridded climatology of
total lightning flash rates measured by the spaceborne Optical Transient Detector (OTD)
and Lightning Imaging Sensor (LIS) from 1995 to 2015 with a horizontal resolution of
0.5◦ × 0.5◦ [38]. To analyze the large-scale conditions during the pre-monsoon season in
India, we used the fifth-generation ECMWF reanalysis (ERA5) hourly data at a resolution
of 0.25◦ × 0.25◦ [47].

3. Results and Discussion
3.1. Mean Lightning Climatology and Large-Scale Condition during MAM 2020

The MAM season lies between the winter and summer monsoon seasons and is clas-
sified as the ‘Hot weather period’ by the IMD [48]. The subcontinent experiences intense
convective events during this period, resulting in high lightning activity. The LIS/OTD
lightning climatology for MAM (Figure 2) shows the Himalayan foothills, eastern, north-
eastern, and southern parts of India experiencing an extended amount of lightning. Western
India has a very low lightning occurrence during this season. The five thunderstorm-prone
regions [26] reasonably overlap with the intense lightning regions, as shown in Figure 2.
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Figure 2. Pre-monsoon (March–April–May or MAM) mean flash rates (flash count km−2 day−1) ob-
tained from Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) Gridded 1995–2015 Cli-
matology data sets [38]. Colored boxes highlight five thunderstorm-prone regions as defined by [26].

Investigation of the meteorological surface and dynamical features during MAM
2020 (Figure 3) shows the regions with a mean relative humidity above 50% coincide
with Figure 2. The 850 hPa wind shows westerlies to northwesterlies in the northern
part of India, while a clear line of wind discontinuity can be seen across the southern
peninsula in a north–south direction (Figure 3a). At the 200 hPa level, the mean wind
is predominantly westerly (Figure 3b). The vertical wind shear between 850 hPa and
700 hPa is positive over thunderstorm-prone regions (Figure 3b). Large-scale lifting in the
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lower troposphere helps sustain convective activity and therefore favors thunderstorm
intensification. Vertically integrated moisture flux convergence (VIMFC) has been used as
a thunderstorm predictor [49]. As displayed in Figure 3c, the significant positive values
of VIMFC indicate a thunderstorm-supporting environment over eastern, northeastern,
and southern India and along the Himalayan foothills.
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Figure 3. 2020 MAM mean (a) relative humidity (%; shaded), sea-level pressure (hPa; contours
in red) and 850 hPa wind vector; (b) low-level wind shear between 850 and 700 hPa (m s−1;
shaded) and 200 hPa mean wind vector; and (c) vertically integrated moisture flux convergence
(VIMFC; ×10−5 kg m−2 s−1). Plotted using ECMWF reanalysis (ERA5) hourly data [47].
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3.2. Evaluation of IFS Lightning Forecast

In Figure 4, the mean lightning flash density is plotted for (a) the LLN observations,
(b) IFS Day 1, (c) Day 2, and (d) Day 3 lead times, respectively, along with the bias between
LLN and IFS forecast for (e) Day 1, (f) Day 2, and (g) Day 3 lead times. The figure shows
that the IFS lightning forecasts capture the pre-monsoon lightning-prone regions rather
well. However, there is positive bias along with the Himalayan foothills and a negative bias
over eastern India. With increasing lead time, over-estimation across Himalayan foothills
decreases while under-estimation over eastern India increases.

Atmosphere 2022, 13, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 4. MAM 2020 mean flash density (flash count km−2 day−1) (a) observed by LLN and forecasted 
by IFS for (b) Day 1, (c) Day 2, and (d) Day 3 lead times. (e–g) shows the forecast bias (flash count 
km−2 day−1) for Day 1, Day 2, and Day 3 lead times, respectively. 

Figure 5 shows the mean diurnal variation of lightning density over (a) all India and 
over (b)–(f) the thunderstorm-prone regions, as indicated in Figure 1. The diurnal varia-
tion of lightning usually exhibits a distinct peak during the local afternoon, as can be seen 
in Figure 5, where LLN lightning peaks after 15:00 local time for all regions except for 
Northeast India (Figure 5b), as thunderstorms in this region are mostly orographically 
initiated. The IFS lightning diurnal cycle follows the observed diurnal cycle, albeit with a 
two to three hours lead for all three forecast days, consistent with the 2–3 h lead in forecast 
convective precipitation compared to rainfall observations [37]. Furthermore, for the NWI 
and ECI regions, the observations indicate a double peak in lightning which is not present 
in the forecasts. For different lead time, the diurnal variation of lightning does not have 
noticeable differences over all India and all thunderstorm regions, except CI region where 
Day 3 forecast underperforms compared to Day 1 and Day 2 forecast. 
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Figure 5 shows the mean diurnal variation of lightning density over (a) all India and
over (b)–(f) the thunderstorm-prone regions, as indicated in Figure 1. The diurnal variation
of lightning usually exhibits a distinct peak during the local afternoon, as can be seen
in Figure 5, where LLN lightning peaks after 15:00 local time for all regions except for
Northeast India (Figure 5b), as thunderstorms in this region are mostly orographically
initiated. The IFS lightning diurnal cycle follows the observed diurnal cycle, albeit with a
two to three hours lead for all three forecast days, consistent with the 2–3 h lead in forecast
convective precipitation compared to rainfall observations [37]. Furthermore, for the NWI
and ECI regions, the observations indicate a double peak in lightning which is not present
in the forecasts. For different lead time, the diurnal variation of lightning does not have
noticeable differences over all India and all thunderstorm regions, except CI region where
Day 3 forecast underperforms compared to Day 1 and Day 2 forecast.

Figure 6 shows the time series of the average daily lightning flash density over
(a) all India and over (b)–(f) five thunderstorm-prone regions during MAM 2020. The model
reasonably reproduces the day-to-day lightning variations over all India for all forecast lead
times, while some of the daily fluctuations are missed in the forecasts when the subregions
are considered.
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In Figure 7, we have plotted the total monthly flash density over (a) all India and
over (b)–(f) five thunderstorm-prone regions. All India, along with NEI and CI, shows an
increasing trend with months, with lightning peaking in May. In April, the mean flash
density observed by LLN is maximum over the SP and ECI regions but lowest over the
NWI region. IFS performs best in March, with more considerable differences between
observation and forecast in April and May. In May, the model positive bias increases with
increasing lead time for all India, NEI, SP and ECI regions while over NWI the positive
bias is less affected by increasing lead time. On the contrary, over CI region IFS forecast
underperformes independent of model lead time.
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3.3. IFS Lightning Forecast Verification

For further quantitative evaluation, skill score analysis has been performed. Since the
IITM LLN sensors and IFS grid points may not coincide, we have binned both the observed
and forecasted data into 0.3◦ × 0.3◦ boxes. For each day and for both observation and
forecasted data, if the total lightning flash density is greater than zero in one bin, we denote
it as ‘yes’ and ‘no’ if the total lightning in a bin is zero. The corresponding contingency
table [33] is illustrated in Table 1.
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Table 1. Contingency table.

Observed
Yes No

Forecast
Yes Hits False Alarms Forecast yes

No Misses Correct Negatives Forecast no

Observation yes Observation No Total
(Sample size)

We have then calculated four skill scores using the contingency table to evaluate the
forecast for Day 1, Day 2, and Day 3 lead times (Table 1). The skill scores are POD, FAR,
Bias score or Frequency Bias (FB), and SEDI. POD, or probability of detection, is defined as
the ratio of the number of correct forecasts to the total number of events,

POD =
hits

hits + misses
, (3)

FAR, or false alarm ratio, is defined as the ratio of false alarms to the total number of
non-occurrence of the event or the conditional relative frequency of a wrong forecast given
that the event does not occur,

FAR =
false alarms

hits + false alarms
, (4)

FB or frequency bias, also know as Bias score or simply Bias, is defined as,

FB =
hits + false alarms

hits + misses
. (5)

FB is the ratio of the number of yes forecasts to the number of yes observations.
FB > 1 indicates over-forecasting, where the event has been forecasted more than it is
observed, FB < 1 is under-forecasting, where the event is forecasted less often than it has
been observed, and FB = 1 is an unbiased forecast, where an equal number of events have
been forecasted and also been observed.

SEDI, or the Symmetric Extremal Dependence Index, is defined as [50],

SEDI =
ln F− ln H + ln(1−H)− ln(1− F)
ln F + ln H + ln(1−H)+ ln(1− F)

, (6)

with H being the hit rates or POD and F being the False alarm rate or probability of false
detection, defined as,

F =
false alarms

true negative + false alarms
. (7)

SEDI has been defined as assessing rare or extreme events and is resistant to ‘hedging’
or biases in forecasts. SEDI is independent of the base rate and ranges between [−1, 1].
As the forecasted events become more random, SEDI reaches 0.

The skill score analysis summarized in Figure 8 shows that, for all three forecast lead
days, the probability of detection is over 0.8 for all regions, including all India, indicating
that IFS can accurately forecast 8 out of 10 observed lightning events, which is also sup-
ported by the low false alarm ratio, especially over thunderstorm-prone regions. FB > 1 for
all regions indicates that IFS forecasts more lightning events than observed ones. SEDI
shows values > 0 for all cases, indicating that the forecast is not random and has a positive
skill that decreases with increasing lead time over most regions.
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4. Summary

During the pre-monsoon, India experienced extensive thunderstorms and enhanced
lightning activity, specifically in the northeastern parts of the country, followed by the
northwestern and southern peninsula (Figure 2). Mean moisture, surface and upper-
level winds, and the sheared atmosphere in the lower level create favorable conditions
for these thunderstorms, which are supported by high positive values of VIMFC, high
CAPE, and low CIN (Figure 3). These meteorological conditions support high lightning
occurrences throughout the season.

IITM LLN, since its inception, has played a crucial role in the development of real-time
lightning warning systems in India. With over 80 sensors (Figure 1) across the nation,
IITM LLN is also crucial for forecast evaluation, which will help further development
of early warning systems for lightning. For the first time, IITM LLN has been used to
verify lightning forecasts from a global operational forecasting system over India—ECMWF
IFS—which includes a lightning parameterization [36] capable of predicting total lightning
flash density with a lead time of 15 days. This paper has analyzed lightning events over the
Indian subcontinent during the 2020 pre-monsoon season, focusing on five thunderstorm-
prone regions. Despite positive bias along the Himalayan foothills and negative bias over
eastern India, the IFS forecasts can capture the spatial structure of the mean lightning flash
density for MAM 2020 (Figure 4).
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During the pre-monsoon seasons, thunderstorms over many parts of the country reach
their mature stage in the afternoon except in the northeast region, where the thunderstorms
occur primarily between midnight and early morning. The diurnal variation of lightning
closely follows this. The IFS-forecasted primary lightning peak could be seen 2 to 3 h
ahead of observations during the day, corresponding to an early onset of convective
precipitation [37]. Furthermore, the model has difficulties representing the double daily
peak of lightning flash density as observed over the east coast of India (Figure 5). We further
investigated the daily variations of observed and forecasted lightning flash densities.
The day-to-day variations of forecasted lightning agree well with the observed fluctuations,
especially when averaged over larger basins. In the observations, lightning instances
gradually increase from March to May, with lightning values peaking in May over all India
except for the southern peninsula and northwest India, where the maximum total lightning
peaks in April. The IFS forecast captures the monthly trend of total lightning flash density
overall well in all regions, except the southern peninsula.

We have also calculated statistical skill scores to quantitatively analyze the forecast
using a statistical contingency table. The main intention of this statistical analysis is to
assess how well IFS can predict 1 to 3 days in advance whether a location will be hit by
lightning or not. The POD values show that IFS can correctly predict 80% of thunderstorm
events nationwide. The rate of false alarms is lower in thunderstorm-prone regions than in
all India. The IFS is also found to over-predict the frequency of lightning events over all
India and the five thunderstorm-prone regions.

Since, the relative frequency or the ratio of number of grid points that has observed
lightning to total number of available grid points (or sample size; Table 1) converges to zero,
we have plotted the SEDI score [42], which is independent of the relative frequency. SEDI
score (Figure 8d) indicates that the forecast model can predict lightning with sufficient high
skill over all regions.

Overall, the analysis shows that a 9 km global forecasting model, using a convective
parameterization scheme and a coupled lightning parameterization, is able to produce a
lightning forecast with a 3-day lead time that has a 90% success rate. We consider this to be
a substantial step toward an early lightning warning system for India.
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