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Abstract: This study reports the atmospheric electric field (AEF) anomalies associated with seismic-
geological activity recorded by the monitoring network in the Sichuan–Yunnan region of China during
the 15–30 days prior to the Yangbi earthquake in Yunnan Province, China, on 21 May 2021. Based on
the real-time AEF data from continuous observation, this study summarized the characteristics of the
anomalous interference of different meteorological factors on the AEF, compared the simultaneous
meteorological data of the AEF anomalies, and ruled out the influence of precipitation, wind, fog, and
other weather factors on the AEF anomalies in Yangbi County prior to the Yangbi Ms 6.4 earthquake.
The AEF anomalies were identified and extracted from the two-month data from 1 April to 1 June,
which were from multiple days, stations, and rupture zones near the 100 km radius from the epicenter
of the Yangbi Ms 6.4 main earthquake. Using time series and wavelet transform analysis methods,
the obvious common features of the anomalies were summarized, and the homology of the anomalies
was verified. The main outcome of the investigation in this study will be used to distinguish and
characterize the AEF anomalies associated with pre-seismic geologic activity of non-meteorological
elements in the near future.
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1. Introduction

Earthquakes are among the most devastating disasters in nature. Throughout history,
people have attempted to predict earthquakes in order to mitigate the loss of human life and
property. However, despite centuries of effort by numerous scientists around the world, the
question of whether earthquakes can be predicted remains a mystery [1–3]. Earthquakes
are similar to the evolution of weather in that they are a highly complex and non-linear
dynamic process. Unlike meteorological changes, earthquakes occur beneath the Earth’s
crust and are not visible. Due to the inaccessibility of the Earth, the complexity of the
earthquake mechanisms, the scarcity of examples of strong earthquakes, and the limitations
of existing technologies, predicting earthquakes is significantly more challenging. Before an
earthquake, stress and strain accumulate in the Earth’s crust, and the subsurface medium
transitions are from elastic to inelastic deformation and are accompanied by a variety of
dynamic processes such as pore expansion and rupture of rocks, friction on faults, and
changes in subsurface fluids [4]. This leads to a series of complex geophysical, geochemical,
piezomagnetic, piezoelectric, thermomagnetic, and electrokinetic effects that can produce
distinct changes in the Earth’s surface and atmosphere, as observed and reported by many
researchers using ground-based observations [5–8].

Currently, research on earthquake monitoring and prediction relies heavily on vari-
ous precursory phenomena observed during the earthquake preparation process. These
include the Earth’s electromagnetic field, GPS deformation, underground fluid, and other
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changes [9–13]. In recent decades, data obtained from increasingly sophisticated geoelec-
tromagnetic observation instruments reveal that electromagnetic disturbance phenomena
not only occur within the rock layer but also exhibit anomalies in the atmosphere and
ionosphere prior to earthquakes [14–17]. However, when compared to electromagnetic
anomalies in other spheres, the number of atmosphere electric field (AEF) anomalies associ-
ated with earthquake preparation is relatively limited. This discrepancy may be attributed
to several influencing factors. Firstly, AEF is susceptible to meteorological factors, geologi-
cal activities, and other anthropogenic factors, especially meteorological conditions. The
presence of convective activities, such as strong wind, precipitation, snowfall, or lightning,
can lead to significant fluctuations in AEF values, both positive and negative [18,19]. Sec-
ondly, previous studies primarily focused on single or double AEF monitoring stations
that exhibited anomalies prior to earthquakes [20]. These studies failed to capture the
spatial propagation features of these anomalies, making it challenging to establish a clear
relationship between the earthquake preparation process and AEF changes. To address
these limitations, this study utilizes data from a comprehensive 24 h monitoring network
comprising over 80 spatially separated AEF stations in Yunnan and Sichuan Provinces,
China. This network ensures minimal interference and noise from station-specific factors
and other anthropogenic disturbances. Consequently, the findings of this study are more
robust and credible.

When investigating AEF anomaly precursors prior to earthquakes, it is crucial to
determine the underlying cause of these anomalies, which can enable a clear distinction
between AEF anomalies resulting from seismic geological activity and those arising from
meteorological changes. This differentiation allows for the extraction of relevant AEF
anomalies from observations and analyses of AEF monitoring data, thereby facilitating the
prediction of potential future earthquakes.

The subject of this paper is to explore and examine the identification and analysis of
multi-station AEF anomalies associated with seismic geological activity in the absence of
meteorological factors prior to earthquakes. Additionally, this study investigates poten-
tial sources of AEF anomalies by considering previous studies on pre-seismic geological
activity and pre-seismic groundwater anomalies. Consequently, Section 2 of this paper
presents the observational data obtained from the AEF monitoring network employed
in this study. Then, Section 3 summarizes the pattern of AEF anomalies under different
meteorological conditions based on the experience of continuous follow-up observations.
Subsequently, Section 4 focuses on the identification and extraction of multi-station AEF
anomalies without meteorological influence through the application of time series and
wavelet analyses. Section 5 comprises a detailed discussion of this study, and Section 6
offers a conclusive summary.

2. Observation Data

The seismic sequence data of Yangbi in this paper are from the China Earthquake
Networks Center (https://www.ceic.ac.cn/, accessed on 10 October 2022). An earthquake
of magnitude Ms 6.4 occurred in Yangbi County, Dali Bai Autonomous Prefecture, Yunnan
Province, China, at a depth of 10 km on 21 May 2021, at 21:48:35, and the seismic sequence
is shown in Figure 1. This is a typical foreshock–mainshock–aftershock earthquake, with
some small earthquakes starting from 17 May, and then the small earthquakes became
more and more frequent until the Ms 6.4 mainshock occurred on 21 May. In this study, this
seismic sequence is zoomed in to show its foreshock–mainshock–aftershock characteristics
more clearly in the blue graph in Figure 1.

https://www.ceic.ac.cn/
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Figure 1. M-t diagram for the events (Ms ≥ 3.0) in the Yangbi Ms 6.4 earthquake sequence. The black 
vertical lines indicate the earthquakes that occurred in this sequence, and the blue graph in the fig-
ure shows a zoomed-in view of the sequence from 18 to 22 May. 

As shown in Figure 2a, the earthquake occurred at the southwest margin of the Si-
chuan–Yunnan Massif, and the epicenter was located about 30 km west of the Red River 
fault at the western boundary of the Sichuan–Yunnan Massif. The nearest active fault to 
the epicenter is the NW-SE trending Weixi–Qiaohou fault [21,22]. Before the Yangbi earth-
quake, the AEF monitoring networks in Sichuan and Yunnan (Figure 2b) had normal ob-
servations and continuous data records. The atmospheric electric field was monitored in 
real time at a sampling rate of 1 Hz at each station. After tracking the AEF data from 1 
April to 1 June, the anomalies were observed at several stations during the 15 to 30 days 
before the Yangbi earthquake. The distribution of the anomalous stations is shown in Fig-
ure 2c, and the stations are located along the Longbian–Qiaohou fault, the Weixi–Qiaohou 
fault, and the Eryuan–Maidu fault in the NW direction [23–25]. 

 

Figure 1. M-t diagram for the events (Ms ≥ 3.0) in the Yangbi Ms 6.4 earthquake sequence. The black
vertical lines indicate the earthquakes that occurred in this sequence, and the blue graph in the figure
shows a zoomed-in view of the sequence from 18 to 22 May.

As shown in Figure 2a, the earthquake occurred at the southwest margin of the
Sichuan–Yunnan Massif, and the epicenter was located about 30 km west of the Red River
fault at the western boundary of the Sichuan–Yunnan Massif. The nearest active fault to the
epicenter is the NW-SE trending Weixi–Qiaohou fault [21,22]. Before the Yangbi earthquake,
the AEF monitoring networks in Sichuan and Yunnan (Figure 2b) had normal observations
and continuous data records. The atmospheric electric field was monitored in real time
at a sampling rate of 1 Hz at each station. After tracking the AEF data from 1 April to
1 June, the anomalies were observed at several stations during the 15 to 30 days before the
Yangbi earthquake. The distribution of the anomalous stations is shown in Figure 2c, and
the stations are located along the Longbian–Qiaohou fault, the Weixi–Qiaohou fault, and
the Eryuan–Maidu fault in the NW direction [23–25].
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Figure 2. Geological structure map of the Sichuan–Yunnan area in China (a), distribution of the AEF 
monitoring network in the Sichuan–Yunnan area (b), and distribution of stations with anomalies 
before the Yangbi Ms 6.4 earthquake (c). The red lines show the faults in the Sichuan–Yunnan area 
in China. The red stars in the each subfigure (a–c) are the mainshock epicener of the Yangbi Ms 6.4 
earthquake. The blue triangles in the subfigure (b,c) are the electricfield stations. The yellow trian-
gles in the subfigure (b,c) are the stations which appeared the AEF anomalies. 

3. Morphology of the AEF under Different Meteorological Conditions 
The AEF serves as a crucial physical parameter that characterizes the spatial distri-
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Therefore, when utilizing AEF anomalies preceding earthquakes for earthquake predic-
tion purposes, one encounters a significant challenge: the substantial impact of meteoro-
logical activity on AEF measurements [26]. In natural environment recordings, the AEF 
curve often displays numerous abnormal peaks and valleys. These anomalies arise pri-
marily from meteorological factors such as precipitation, wind, fog, or lightning. The ab-
normal variations induced by these meteorological interferences tend to overshadow 
anomalies resulting from geological activities. To extract the AEF anomalies, it becomes 
imperative to minimize the influence of the aforementioned meteorological interference 
factors [27,28]. 

Due to the unstable output of power supply voltage in the process of monitoring 
atmospheric electric fields using the instrument employed in this study, the rotor speed is 
subject to instability. Additionally, as the instrument remains exposed to the air for a pro-
longed period, there may be residual charged dust particles on the rotor. Therefore, in this 
study, the rlowess function was utilized for smoothing purposes with a span of 60 s. This 
smoothing technique effectively eliminates minor fluctuations, allowing for a more prom-
inent display of atmospheric electric field anomalies influenced by meteorological factors 
and seismic geological activity in the presented figure. 

Currently, only AEF anomalies under clear-sky atmospheric conditions can be con-
sidered seismic precursor signals [29]. In this study, the experience accumulated from the 
continuous monitoring of AEF data was combined with the criteria of Harrison and Nicoll, 
which led to the determination of clear-sky atmospheric conditions [30]. The clear-sky 
atmospheric criteria used in this study were visibility greater than 10 km, no precipitation, 
maximum surface wind speed less than 8 m/s, and maximum relative humidity less than 
90%. 

In order to determine whether a specific day qualifies as a clear-sky atmospheric con-
dition, it is essential to carefully select meteorological data that accurately represent the 

Figure 2. Geological structure map of the Sichuan–Yunnan area in China (a), distribution of the AEF
monitoring network in the Sichuan–Yunnan area (b), and distribution of stations with anomalies
before the Yangbi Ms 6.4 earthquake (c). The red lines show the faults in the Sichuan–Yunnan area
in China. The red stars in the each subfigure (a–c) are the mainshock epicener of the Yangbi Ms 6.4
earthquake. The blue triangles in the subfigure (b,c) are the electricfield stations. The yellow triangles
in the subfigure (b,c) are the stations which appeared the AEF anomalies.

3. Morphology of the AEF under Different Meteorological Conditions

The AEF serves as a crucial physical parameter that characterizes the spatial distri-
bution of atmospheric space charge and exhibits high sensitivity to weather conditions.
Therefore, when utilizing AEF anomalies preceding earthquakes for earthquake prediction
purposes, one encounters a significant challenge: the substantial impact of meteorological
activity on AEF measurements [26]. In natural environment recordings, the AEF curve
often displays numerous abnormal peaks and valleys. These anomalies arise primarily
from meteorological factors such as precipitation, wind, fog, or lightning. The abnormal
variations induced by these meteorological interferences tend to overshadow anomalies
resulting from geological activities. To extract the AEF anomalies, it becomes imperative to
minimize the influence of the aforementioned meteorological interference factors [27,28].

Due to the unstable output of power supply voltage in the process of monitoring
atmospheric electric fields using the instrument employed in this study, the rotor speed
is subject to instability. Additionally, as the instrument remains exposed to the air for a
prolonged period, there may be residual charged dust particles on the rotor. Therefore, in
this study, the rlowess function was utilized for smoothing purposes with a span of 60 s.
This smoothing technique effectively eliminates minor fluctuations, allowing for a more
prominent display of atmospheric electric field anomalies influenced by meteorological
factors and seismic geological activity in the presented figure.

Currently, only AEF anomalies under clear-sky atmospheric conditions can be con-
sidered seismic precursor signals [29]. In this study, the experience accumulated from the
continuous monitoring of AEF data was combined with the criteria of Harrison and Nicoll,
which led to the determination of clear-sky atmospheric conditions [30]. The clear-sky
atmospheric criteria used in this study were visibility greater than 10 km, no precipita-
tion, maximum surface wind speed less than 8 m/s, and maximum relative humidity less
than 90%.

In order to determine whether a specific day qualifies as a clear-sky atmospheric
condition, it is essential to carefully select meteorological data that accurately represent the
weather conditions during the given time period. This study has chosen meteorological
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data from https://q-weather.info/ (accessed on 11 October 2022), which archives historical
meteorological data from 10,747 ground-based observatories in China. These records
provide comprehensive information on temperature, surface air pressure, relative humidity,
wind speed, and direction, as well as precipitation.

After conducting over a year of continuous tracking, observation verification, and
evaluation, we have found that the data obtained from this website can offer more precise
local meteorological information. Moreover, the synchronization between these data and
the AEF monitoring network has proven to be highly consistent.

Figure 3 presents comparative images of AEF measurements and associated mete-
orological elements at Yangbi Station on a clear day. The figure displays the visibility,
precipitation, wind velocity, and relative humidity recorded on that particular day. All of
these factors meet the established criteria for a clear-sky atmosphere, as determined by
this study. Correspondingly, the AEF curves exhibit a smooth pattern with insignificant
fluctuations in the curve values, ranging between +100 and +300 V/m.
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tion of AEF anomalies and meteorological data generated under different weather condi-
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fluctuations in the AEF values. Figure 4b indicates that precipitation triggers fluctuating 
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Figure 3. Comparison of AEF and meteorological information images under clear−sky atmospheric
conditions. The red curve is the smoothed result of the AEF. The red dotted lines are the clear−sky
atmospheric criteria set for this study, i.e., visibility greater than 10 km, no precipitation, maximum
surface wind speed less than 8 m/s, and maximum relative humidity less than 90%. The black curves
in other panels are the local meteorological information.

This study presents a summary of the morphological features of AEF anomalies
observed under various meteorological conditions. Figure 4 provides a comparative
illustration of AEF anomalies and meteorological data generated under different weather
conditions. Specifically, Figure 4a demonstrates that when visibility is poor (less than
10 km), fog or dusty weather is likely to occur, which results in inverted spikes and low
negative fluctuations in the AEF values. Figure 4b indicates that precipitation triggers
fluctuating positive and negative AEF values or inverted spikes with low negative values.
Furthermore, Figure 4c demonstrates that windy conditions can cause negative or positive
needle-like abrupt changes in the AEF values. Figure 4d reveals that high relative humidity,
close to 100%, is often associated with foggy weather, resulting in inverted spike-like
low-negative value fluctuations in the AEF values. The characterization of AEF anomalies
caused by meteorological factors presented in this study provides a solid foundation for
eliminating the influence of meteorological factors on AEF observation.

https://q-weather.info/
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4. Analysis of Anomalous AEF
4.1. Time Series Analysis Results

For each station with AEF anomalies, this study will analyze them one by one or
combine them on the same day. The following figures show the results of comparing AEF
data, including unprocessed and smoothed AEF data with meteorological information.

Figures 5–8 demonstrate the time series analysis results. First of all, in Figure 5a,
the first anomaly occurred at Dali Station on 11 April, that is, about 40 days before the
earthquake. After that, negative AEF anomalies occurred at Midu Station and Heqing
Station on 17 April and 30 April, respectively. From the above anomaly and meteorological
information comparison chart, it can be seen that good weather conditions near the three
stations are present when the anomaly occurs, and there are no key factors affecting the AEF
anomalies, such as precipitation, except for a slight increase in wind speed. The anomaly
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at Dali Station is obvious, appearing three times from 9:00 to 18:00 BJT, each time lasting
nearly ten to twenty minutes, with a spindle shape and a decline range from 1 kV/m to
2 kV/m, and the anomaly is obvious. However, the Midu Station anomaly appeared from
3:00 to 4:00 BJT, and the anomaly decreased slightly, nearly 1 kV/m, but the abnormal
duration was close to 1 h. Such anomalies are more likely to be judged as anomalies caused
by geological activities during calm weather conditions.
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curves in other panels are the local meteorological information. The red dotted lines are the clear−sky
atmospheric criteria.
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sively judge that the anomaly that occurred in Heqing on 30 April is caused by geological 
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Figure 7. Comparison of the time series of AEF values and local meteorological information for Dali
on 5 May (a), Midu on 5 May (b), and Yangbi on 5 May (c). The AEF anomalies are shown in the blue
box. The red curves in the top panel of each subfigure (a–c) show the smoothed results of the AEF.
The black curves in other panels are the local meteorological information. The red dotted lines are the
clear−sky atmospheric criteria.
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For Dali and Midu Station, it can be seen in Figure 2c that they are located on the
Eryuan–Midu fault in the NW-SE direction, and in terms of when the AEF anomalies
appeared, in Figure 5a, Dali Station is closer to the epicenter, and then we can see in
the Figure 5b that the anomaly appears at Midu Station in the southern section of the
fault, which accords with the micro-fracture occur in the process of fault activity before
the earthquake. However, for Heqing Station, where the anomaly occurred on 30 April
in Figure 5c, it is easy to see that the wind speed increased when the anomaly occurred;
although the increase was not significant, it was found that the anomaly amplitude was very
large by observing the anomaly shape and the negative anomaly followed by the positive
anomaly, which was more in line with the comprehensive anomaly of charged cloud or
cumulus cloud transit and windy weather in previous research results. By analyzing the
station location, it can be seen that Heqing Station is located in the north of the Eryuan–
Midu fault, belonging to the middle and late Pleistocene fault, while Dali and Midu
belong to the middle and south sections of the Eryuan–Midu fault, so it is unlikely to
comprehensively judge that the anomaly that occurred in Heqing on 30 April is caused by
geological activities. However, the preliminary analysis of the negative AEF anomalies in
Dali and Maidu on 11 April and 17 April, respectively, may be attributed to the fact that
the Earth’s crust became geologically active about a month before the earthquakes.

As shown in Figure 6a,b, the obvious negative anomalies were recorded at AEF stations
in Midu and Nanjian on 2 May. Among them, a negative anomaly first occurred at Midu
Station at about 15:00 BJT in Figure 6a and lasted nearly 30 min, and the decline was large,
reaching about 2 kV/m. Comparing the meteorological information at that time and before
and after the period, it can be seen that the weather was in good condition at that time;
only the visibility decreased and the relative humidity increased slightly, but this situation
basically could not cause such a large negative anomaly. For Nanjian Station, it is noticeable
that there was gusty weather from 9:00 to 18:00 on 2 May in Figure 6b, so there are many
positive anomalies with dense peaks in this period, which is in line with our understanding
of the abnormal characteristics of gale weather in the continuous observation of the AEF for
more than one year. However, in the process of wind speed decrease, a negative anomaly
with a drop of 2 kV/m appeared from 17:00 to 18:00 BJT, and the duration was close to 1 h.
Comparing the meteorological information before and after the period, it can be seen that
the weather condition is very good, so it is ruled out that the negative anomaly in Midu
and Nanjian Stations on 2 May was caused by the poor weather conditions in the area.

Combined with the negative anomalies of the AEF in the Dali and Midu in mid-to-late
April, we can see in Figure 2c that Nanjian is located several kilometers southeast of the
Eryuan–Midu fault. Although the fault does not extend to the vicinity of Nanjian, whether
the fault extends to the vicinity of Nanjian or there is a deep fault in Nanjian during the
block activity needs further field study. Even so, the anomaly occurrence sequence of the
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Dali–Midu–Nanjian connection still makes us believe that the anomalies in these three
places were caused by geological activities before the Yangbi earthquake.

5 May was the day with the highest amount of AEF stations with negative anomalies
before the Yangbi earthquake. As shown in Figure 7a–c, the negative anomalies of the AEF
appeared in Dali, Midu, and Yangbi during the period from 12:00 to 16:00 BJT on this day.
In Figure 7a, a negative anomaly was first observed in Dali on 5 May, which lasted for
one hour and decreased by more than 3 kV/m. Two hours later, in Figure 7b, a negative
anomaly with a similar shape and duration to Dali Station was also recorded at Midu
Station, and decreased by more than 3 kV/m. Although a larger positive and negative
anomaly appeared in Midu after the anomaly appeared, it can be seen that precipitation
occurred in this period by comparing the precipitation chart of the same period. the
profound effect of the rainfall on the AEF measurements is apparent, frequently leading
to negative AEF values extending to thousands of volts per meter [30]. Therefore, the
subsequent anomalies can be determined to be caused by precipitation, but the single
negative anomaly at 14:00 BJT can be compared with meteorological information, which
is basically in line with sunny atmospheric conditions. After that, in Figure 7c, a negative
anomaly appeared at Yangbi Station around 16:00 BJT, which lasted for more than 30 min
and decreased by more than 2 kV/m. Compared with meteorological information, it can
be seen that the visibility near Yangbi is 30 km, the rainfall is 0, and the relative humidity is
lower than 50%. Although the wind speed in Yangbi is slightly higher in the afternoon, there
are two positive anomalies with a small increase by observing the fluctuation curve of the
AEF. A slightly higher wind speed can produce anomalies with similar amplitude, but it is
unlikely to produce negative anomalies exceeding 2 kV/m, so the negative anomaly of the
AEF on 5 May in Yangbi can also be judged as an anomaly caused by geological activities.
Then, in Figure 7a, the negative anomaly of the AEF appeared again in Dali. Although
positive fluctuation appeared in the unprocessed data, it appeared an obvious negative
anomaly after smoothing treatment, which lasted for nearly one hour and decreased by
nearly 2 kV/m. The anomaly on 5 May occurred in the triangle area of Dali, Midu, and
Yangbi, which is also very close to the epicenter area of the Yangbi Ms 6.4 earthquake. It
is comprehensively judged that the AEF anomalies recorded by the three stations were
caused by geological activities.

As shown in Figure 8a,b, the AEF anomalies were observed in Yangbi and Jianchuan
on 7 May. At about 11:00 BJT, the negative anomaly of the AEF appeared again in Yangbi
in Figure 8a, but compared with meteorological information, it is clear that the anomaly
occurred during periods of precipitation, so it can be judged as an anomaly caused by
meteorological factors. Seven hours later, a negative anomaly of the AEF was recorded
in Jianchuan in Figure 8b. The anomaly lasted for a short time, about 20 min, and the
decline was less than 1 kV/m. However, compared with the meteorological information, it
is obvious that the overall weather condition was good except for the slightly higher wind
speed. This anomaly in Jianchuan is different from the anomaly with a long duration and a
large decline in other stations, so it cannot be accurately judged as an anomaly caused by
geological activities. However, Jianchuan is also located on the Longpan–Qiaohou fault
connected with the Eryuan–Midu fault, and micro-ruptures from pre-seismic block activity
may also occur on this fault, affecting AEF fluctuation, so it is comprehensively inferred as
a mixed anomaly of meteorological and geological activities.

In summary, by eliminating the influence of meteorological factors, such as rainfall,
under relatively good local meteorological and spatial weather conditions, the anomalies at
Dali Station on 11 April, Midu on 17 April, Midu and Nanjian on 2 May, and Dali, Midu,
and Yangbi on 5 May are likely to be AEF anomalies caused by geological activities in the
seismogenic area before the Yangbi Ms 6.4 earthquake.

4.2. Wavelet Analysis Results

For the above-extracted AEF anomalies, we performed wavelet analysis, and the
results are shown in Figure 9. The results of the wavelet analysis in Figure 9a show a large
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enhancement between 0.5 mHz and 1 mHz for Dali on 11 April. Figure 9b demonstrates that
the anomaly for Midu on 17 April is much more enhanced at 0.2 mHz and between 1 and
1.5 mHz. The results of the wavelet analysis of the anomalies that appeared at Midu and
Nanjian on 2 May are shown in Figure 9c,d, and they are enhanced at frequencies of 0.5 mHz
and 0.3 mHz, respectively. On 5 May, in Figure 9e–g, when anomalies occur most frequently,
their wavelet transform results are also very consistent. Except for the enhancement caused
by meteorological factors near 2 mHz, Dali, Midu, and Yangbi, all have enhancement near
0.5 mHz, while Yangbi has a greater increase, which also corresponds to the result that the
main Yangbi Ms 6.4 earthquake occurred half a month later. In summary, it is evident that
the frequency of these AEF anomalies is enhanced near 0.5 mHz, especially at Midu and
Nanjian, where anomalies appeared on 2 May in Figure 9c,d, which are pretty obvious at
0.5 mHz. Although they are also enhanced near 2 mHz, they can be considered abnormal
disturbances caused by weather factors after comparison with AEF anomaly images.
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In a previous study on the pre-seismic AEF, Smirnov conducted a statistical analysis
of 103 cases of a bay-like depression in the strength of the Ez component of the quasistatic
electric field in the near-Earth atmosphere. These observations were made in Kamchatka
from 1997 to 2002. The study revealed that the most common duration of a bay was between
40 and 60 min [31]. This finding aligns with the results presented in this paper. Mara-
pulets and Rulenko also conducted a comprehensive analysis of joint anomalies involving
high-frequency acoustic emission and the AEF at the ground–atmosphere boundary in
Kamchatka. These anomalies manifested as increases in acoustic emission in the mHz
frequency range and bay-like decreases in the AEF that occurred simultaneously during
calm weather conditions [32].

The wavelet analysis results presented in this paper are consistent with the statistical
analysis conducted by previous researchers. The anomalies observed in both studies
exhibited durations ranging from 30 to 60 min, and their frequencies fell within the mHz
frequency range. Consequently, the AEF anomalies identified in this study can be attributed
to non-meteorological anomalies associated with pre-seismic geological activities.

5. Discussion

This study focuses on examining the atmospheric quasi-electrostatic field, which is
characterized by several key attributes. First, the AEF is capable of effective propagation in
various media, including vacuums. Secondly, it possesses low energy but high potential
energy. Lastly, its ability to generate the accumulation of surface charges on the high-
conductivity layer surface substantially enhances the local field. Leveraging these inherent
features, coupled with vertical electric field monitoring, enables researchers to overcome
the challenges of identifying and extracting weak seismic electric fields while mitigating
the impact of strong horizontal interference, which is difficult to eliminate, so atmospheric
vertical electrostatic field monitoring has been recognized as an effective method for reliably
extracting earthquake precursors by scientists in many countries [33].

The atmosphere, as a highly interconnected component of the Earth system, is influ-
enced by various factors such as external space, the ionosphere, and the rock layer. The
intricate nature of atmospheric dynamics, coupled with its sensitivity to these influences,
presents a significant challenge for achieving precise observations. Despite the remarkable
advancements in modern science and technology, which provide an array of observation
methods, attaining 100 percent accuracy in weather prediction remains elusive.

The same principle applies to variations in the AEF within the atmosphere, as it is
influenced by multiple factors such as thunderstorm activity [34,35], atmospheric pollu-
tants [36,37], geomagnetic activity [38], and climate change [39]. Therefore, this study
employed detailed meteorological data from multiple stations in Yunnan in conjunction
with long-term observation experience. The time series analysis was conducted to elimi-
nate the influence of meteorological activities on the AEF. After that, the wavelet analysis
was performed on the remaining AEF anomalies suspected to be induced by geologic
activities. The results indicate that these anomalies exhibit enhanced signals within the
same frequency domain and demonstrate periodic energy enhancement lasting 30–60 min,
providing evidence for their homogeneity.

In contrast to previous studies on AEF anomalies before earthquakes, most of the iden-
tified anomalies were limited to single stations or double stations or anomalies occurring
on the same day [40]. For instance, Bleier et al. observed that the air conductivity sensors
they deployed exhibited a saturation time exceeding 14 h in the morning and evening
before the Alum Rock Mw 5.4 earthquake [41]. An et al. also investigated the synchronous
abnormal changes in electric field gradient at Wenjiang District and Pixian County stations
several hours to several days prior to the Wenchuan Ms 8.0 earthquake [42]. However,
when these anomalies manifest in the records of individual stations, they are prone to being
attributed to environmental noise or instrument-related faults. Deploying multiple sensors
or instrument arrays for AEF monitoring within the same area can help mitigate such
uncertainties [43]. In light of the extensive dataset available, this study utilizes time series
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analysis and wavelet analysis methods to validate the occurrence of AEF anomalies during
the pre-seismic phase. The identified anomalies are characterized by greater intensity,
prominence, and spatial extent, and can be detected by modern advanced observational
equipment prior to the main shock.

This study investigates the anomalies of each station to demonstrate the correlation
between the time of appearance of AEF anomalies, epicentral distance, and anomaly
amplitude preceding the Yangbi earthquake. Detailed information regarding each anomaly
identified at every station is documented in Table 1. Meanwhile, the results are visualized
in Figure 10. Figure 10a illustrates the relationship between the appearance time of AEF
anomalies and their magnitude decline (absolute value). It shows that the AEF anomalies
first appeared approximately 40 days before the earthquake, briefly subsided, and then
reappeared at many stations about 15–20 days before the earthquake. Subsequently, no
anomalies occurred until the small earthquakes and the mainshock took place. Notably,
the amplitude decline of these anomalies was concentrated at 1–3 kV/m. Interestingly,
as the earthquake approached, the magnitude and frequency of the anomalies increased.
Figure 10b displays the relationship between the occurrence time of the AEF anomalies
and the distance from the epicenter of the anomalous sites. The plot shows that the
anomalies appeared 30–40 days before the earthquake, gradually moving away from the
epicenter. After that, the anomalies that appeared 20 days before the earthquake moved
closer to the epicenter. This suggests that the anomalies may have arisen as a result of
the spread of anomalies along fracture zones from the vicinity of the main earthquake’s
epicenter, ultimately converging at the epicenter of the main earthquake. Finally, Figure 10c
demonstrates a clear relationship between the anomaly decline magnitude of the AEF
anomaly (absolute value) and the epicenter distance. Specifically, the plot indicates that
the anomaly decline magnitude of the AEF anomalies increases with decreasing epicenter
distance. Therefore, the closer the epicenter of the mainshock is to the epicenter of the
anomalies, the more prominently these anomalies appear.

Table 1. Detailed information regarding each anomaly identified at every station.

Station Epicentral
Distance (km)

Abnormal
Time (BJT)

Abnormal
Amplitude (kV/m)

Dali 26.74 11 April 2021
10:31:11 −0.918

Dali 26.74 11 April 2021
15:28:30 −1.045

Dali 26.74 11 April 2021
16:53:45 −2.48

Midu 56.61 17 April 2021
03:40:54 −0.598

Midu 56.61 2 May 2021
14:56:35 −2.003

Nanjian 88.06 2 May 2021
16:47:43 −1.54

Dali 26.74 5 May 2021
11:46:45 −3.862

Dali 26.74 5 May 2021
16:26:01 −1.403

Midu 56.61 5 May 2021
14:11:06 −5.148

Yangbi 6.53 5 May 2021
16:04:09 −1.982
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It is noteworthy that the AEF anomalies observed in Figure 2c are distributed in a
northwest–southeast direction along the Weixi–Qiaohou fault. Based on meteorological
background data during the occurrence of AEF anomalies in Dali Prefecture, it can be seen
that these anomalies corresponded with alternating northwesterly and southeasterly winds.
This pattern facilitated the spread of anomalies as atmospheric compositional anomalies
along airflows to nearby AEF monitoring stations. The highly correlated data from several
AEF stations that produced anomalies before the Yangbi earthquake are likely related to
the seismogenic process of this event, based on their locations in the “preparation area”
associated with the earthquake’s seismogenic process [44]. This study’s findings offer new
insights and evidence for exploring the relationship between seismic geological activities
and the AEF.

Currently, multiple explanations exist regarding the abnormal AEF observed prior
to earthquakes. One prevailing explanation suggests that during the preparation and
occurrence of an earthquake, physical phenomena, such as the piezoelectric effect, may
generate electric charges in the crust near the epicenter [45–49] or have an electric effect [50],
which can excite electromagnetic radiation to generate the seismogenic electric fields into
the atmosphere and even upload them to outer space, such as the ionosphere. St-Laurent
et al. and Freund et al. comprehensively described the direct relationship between the
electrical anomaly generated during the seismogenic process in the solid earth before
the earthquake and the positively charged “holes” generated along with the compression
process in igneous rocks during the seismogenic process [51,52]. Another explanation is that
a radon anomaly before earthquakes is considered one of the main physical mechanisms
of electromagnetic precursor phenomena [53,54]. A plethora of research findings have
consistently demonstrated that significant changes occur in the crustal structure near the
epicenter prior to major earthquakes. These changes involve slight fracturing of numerous
rocks, potential interconnection between rock channels, and minor surface fractures. Inert
gases, such as radon, are released through cracks in soil or rocks, and the subsequent decay
of radon emits a substantial number of particles. These particles generate a large number
of ion pairs in the air through radioactive ionizing radiation, leading to the formation of a
polarization electric field that opposes fair weather conditions. Considering the exclusion
of meteorological variations and other factors that may influence the negative anomaly
of the AEF, it is plausible to attribute the negative anomaly of the AEF in seismogenic
areas to abnormal signals arising from the extensive micro-fracturing of rocks induced by
large-scale geological tectonic activities [55–57].

In 2004, research teams led by Japanese scientist Hayakawa [58] and Russian scientist
Pulinets [59] proposed the multi-path lithosphere–atmosphere–ionosphere coupling model
(LAIC) and the unified circle coupling model, respectively. Both models posit that the
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AEF anomaly observed in the atmosphere serves as a crucial aspect of the model and
originates from the geological activities preceding an earthquake [60–62]. Regarding
the Yangbi earthquake, subsequent field explorations conducted by Chinese scholars
revealed varying degrees of changes in radon, mercury content, chloride ion, and sulfate ion
concentrations in underground and hot spring water before and after the Ms 6.4 earthquake.
These findings further support the idea that geological activity plays an integral role in
precursory phenomena associated with earthquakes [63]. The overall performance of the
earthquake area was that the radon and mercury concentration in most hot spring water
increased before the earthquake, while the content of each component in hot spring water
decreased significantly after the earthquake [64,65]. Ma et al. systematically summarized
the observation data of underground fluid near the epicenter. The results showed that the
water temperature of the Eryuan well was abnormal on 24 February 2021 [66]. Fu et al.
systematically sorted out and reviewed the fluid observation anomalies before the Ms 6.4
earthquake in Yangbi, Yunnan Province, and showed that most of the fluid anomalies before
the earthquake in Yangbi were centered in the half-year time scale. The pre-earthquake
fluid anomalies in Yunnan are concentrated within 200 km of the epicenter, and the fluid
anomalies are gradually contracted from the periphery to the epicenter, which is similar
to the observation of the AEF anomalies in this study [67]. After analyzing the data from
geoelectric field stations within 500 km of the epicenter of the Yangbi earthquake, Xin and
Zhang also found that there were pre-earthquake anomalies of azimuth and amplitude
at more stations about ten days before the impending earthquake [68]. After the Yangbi
earthquake, Hou et al. retrospectively analyzed the data of geoelectric field stations within
200 km of the epicenter and found that geoelectric field anomalies began to appear at
Eryuan and Xiangyun from about fifteen days to twenty days before the earthquake [69].
For the study of anomalous disturbance of other physical parameters of the Yangbi Ms 6.4
earthquake, many scholars have extracted and identified various earthquake precursors
in the ionosphere, including the anomalies of electron density and electric fields in the
ionosphere [70] and GIM TEC and GPS TEC anomalies [71], and the anomaly time is also
concentrated in about 15 days. At the same time, other studies have pointed out that the
radon emanation decreases the AEF by 40%, influencing the maximum strength of the
AEF by 10 kV/m, which is enough to trigger ionospheric disturbances. These changes are
within the ranges observed or explain electromagnetic phenomena associated with large
earthquakes [72]. Drawing on previous research, this paper identifies significant large-scale
AEF anomalies within 15–30 days preceding the Yangbi earthquake. These findings are
consistent in both time and space with prior studies. After comparing and evaluating
other researchers’ analyses of geological activities and precursory anomalies in subsurface
fluids before the Yangbi earthquake, it is evident that the AEF anomalies observed in
this study are a product of pre-seismic geologic activity. However, further analysis is
required in the future to fully understand the precise linkages that give rise to these AEF
anomalies, in conjunction with various geophysical and chemical covariates. Nevertheless,
this study provides reliable evidence for determining the sources and propagation paths of
ionospheric anomalies detected by scholars prior to the earthquake. It also serves as an
excellent example for validating the complete link between the DC electric field and the
coupling model.

6. Conclusions

In this study, an analysis of AEF anomalies was conducted using time series and
wavelet analysis methods for the April and May 2021 Yangbi earthquakes. Through con-
tinuous long-term observation of real-time AEF data, this study summarizes the effects of
various meteorological elements on the AEF and characterizes the resulting anomalous
disturbances. By combining the detected anomalous AEF anomalies with meteorological
observations from local stations, this study aims to eliminate the influence of meteorological
factors such as precipitation, high winds, and fog on the AEF anomalies. Consequently, it
was found that non-meteorological AEF anomalies associated with pre-seismic geological
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activities were recorded in the AEF monitoring network in the Sichuan–Yunnan region of
China approximately 15–30 days before the occurrence of the Yangbi earthquake. These
anomalies appeared primarily within a 100 km radius from the epicenter of the main
earthquake and exhibited characteristics such as multiple occurrences spanning several
days, stations, and fault zones. Notably, the anomalies appeared more frequently with
greater magnitudes around 15 days prior to the earthquake. A time series and wavelet
analysis of these anomalies revealed common features. (1) The anomalies typically ap-
peared about 15–30 days before the Yangbi earthquake; (2) the anomalies followed a
consistent trend, with the electric field initially decreasing following sunny days before
rising again, showcasing a decrease of approximately 1–3 kV/m; and (3) the duration of
anomaly fluctuations concentrated within a range of 30–60 min. Furthermore, there was a
discernible correlation between the appearance time of AEF anomalies, epicentral distance,
and anomaly amplitude before the Yangbi earthquake. These identified features validate
the similarity of the anomalies and can assist future researchers in accurately identifying
and extracting AEF anomalies associated with pre-seismic geological activities. However,
the source of these anomalies requires further explanation, taking into consideration multiple
physical parameters.
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