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Abstract: The decadal variability of the summer extreme precipitation over southern China (EPSC)
is remarkable, especially for the significant decadal enhancement after the 1990s. The study docu-
mented that the summer sea surface temperature (SST) over the North Atlantic and spring sea ice
concentration (SIC) over the East Siberian Sea can significantly affect the EPSC. The summer SST
over the North Atlantic influences the low-pressure cyclone in the western Pacific by modulating
the SST over the tropical Pacific, thus affecting EPSC. A decrease in the SIC of the East Siberian
Sea induces a negative Arctic Oscillation, which induces the increased SST over northwest Pacific
and the anomalous cyclone over there, in turn, affecting EPSC. Both predictors have a quasi-period
of 10-14 years, which provides useful predictive signals for EPSC. The leading 7-year SST and the
leading 5-year SIC are chosen to establish the prediction model based on the decadal increment
method, which can well predict the EPSC, especially for the shift in the early 1990s. These results
provide a clue to the limited predictability of decadal-scale extreme climate events.
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1. Introduction

Extreme precipitation events have attracted increasing attention due to their large
impact on both the ecological environment and the social economy [1-3]. In China, extreme
precipitation events occur more frequently in southern China than in other regions because
the abundant rain over there [1,4]. Summer (June-August) precipitation in southern China
accounts for more than 45% of the total annual precipitation. Summer also has the highest
frequency of extreme precipitation events, which can lead to flooding and tremendous
damage to the local economy and ecosystems [5]. For example, in mid-to-late June of 2005,
persistent extreme precipitation occurred in South China with daily precipitation exceeding
400 mm, which affected 2.627 million people and caused economic losses of 3.9 billion
yuan [6]. Besides the remarkable interannual variability, summer extreme precipitation
over southern China has shown a significant increasing trend with a decadal enhancement
in the early 1990s [7-9]. Hence, the effective and reliable prediction of the summer extreme
precipitation over southern China is of great importance.

Copyright: © 2023 by the authors.

, _ Numerous studies have revealed possible mechanisms for extreme precipitation over
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southern China on interannual timescales. Located in the southern coastal region of China,
southern China is influenced by tropical and mid- to high-latitude climate systems such
as tropical cyclones, the western North Pacific subtropical high, the East Asian subtrop-
Attribution (CC BY) license (https:/ / ical westerly jet, the Asian summer monsoon, and so on [4,8,10,11]. These circulation
creativecommons.org/ licenses /by / systems can influence the extreme precipitation over southern China via the transport
40/). of water vapor and vertical motion over South China. External forcings have also been
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suggested to affect the extreme precipitation over southern China. The anomalous sea
surface temperature (5ST) of the South China Sea and the adjacent western Pacific warm
pool are linked to the extreme precipitation over southern China [12]. The variations in
the SST of the Indian Ocean not only favor the maintenance of anticyclones around the
Philippine Sea [13], but also affect the Pacific-Japan teleconnection pattern [14]. This, in
turn, affects anomalous extreme precipitation over southern China [14,15]. The ENSO (El
Nifio/Southern Oscillation) and the Pacific Decadal Oscillation (PDO) are also found to
be related to the decadal variations in the early summer rainfall over southern China [16].
The spring Arctic Sea ice concentration (SIC) also favors the extreme precipitation over
southern China via the Eurasian teleconnection [17]. The sea ice loss along the Siberian
coast influenced the precipitation anomaly in the summer of 2020 over central-east China
through excessive atmospheric blockings [18].

In terms of the decadal timescale, the SST remains an important influencing factor for
the decadal variability of extreme precipitation over southern China (EPSC). Zhang et al.
linked the EPSC during the pre-rainy season to the decadal variation of the ENSO-like SST,
which can influence the transport of water vapor via cyclonic and anticyclonic systems [19].
The anomalous SST in the western Pacific warm pool is also an important factor driving the
increase in EPSC [20]. Additionally, anomalies in the latent heat flux over the South China
Sea and the sensible heat flux over the Indochina peninsula are also considered important
factors in EPSC [7]. However, few studies have focused on the influences of extratropical
forcings on the EPSC. Moreover, the prediction of EPSC has rarely been operated. This
study focuses on the mechanisms of extreme precipitation over southern China on a decadal
timescale and attempts to predict its decadal variability.

Decadal prediction focuses on climate predictions over the next 1 to 10 years, which
has attracted widespread attention due to its impacts on economic and social develop-
ment [21]. Currently, making skillful decadal predictions based on the initialized climate
models to predict precipitation over East Asia is full of challenges, especially for extreme
precipitation [22-24].

Currently, decadal predictions remain challenging, and one of the important scientific
issues is that the improvement of initialized climate models requires a lot of human and ma-
terial resources as well as the innovation and development of related theories [23,25]. Mean-
while, some scholars have used statistical methods for decadal prediction and achieved
high predictive skills. Recently, based on the interannual increment method [26], Huang
and Wang proposed a new statistical approach called the decadal increment method, which
can obtain decadal information by performing a 5-year running smoothing [27,28]. A statis-
tical forecast model is then built with the 3-year decadal increment predictors, and the final
prediction results can be obtained by adding the predicted increment to earlier observations.
This method can increase the effective samples based on the form of decadal increment
and gain useful decadal signals from the previous observations, which has shown high
predictive skills in the decadal prediction of precipitation over North China, the PDO, and
the East Asian summer monsoon [27-29]. Considering the frequent occurrences of extreme
precipitation over southern China, this paper will first analyze the causes of the EPSC and
then try to build a prediction model based on the decadal increment method. Additionally,
a real-time prediction will also be given.

2. Data and Methods
2.1. Data

The daily precipitation data are from the CN05.1 gridded dataset based on 2416 station
observations over China with a horizontal resolution of (0.25° x 0.25°) and cover the time
period 1961-2021 [30]; the data are used to calculate the extreme precipitation index. The
monthly mean SST data are obtained from the National Oceanic and Atmospheric Admin-
istration (NOAA) Extended Reconstructed SST V5 dataset with a horizontal resolution of
(2° x 2°) and cover the time period 1954-2021 [31]. The monthly sea ice concentration (SIC)
data are from the UK Met Office Hadley Centre with a horizontal resolution of (1° x 1°)
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and cover the time period 1954-2021 [32]. Both the SST data and SIC data are used for
determining the predictors. The monthly sea-level pressure (SLP), meridional and zonal
winds in 850/500/10 hPa level, and integrated water vapor flux data are obtained from the
ERADJ reanalysis dataset of the European Centre for Medium-Range Weather Forecasts with
a horizontal resolution of (1° x 1°) and cover the time period 1950-2021 [33]; they are used
to analyze the mechanisms of SST and SIC affecting the EPSC. The monthly AMO data
during 1946-2021 and PDO data during 1946-2019 are obtained from the NCAR Climate
Data and are used to analyze their potential correlation with the EPSC.

2.2. Definition of the Extreme Precipitation Index

According to the recommendation of the Expert Team on Climate Change Detection
and Indices (ETCCDI, http://cccma.seos.uvic.ca/ETCCDI/indices.shtml, accessed on
15 March 2021), the summer extreme precipitation index (R95p) is defined as the total
amount of precipitation on days with daily precipitation (daily precipitation > 0.1 mm)
larger than the 95th percentile of the summer (June—August) daily precipitation.

2.3. Methods

The decadal variability of extreme precipitation is obtained by performing a 5-year
running mean of regional averaged extreme precipitation. The 5-year running mean of
regional averaged extreme precipitation over southern China is defined as the decadal
variability of the southern China extreme precipitation (EPSC) index. The 3-year decadal
increment of the EPSC (DI_EPSC) is the predictand, which is defined as the EPSC of the
current year minus the EPSC at 3 years ago (Equation (1)). The final predicted EPSC can
be obtained by adding the predicted DI_EPSC to the observed EPSC from 3 years ago
(Equation (2)). The main predictors are determined by the stepwise regression with the
F-test at the 95% confidence level, which must be well-correlated with the predictand and
independent of each other. The multiple linear regression method is applied to build the
statistical model with the determined predictors in the form of a 3-year decadal increment.
To prevent the prediction model from using information from any prediction period,
predictors are at least 3 years ahead of the predictand.

DI_EPSC; = EPSC; — EPSC;_5 1)

EPSC; = EPSC{", + DI_EPSC; ™%l 2

To verify the prediction skills of the statistical model, cross-validation and independent
hindcast are applied. In the cross-validation, the observational data of the EPSC during
19662018 are selected to predict the DI_EPSC for the target year. Noteworthily, the
statistical model is built by leaving 5 years out (from 2 years before to 2 years after the target
year for the DI_EPSC and the leading 5 years for the predictors). The same observational
data are also used in the independent hindcast. The statistical model is established to
predict the DI_EPSC for the target year with the data from 43 years to 3 years leading the
target year. This process is repeated from 2009 to 2018. For instance, the predictand during
1966-2006 and the predictors during 1963-2003 are chosen to build the statistical model to
predict the DI_EPSC for 2009.

Empirical orthogonal function (EOF) analysis is a linear data transformation defined
in terms of the eigenvectors of their covariance matrix [34]. In this study, it is applied to
investigate the decadal variation of extreme precipitation over southern China.

The significance of the correlation coefficient is examined by the Student’s t-test. The
effective sample size N* is calculated as follows [35]:

N* — Nl — 1112
1+7‘17’2

®)

where N is the number of available time steps, and r; and r, are the autocorrelation
coefficients of the two variables lagged by one step.
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The mean square skill score (MSSS) is used to measure the predictive skill of the
statistical model [36] and is calculated as follows:

MSE
MSSS =1— MGSE, 4)
1 )
MSE = — Y (fi —o) ®)

i=1

MSE, = f(oi —0)? (6)
i=1

|-

where f; and o; represent the time series of the observations and forecasts, respectively.
MSSS is the percentage reduction of the mean square error (MSE) predicted by the statistical
model, and MSE, is the MSE of the climatological forecast. A positive skill means that the
statistical model forecast is better than the climatology forecast.

3. Results
3.1. Decadal Variation

Figure 1 shows the spatial pattern of the first EOF mode of the decadal variation of
summer extreme precipitation in East China during 1963-2018. The spatial pattern of the
first EOF mode can explain 21.6% of the total variance of summer extreme precipitation
in East China. There is abundant extreme precipitation occurred over southern China
compared to other regions (Figure 1a), which has been noticed by previous studies [1].
Since there is a uniform spatial pattern over southern China (22°-30° N, 107°-120° E), the
5-year running mean of regional averaged summer extreme precipitation over southern
China is defined as the decadal variability of the extreme precipitation over southern China
(EPSC) index (Figure 1b). The EPSC has an increasing trend with a significant shift after the
1990s [7-9]. The time series of the leading EOF mode (PC1) correlates well with the EPSC
with a correlation coefficient of 0.94, indicating that the EPSC index can reasonably reflect
the decadal variability of extreme precipitation over southern China. Moreover, the 3-year
decadal increment of the EPSC (DI_EPSC) is then calculated, which will be treated as the
predictand in the following section.

(a) EOF1 21.6% 50 (b) PC1&R95p Cor=0.94
g —R95p
50N = 2.0 E ——PC1
o M M
40N pu
00 A
30N 3
2.0
20N L e e B B s B 5 B B

1960 1970 1980 1990 2000 2010 2020

34 -2 10 1 2 3

Figure 1. (a) The spatial pattern of the leading EOF mode and (b) the corresponding normalized
time series of the 5-year smoothing mean of the total summer extreme precipitation in East China
during 1963-2018 (PC1, red line), as well as the time series of the EPSC (R95p, blue line) and DI_EPSC
during 1966-2018. EPSC is defined as the 5-year running mean of regional averaged summer extreme
precipitation over southern China. DI_EPSC is calculated as the 3-year decadal increment of the EPSC.
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3.2. Predictors

This section mainly discusses the predictors of EPSC and the associated mechanisms.
Based on previous studies, potential predictors are chosen mainly from external forcings,
including the SST, the SIC, the soil moisture, and the snow depth. The stepwise regression
with the F-test at the 95% confidence level is used to determine the main predictors of
EPSC. The determined decadal predictors must be well-correlated with the predictand
and independent of each other. Two final predictors, including the summer SST of the
North Atlantic leading the DI_EPSC by 7 years and the spring SIC near the East Siberian
Sea leading the DI_ EPSC by 5 years, which are well-correlated with the DI_EPSC and
independent of each other, are therefore chosen to predict the decadal summer EPSC. The
physical processes of these two predictors affecting the EPSC will be explored in detail.

Previous studies have shown that triple or dipolar SST anomalies in the North At-
lantic can induce a wave train over the North Atlantic through Eurasia, which is one of
the factors influencing precipitation and extreme precipitation in eastern China [37-40].
Additionally, anomalous warming in the North Atlantic can also induce cooling in the
tropical eastern Pacific Ocean and warming in the Indo-Pacific Ocean through a series of
air—sea interactions [22,40-44]. This is a significant factor in maintaining an anticyclone
over the western Pacific and transporting water vapor to eastern China [40], thus affecting
extreme precipitation over southern China.

Notably, the leading 7-year summer (June-August) SST over the North Atlantic is
significantly related to the EPSC (Figure 2a). There significant positive and negative centers
emerged in the mid- to high-latitude regions of the North Atlantic, indicating the influence
of the SST dipole over the North Atlantic ahead 7 years on the EPSC. The SST index (DI_SST)
is therefore defined as the regional averaged decadal increment in the SST over the positive
region (26°-39° N, 43°-60° W) minus that of the negative region (49°-57° N, 14°-49° W).
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Figure 2. Spatial pattern of correlation coefficients between the predictand (DI_EPSC) during the time
period 1966-2018 and the predictors: (a) the 3-year increment of the summer SST 7 years ahead of
the DI_EPSC during 1959-2011, (b) the 3-year increment of the spring SIC 5 years ahead of DI_EPSC
during 1961-2013. The dotted regions indicate significant variability at the 95% confidence level
based on the Student’s t-test. The rectangles indicate the area-weighted averaged regions of the
predictors, including the DI_SST (26°-39° N, 43°-60° W minus 49°-57° N, 14°—49° W), and the
DI_SIC (71°-77° N, 149°-157° E).

How do the SST anomalies affect EPSC 7 years in advance? The wavelet analysis
of the DI_SST during 1959-2011 is shown in Figure 3a, which indicates that the dipole
anomalies of the North Atlantic SST have a quasi-period of 12-14 years (Figure 3a) with a
significant negative autocorrelation of 5-7 years (Figure 3b). Both the period and significant
auto-correlation imply that the dipole SST anomalies of the North Atlantic can provide
useful predictive information for EPSC 7 years ahead.
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Figure 3. (a) Wavelet analysis and (b) the autocorrelation coefficients of the DI_SST predictor. In
Panel (a), the dotted regions indicate significant variability at the 95% confidence level. In Panel (b),
the horizontal coordinates indicate the years lagged by the predictors and the dashed lines indicate
significant variability at the 90% confidence level. Additionally, the effective sample size is 21.

What are the specific physical processes by which the SST dipole pattern over the
North Atlantic affects EPSC?

Figure 4a shows the spatial pattern of the correlation coefficient between the DI_SST
and surface winds. The SST dipole over the North Atlantic can lead to significant anomalous
easterlies from the tropical North Atlantic to the tropical East Pacific (as shown in the
rectangle region of Figure 4a). The northeasterly/easterly anomalies (as shown in the
rectangle region of Figure 4b) favor cooling in the tropical eastern Pacific and warming in
the western Pacific SST (Figure 4b). This SST pattern can enhance the Walker circulation,
which is characterized by descending motion over the eastern Pacific and ascending motion
over the western Pacific (Figure 4c). There are associated cyclonic anomalies over the
northwestern Pacific in both low troposphere to mid troposphere (Figure 4d,e). In the west
of the cyclone, significant northeasterly winds prevail over southern China. In the mid
troposphere, there are significant easterly winds from southern China to Tibetan Plateau
(Figure 4e), which may generate descent motion (Figure 4f) through the zonal temperature
gradient between southern China and Tibetan Plateau [45—47]. Both the northeasterly
winds and descending motion is unfavorable for the increase of EPSC [48,49]. Thus, the
preceding 7-year SST dipole pattern over the North Atlantic is chosen to be one predictor
for EPSC based on its significant influence and period of 12-14 years.

In addition, previous studies have also explored the connection between the decrease
in spring Arctic SIC and the increase in summer precipitation even extreme precipitation
in East and southern China [17,18,50]. The decrease in Arctic SIC can induce a Eurasia
teleconnection, which is inductive to transport water vapor to southern China [17]. In this
paper, the leading 5-year spring SIC near the East Siberian Sea also influences the EPSC.
Figure 2b shows a significant negative center near the East Siberian Sea, which indicates
the influence of the SIC over the East Siberian Sea ahead of 5 years on EPSC. Hence, the
SIC index (DI_SIC) is defined as the regional averaged decadal increment in the SIC over
the negative region (71°-77° N, 149°-157° E).

How do the SIC anomalies influence EPSC 5 years in advance? As shown in Figure 5,
the DI_SIC has a quasi-period of 10 years with a significant negative autocorrelation of
5-6 years (Figure 5b). Both the period and the significant autocorrelation indicate that the
SIC anomalies of the East Siberian Sea can also provide useful predictive information for
EPSC 5 years in advance.

How can the SIC over the East Siberian Sea physically influence EPSC?

Figure 6a shows the spatial pattern of the correlation coefficient between the DI_SIC
and the spring SLP, which is similar to the Arctic Oscillation (AO) pattern. When the SIC
in the East Siberian decreases, the local surface temperature increases, which makes the
temperature differences between the pole and mid latitudes’ decrease, and AO accordingly
shows a negative phase. This is consistent with previous studies [51,52]. When SIC in the
East Siberian decreases, there appears to be a significant warming of the anomalous SST
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near the North Pacific under the influence of AO (Figure 6b). The anomalous increased
SST can store useful information from spring to summer, which, in turn, induces cyclonic
anomalies over the northwest Pacific (Figure 6¢). The northerly in the west of the cyclone
can weaken the water vapor transport to southern China, where the water vapor flux
appears to be significantly divergent (Figure 6e). Figure 6d shows the negative correlation
of DI_SIC with the vertical motion of southern China. When the sea ice decreases, there
is descending motion in southern China, which may be generated from the divergent
motion. Both the descending motion and divergent water vapor flux are unfavorable for
the increase of EPSC. These findings are consistent with previous studies, which found
that an anomalous AO can enhance the connection between the warm SST in the North
Pacific and the cyclone in the northwest Pacific, thus affecting the summer climate in East
Asia [53,54]. Thus, the preceding 5-year SIC in the East Siberian Sea is chosen to be the
other predictor for EPSC based on its significant effects on EPSC and its period of 10 years.

@ (b)

30°N

40N

..... ZAN N N N ST T S

30Nf:‘ S WN N s e s v )y

15°N

i

— L3I W | )
/rr///‘/i//// L
L .{/re./ 1K}
v

v

¢

NN S ~ =
10N 4 S 3 ¥ A Rsw i 15°S
NNAA AL+~ R
NN N N
0 Fe=ew=nR A m/s 30°S . .
120W oW 30W 150°E 180° 150°W 120°W 90°W 60°W

(d

el t A e A \A\\‘s‘\\\
40N J,v(,..\;(t()}»\,,-x 7;' a\\»—»—a\\)\\)}
\(nx'-&\r;(wj ...... »-»‘\\
PR IR D OOPPRGe
. . ...g\»\
‘ v
N,

o B \v\
15°N 20N “’ .”“}‘}\\\
YRS PO .
0° A P> 3 2.8 AN ;,
/Y—P—v,v)v)v/)')",f,’
)‘—)—ra—»—vﬂ)’]‘]‘f}“T
15°8 S ICEaAY
; /{)\\\%‘\\vﬂl1’
%S ° B 9(‘)E 12I0E 15I0E 180
90°E 135°E 180° 135°W 90°W
(e)
ﬂ Tl o
Pr>s AR >N N \\\M 34°N
40N‘/7<~)v)'11)\-\ E’ - \,\‘»_»_.\A\\.\ o
;aa;\‘1\"r\ \\a ...... N ‘.( 32°N
NS v e SR NS> T o e ek S g 1
¥ \“arm-i% TR " z / 30°N
e ) e n KK A e
‘/l—(—<—‘\§\ ~ 1 /r/z&««e«r\v 28°N

SeC e R e
RSy W RN
\ 7/ FINO

\ii‘??fﬁ;/ 3y 24°N
< [
NN 7 H A 22°N
0 H Ay X \T)/y 277 )//1‘1/.: } I 5 20°N

T
90E 1 20E 150E 180

T T T T L—
100°E 105°E 110°E 115°E 120°E 125°E 130°E

-08 -06 -04 -02 0 02 04 06 08

Figure 4. Correlation coefficients between the DI_SST with (a) the summer surface winds, (b) the
SST, (d) the 850 hPa winds, and (e) the 500 hPa winds during 1959-2011. Correlation coefficients
between the eastern Pacific SST (red rectangle region in Panel (b), SST is multiplied by —1) with
(c) the mean SLP during 1959-2011. Correlation coefficients between the DI_SST during 19592011
with (f) the 500 hPa vertical velocity during 1966-2018. Thus, the negative value in (f) should indicate
the descent motion due to the negative autocorrelation with a lag of 7 years. The dotted regions
and shaded regions indicate significant variability at the 90% confidence level, and the red rectangle
region in Panels (d—f) is the study area (southern China). The variables including SST, surface
winds, SLP, 850 hPa winds, 500 hPa winds, and 500 hPa vertical velocity are in the form of a 3-year
decadal increment.
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Figure 5. (a) Wavelet analysis and (b) the autocorrelation coefficients of the DI_SIC predictor. In
Panel (a), the dotted regions indicate significant variability at the 95% confidence level. In Panel (b),
the horizontal coordinates indicate the years lagged by the predictors and the dashed lines indicate
significant variability at the 90% confidence level. Additionally, the effective sample size is 18.

(a) (b)
60°N
A}
120w/
: 45°N
| 30°N
0w
15°N
0° & T T T
120°E 150°E 180° 150°W 120°W
(© i @
ANevscccensaarsss <L)y 5 Sk W{
PR R Y 3 27 S,
40N //A?-\ert-t “ Z 11; .i
{‘M“Q\I'(gf‘/ i Vi
NRResNUR 4«
R R R Ao x;%i i 30°N —
e xomwn g 3 30 RO/ S W ¢ = 3
RN R R R B AT A A - *
PZAN s >« vfe v 0 LYy sspss s s t ANKKY ’
“;V;vluu~4¢¢¢¢/¢/ 2 >>=w s st A KRN o 14
R T R R R I IPV-I VR E -
20N | I A Yaa e MENRIN .
= M R R Y IR, >
Yoo RS F . -
At A AR " 2 T
"y RN A rn
172 N " 27 + 2| 20°N :
Yl \ = - 7 o
e NS> T AA Jw s A L
{7Z J S S [o7
27 Q\,u&.,. 1r;;
o0 r2z e R : 15°N 1 T

100°E 105°E 110°E 115°E 120°E 125°E  130°E

(e)

BN T=ppmEr v ey NI S
//.//Jlxx\{z VY A
P Gl \\j RN (L
A AR P N . IREREEE
B0°N (v /Y- % - T NN
YRR T R A |
4 = CaC e SU AT AR AR Y NN S S S

N A A EEEET TR NN
ERR IR R A B S ) x\\aa,.‘r‘_._.,,
25°N — v L 4 L4y v /4 -,
5%y WAl € ey

- 2
Uil J L B b u /R 1rrrIATT
AL i sntt P77
20°N - AEEEEER { L7
AR 0.6
e v L LT } -
PRI R P —
15N “l.ux A1 Kkg/m*s

T T
100°E 105°E 110°E 115°E 120°E 125°E 130°E

___ IEEEEEEEEN |

-08 -06 -04 -02 0 02 04 06 08

Figure 6. Correlation coefficients between the DI_SIC with (a) the spring SLP, (b) the SST, and
(d) 500 hPa vertical velocity during 1961-2013. Correlation coefficients between the SST over North
Pacific (red rectangle region of Panel (b)), with the summer (c) 850 hPa winds and (e) vertical integral
of the divergence of the water vapor flux during 1961-2013. The dotted and shaded regions indicate
significant variability at the 90% confidence level, and the red rectangle region of Panels (c,d) represent
the study area (southern China). The variables including SST, SLP, 850 hPa winds, 500 hPa vertical
velocity, and vertical integral of the divergence of the water vapor flux are in the form of a 3-year
decadal increment.
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3.3. Decadal Prediction Model

The two predictors mentioned above, including the DI_SST and DI_SIC, have sig-
nificant influences on the predictand (DI_EPSC) with correlation coefficients of 0.79 and
—0.51, respectively (Figure 7). The two predictors are generally independent of each other
with the correlation coefficient of —0.2, which is not statistically significant. The multiple
linear regression method is therefore applied to build the statistical model for predicting
the DI_EPSC based on the DI_SST and DI_SIC.

DI_EPSC =0.71 x DI_SST — 0.36 x DI_SIC (7)

4.0

i —— -IxleadSyrs DI_SIC

] lead7yrs DI_SST
2.0 —
0.0 —
2.0

i DI_EPSC&DI_SST Cor=0.79 DI_EPSC&DI_SIC Cor=-0.51
-4.0

IIIIIIIIII||Illllllllllllll

1970 1980 1990 2000 2010 2020

Figure 7. Time series of the DI_EPSC during 1966-2019 (bars), the leading 7-year DI_SST during
1959-2015 (red line), and the leading 5-year DI_SIC during 1961-2017 (blue line). The results in this
figure were standardized.

The main factor affecting summer EPSC is the summer SST in the North Atlantic,
which explains 50% of the variance of the DI_EPSC. The second factor is the spring SIC in
the East Siberian Sea, which explains 13% of the variance of the DI_EPSC.

Cross-validation and independent hindcast are applied to measure the prediction
skill of the statistical model. The results of cross-validation (Figure 8a) show that the
predicted DI_EPSC is significantly related to the observed DI_EPSC, with a correlation
coefficient of 0.83 and an MSSS of 0.69. The phase of the predicted DI_EPSC is consistent
with that of the observed DI_EPSC in most years, apart from the time period 1976-1982. The
predicted DI_EPSC effectively captures the variability of the observed DI_EPSC, especially
in recent years. The final predicted EPSC is obtained by adding the predicted DI_EPSC to
the observed EPSC 3 years ago (Figure 8c). The final predicted EPSC also shows a high
consistency with the observed EPSC, with a correlation coefficient of 0.86 and an MSSS
of 0.72. The phase of the predicted EPSC is consistent with that of the observed EPSC in
most years, although the extreme values in the 1990s are not captured well by this model.
Noteworthily, the final predicted EPSC captures the shift in the early 1990s. The other
decadal shifts with small fluctuations are also well-captured by this statistical model.

From the independent hindcast results (Figure 8b), the predicted DI_EPSC is also
consistent with the observed DI_EPSC, with a significant correlation coefficient of 0.9 and
an MSSS of 0.81. The phase between the predicted DI_EPSC and the observed DI_EPSC is
generally consistent in most years except 2010. The predicted DI_EPSC can also effectively
captures the variability and amplitude of the observed DI_EPSC. Additionally, the extreme
value of the DI_EPSC in 2016 is captured by this model. The shift during 2014-2015 is also
captured by this model. The final predicted EPSC also shows high consistency with the
observed EPSC, with a correlation coefficient of 0.78 and an MSSS of 0.52 (Figure 8d). The
phase of the predicted EPSC is generally consistent with the phase of the observed EPSC in
most years apart from 2012 and 2015. The variability and amplitude between the predicted
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EPSC and the observed EPSC are also generally consistent in most years, although there
are small deviations, which shows generally high prediction skills.

(a)Cross Validation cor=0.83(95%) MSSS=0.69 (b)Independent Hindcast cor=0.90(95%) MSSS=0.81
0 ——Observation 8.0 ] ——Observation
1 ——Predicted 20 4 ——Predicted
20 ]

“Boap AN KN AN

2.0
1 2.0 4
4.0 T A -3.0 T T T i y T i T i T
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2010 2015 2020
(c)Cross Validation cor=0.86(95%) MSSS=0.72 (d)Independent Hindcast cor=0.78(95%) MSSS=0.52
0 - 3.0 -
——Observation ] ——Observation
——Predicted 20 4 ——Predicted

4.0 e 3.0 L
1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2010 2015 2020

Figure 8. The results of the cross-validation for the period of 1966-2019 (a,c) and the independent
hindcast for the period of 20092019 (b,d). The panels show the decadal increment of the EPSC
(DI_EPSC) predicted by the statistical model (a,b); the final predicted EPSC, achieved by adding the
predicted DI_EPSC to the observed EPSC at 3 years ago (c,d), where the light pink regions indicate
significant variability at the 95% prediction interval. The results in this figure were standardized.
Cor indicates the correlation coefficient between the observations and the prediction results, and the
MSSS is the prediction skill of the statistical model.

3.4. Real-Time Prediction

The results of the cross-validation and independent hindcast show that this statis-
tical model has reasonable skills in predicting the EPSC, including the shift, phase, and
amplitude. Thus, in this section, we further try to make a real-time prediction of EPSC.

Figure 7 indicates that there are remarkable positive anomalies in DI_SST and slight
negative anomalies in DI_SIC during 2020-2022. Since the percentage of the explained
variance from DI_SST (50%) is higher than that from the DI_SIC (13%) and the anomalous
amplitude is also higher in DI_SST than that in DI_SIC, DI_EPSC would increase during
2020-2022 (Figure 8b). As shown in Figure 8d, the real-time predicted EPSC is in a positive
phase during 2020-2022, indicating that EPSC would increase during 20202022, with a re-
markable increase in 2022. Figure 9 shows the observed recent 5-years running mean of the
summer extreme precipitation over Eastern China, there are remarkable positive anomalies
over Southern China. Noteworthily, the historic Dragon-Boat extreme precipitation event
occurred in southern China in May-June 2022 [55], which is consistent with the real-time
prediction results. Thus, this statistical model can therefore predict the real-time results
3 years in advance and shows confidence in the future prediction of EPSC.
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Figure 9. Spatial pattern of the anomaly extreme precipitation (unit: mm) over eastern China after
a 5-year running mean in 2019 related to the climatology (1991-2020). The black rectangle region
represents the study area (southern China).

4. Discussion

Previous studies show that PDO and AMO have significant effects on the decadal
summer rainfall over East China [56], which may provide useful information for the
prediction of EPSC. We also attempted to use PDO and AMO as predictors. However, the
correlations between the PDO/AMO with EPSC are not statistically significant at the 95%
confidence level, especially in the decadal increment form, no matter the simultaneous
or leading correlations. The results are also true in DI form (Table 1). The above results
will not change when using other seasonal mean PDO/AMO predictors. One possible
reason is that the extreme precipitation is discussed in this study compared to the normal
precipitation in previous research. The other reason is that the DI_SST/DI_SIC suggested in
this study may play the role of bridge for the influence of PDO/AMO on EPSC. Therefore,
these two predictors contribute more significantly to the EPSC and predict the EPSC better
than PDO and AMO.

Table 1. The correlation coefficients between the EPSC and the leading 3-7 years summer PDO/AMO.
The value in parentheses indicates the correlation coefficient in decadal increment (DI) form.

Leading 3 Years Leading 4 Years Leading 5 Years Leading 6 Years Leading 7 Years

PDO
AMO

0.23 (0.39) 0.21 (0.24) 0.16 (—0.06) 0.15 (—0.26) 0.19 (—0.39)
0.30 (—0.33) 0.30 (—0.29) 0.31 (=0.22) 0.33 (—0.09) 0.36 (—0.05)

5. Conclusions

This paper analyzed the summer EPSC and explored the main influencing factors.
The summer extreme precipitation over southern China has been increasing over recent
decades, with a significant shift in the early 1990s. The summer SST of the North Atlantic
and the spring SIC in the East Siberian Sea are indicated to affect the EPSC. Both predictors
have a quasi-period of 10-14 years, which can provide useful prediction information for
summer EPSC leading 5-7 years. Therefore, these two predictors were chosen to establish
the prediction model based on the decadal increment method.

Both the cross-validation and independent hindcast results illustrate that the decadal
increment method can predict the EPSC well, especially the shift in the early 1990s. Ad-
ditionally, the real-time prediction results show that the EPSC would increase during
2020-2022, which is consistent with the actual situation of more EPSC. These prediction
results will help with future local disaster prevention and mitigation.
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The decadal increment method not only adds leading observational data to obtain
useful decadal information, but also adds valid samples in the correlation analysis, which
predicts the summer EPSC well. This statistical approach provides new ideas for the
current decadal climate prediction, especially decadal changes. In the future, the statistical-
dynamical model or machine learning combined with the increment method can also be
attempted to improve decadal predictions.
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