
Citation: Zhao, L.; Lu, S.; Qi, D.

Improvement of Maximum Air

Temperature Forecasts Using a

Stacking Ensemble Technique.

Atmosphere 2023, 14, 600. https://

doi.org/10.3390/atmos14030600

Academic Editor: Graziano Coppa

Received: 22 December 2022

Revised: 13 March 2023

Accepted: 15 March 2023

Published: 21 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Improvement of Maximum Air Temperature Forecasts Using
a Stacking Ensemble Technique
Linna Zhao 1,2,* , Shu Lu 3 and Dan Qi 4

1 State Key Laboratory of Severe Weather and Institute of Artificial Intelligence for Meteorology,
Chinese Academy of Meteorological Sciences, Beijing 100081, China

2 Union Centre for Extreme Weather, Climate and Hydrogeological Hazards, China Meteorological
Administration, China University of Geosciences, Wuhan 430074, China

3 Hunan Meteorological Observatory, Changsha 410118, China; lushu0818@163.com
4 National Meteorological Center, Beijing 100081, China; qidan@cma.gov.cn
* Correspondence: zhaoln@cma.gov.cn

Abstract: Due to the influence of complex factors such as atmospheric dynamic processes, physical
processes and local topography and geomorphology, the prediction of near-surface meteorological
elements in the numerical weather model often has deviation. The deep learning neural networks
are more flexible but with high variance. Here, we proposed a stacking ensemble model named
FLT, which consists of a fully connected neural network with embedded layers (ED-FCNN), a long
short-term memory (LSTM) network and a temporal convolutional network (TCN) to overcome the
high variance of a single neural network and to improve prediction of maximum air temperature. The
case study of daily maximum temperature forecast evaluated with observation of almost 2400 weather
stations shows substantial improvement over that of single neural network model, ECMWF-IFS and
statistical post-processing model. The FLT model can more effectively improve the forecast bias of
the ECMWF-IFS model than that of any of the above single neural network model, with the RMSE
reduced by 52.36% and the accuracy of temperature forecast increased by 43.12% compared with the
ECMWF-IFS model. The average RMSEs of the FLT model decreases by 8.39%, 1.50%, 2.96% and
16.03%, respectively, compared with ED-FCNN, LSTM, TCN and the decaying average method.

Keywords: deep learning; stacking ensemble; post-processing; bias correction

1. Introduction

Surface maximum air temperature plays an important role in people’s life, climate
prediction, [1] and hydrologic forecasting, etc. [2]. Therefore, reliable forecasts of maximum
air temperatures are essential to prevent heat-related disasters, efficiently mitigate the
damages caused by high-temperature disasters and appropriately respond to them [3].
Deviations usually exist in the prediction of near-surface elements from numerical mod-
els due to complex factors such as atmospheric dynamic processes, physical processes,
local topography and geomorphology. In particular, the deviation between the prediction
and observation of daily maximum temperature is relatively larger when the weather
changes drastically [4]. Therefore, it is still a challenge to realize refined and accurate
forecasts for daily maximum temperature. Numerical weather prediction (NWP) models
predict surface air temperature by using an atmospheric system containing complex dy-
namics and land-atmosphere-ocean coupling. In the last 50 years, the NWP has achieved
great success with the development of computer technology, modeling techniques and
observations [5,6]. However, due to the imperfection of initial values, assimilation methods,
systematic errors and physical processes in the model, the uncertainties of the atmosphere
cannot be thoroughly described [7,8], resulting in inevitable errors of numerical predictions.
Hence, there is relatively limited space to enhance the NWP by improving the physical
processes in numerical models or increasing the spatial resolutions. In order to reduce
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these model biases and further improve the accuracy of numerical model prediction prod-
ucts, various post-processing methods have been developed to correct the errors of NWP
models [9,10]. In the early years, the most common post-processing methods included the
perfect prediction method (PPM) [11], the model output statistics (MOS) method [12], the
Kalman filter (KF) [13], decaying average method, Bayesian model averaging (BMA) [14],
frequency matching method and scoring optimization correction method, etc. These meth-
ods have been widely used and achieved good results. Specifically, as an objective weather
forecast technology, the MOS method has been widely used in the correction of prediction
errors for surface wind, precipitation probability and maximum temperature, and formed
the operational forecasts [15].

The MOS method establishes a regression model between the observation data and
model outputs, which uses the statistical relationship to transform a single-valued model
forecast into another single-valued model forecast for more accurate forecasts. However,
due to the prediction errors in NWP model outputs [10,12,16], the established equation
for error correction based on the statistical relations will also produce errors. Therefore,
the effect of bias correction using the MOS method will be limited. As each numerical
prediction model is continuously updated, it will invalidate a large number of historical
model output data used in the MOS method, leading to the failure of MOS to obtain the
latest observation features, which is another limitation of this method. Moreover, some
statistical correction methods require certain statistical assumptions. For example, the BMA
method assumes prior probability, and different prior probability assumptions of BMA will
lead to different or even opposite results. In a word, different statistical models have their
own limitations. The available weather forecast is generally limited to within about 10 days
due to the chaos in the atmosphere, and the effect of error correction for both traditional
and new techniques will be weakened with the extension of leading time.

In recent years, studies have shown that compared with the traditional statistical
post-processing technology, the artificial intelligence-based post-processing technology in
medium-term numerical prediction model has own advantage in that it is a data-driven
method. This technology can implicitly extract the spatio-temporal variations of nonlinear
and multi-scale physical relationships from multi-source data, thus significantly enhanc-
ing the level of medium- and short-term weather forecasts [17–20]. Machine learning
approaches can handle a large number of input variables because they are not sensitive
to the multi-collinearity of the input variables [21]. In addition, machine learning can be
used to establish a model that works for multiple stations, unlike MOS and KF that require
bias correction to build a model for each station. Rasp et al. [17] applied the ANN to the
post-processing of ensemble forecasts, and conducted a case study on the 2-m temperature
prediction at German surface stations. The results show that the neural network method
performs significantly better than the post-processing methods such as the ensemble MOS
(EMOS) and quantile regression forests etc., and it is more computationally efficient. In
addition, the temporal convolutional network (TCN) is also an emerging network structure
suitable for time series [22], and Hewage et al. [23] proposed a lightweight data-driven
weather forecasting model by using the TCN. Han et al. [24] transformed the forecast
correction problem into an image-to-image translation problem in the field of computer
vision. They applied the CU-net (Component Unmixing Network) architecture to the
gridded forecasts of 2-m temperature, 2-m relative humidity, 10-m wind speed and 10-m
wind direction from the European Centre for Medium-Range Weather Forecasts Integrated
Forecasting System (ECMWF-IFS) for error correction, and achieved significant correction
performance. The model output machine learning (MOML), a post-processing method
for gridded temperature forecasts, matches NWP forecasts against observations through a
regression function and shows a better numerical performance than the ECMWF model
and MOS, especially in the winter of Beijing [19]. However, a weakness of MOML is the
intricate pre-processing associated with feature engineering. Chen et al. [25] proposed
an end-to-end post-processing method based on a deep convolutional neural network,
which directly learns the mapping relationship between the model predicted field and
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the observed temperature field and obtains relatively accurate temperature predictions.
Recently, Zhao et al. [26] applied a fully connected neural network model with embedded
layers for prediction of daily maximum air temperature, reducing the overall root mean
square error (RMSE) of the ECMWF-IFS model from 2.746 ◦C to 1.433 ◦C.

Due to the complex atmosphere-surface interaction, a single machine learning method
is unable to consistently and effectively remove the bias in the NWP model. In fact,
the different regressor in machine learning can significantly affect performance of the
prediction [27–30]. Single machine learning models, especially the deep learning networks,
suffer from the “bias-variance” trade-off [31], and the ensemble machine learning can be an
effective way to address this issue. A successful way to reduce the high variance of neural
network models is to train multiple models instead of a single model and integrate the
predictions of these models, i.e., integration learning. Integration learning not only reduces
the variance of predictions, but also yields better predictions than any single model.

Recently, several researchers have attempted to improve the performance of the
forecasting by combination (i.e., ensemble) of the diversified machine learning [32–34]. The
random forest, support vector regression and ANN, as well as the multiple-model ensemble
(MME) were employed to improve the forecast bias of daily maximum temperature in Seoul
from the Local Data Assimilation and Prediction System model outputs [21]. Chen et al. [35]
applied linear regression models to integrate the ANN and the long short-term memory-
full convolutional network (LSTM-FCN) to reduce prediction bias of 2-m temperature at
301 weather stations in mainland China. These experiments have all demonstrated that
combining different machine learning models can improve the forecast performance by
overcoming the drawbacks of each individual classifier. However, the complexity of the
neural networks used in these studies was limited, and the ensemble methods used were
relatively simple.

Here, we used the cross-validation method to determine the model hyperparameters,
used the mean absolute error (MAE) as the loss function, and used the early stop method
to train the model to demonstrate how to use the stacked generalization technology to
integrate different types of neural networks. The proposed integrated neural networks
are used in the post-processing of daily maximum air temperature forecasting within a
neural network framework to reduce the forecast bias of individual neural network models.
The daily maximum air temperature forecasting method established in this study will
fill the gap that the ECMWF-IFS model output only has 2 m temperature forecast and
no daily maximum temperature forecast. Specifically, we explore a case study of daily
maximum temperature forecast for 1 January–31 December 2020. We compare the forecast
capability between the integrated neural network and the individual neural network, and
also compare the forecast capability between the neural network model and the statistical
post-processing model. Our ultimate goal is to propose an effective, reliable, and robust
ensemble neural network model.

The rest of this paper is organized as follows. The study area and data are briefly
described in Section 2. Section 3 introduces the methodology, including the machine learn-
ing algorithms, data processing, specified evaluation metrics and experimental schemes.
Section 4 presents the results. Finally, the discussions and conclusions are given in Section 5.

2. Data and Feature Selection
2.1. Data

In this work, we focus on the forecasting of daily maximum air temperature with a
leading time of 24 h at weather station in Chinese mainland. The study area is Chinese
mainland, located within the latitudes of 15◦–55◦ N and the longitudes of 73◦–135◦ E
(Figure 1), and there are more than 2400 meteorological stations in the domain.
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Figure 1. The illustration of the research area and the location of weather stations (black dots).

We used forecast data from the ECMWF-IFS model from 15 January 2015 to
31 December 2020. The forecast data are issued at 1200 UTC, and forecast lead time is
from 0 to 72 h with 3-h intervals. The horizontal resolutions of the ground and upper -level
air forecasts are 0.125◦ × 0.125◦ and 0.25◦ × 0.25◦, respectively. Several predictors (e.g.,
land-sea mask) have the same value and do not change with time. In addition to these
unnecessary variables, 37 primary predictors are chosen, broadly based on meteorological
intuition. Table 1 shows these primary predictors and their abbreviations. For comparison
with the station observations, the gridded forecasted data are bilinearly interpolated to the
weather station locations.

The daily maximum air temperature is available from the National Meteorological
Information Center, China Meteorological Administration. Data scrubbing and quality
control are performed on the observation and forecast data, and 2238 stations are obtained
after excluding a small number of stations containing missing values to ensure the integrity
of the observation time series.

Table 1. The primary predictors taken from the ECMWF-IFS model and their abbreviations.

Predictor Abbreviation Predictor Abbreviation

Surface level

Maximum of temperature * 2Tmax * Total column water vapor TCWV

2-m temperature 2T Large scale precipitation LSP

2-m dewpoint temperature 2D Convective precipitation CP

Skin temperature SKT Total cloud cover TCC

Maximum temperature at 2 m in the last 6 h MX2T6 Low cloud cover LCC

Minimum temperature at 2 m in the last 6 h MN2T6 Forecast albedo FAL

Sea surface temperature SST Snow density RSN

10-m zonal wind component 10U Snowfall SF

10-m meridional wind component 10V Snow depth SD

100-m zonal wind component 100U Convective effective potential energy CAPE

100-m meridional wind component 100V Mean sea level pressure MSL

Total precipitation TP Level height of zero-degree layer DEG0L

Total column water TCW - -
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Table 1. Cont.

Predictor Abbreviation Predictor Abbreviation

500 hPa, 700 hPa and 850 hPa high level

Temperature T Divergence D

Zonal wind component U Meridional wind component V

Geopotential height HGT Specific humidity Q

Potential vorticity PV Relative humidity R

Vertical velocity W - -

Calculated predictor

Vorticity at 500 hPa VOR500 Vorticity advection at 500 hPa VOR_ADV500

Vorticity at 700 hPa VOR700 The temperature advection difference
between 850 hPa and 500 hPa T_ADV850_500

Vorticity at 850 hPa VOR850 - -

* The 2Tmax is the maximum forecast of the 2 m maximum temperature in the past 6 h at lead time of 6 h, 12 h,
18 h and 24 h, respectively.

2.2. Feature Selection

The principle of feature selection is that selected feathers should contain as much
available information as possible and without making the model complex. The feature
selection method used in this study is a combination of variance filtering method, corre-
lation analysis method and mutual information value method. On the basis of primary
predictors (Table 1), firstly, the low-variance features are eliminated through the variance
filtering method, and the threshold level is set as 0.9 to remove 90% features with the same
elements. After filtering the low-variance feature, on the one hand, the factors with the
correlation coefficient greater than 0.3 and passing the significance test at the significance
level of 0.05 are selected through the correlation analysis method. In this way, the features
with a certain linear relationship with the target can be selected. On the other hand, the
mutual information method is used to select the features that have a certain nonlinear rela-
tionship with the target. The mutual information value between the target and the feature
is calculated. The mutual information value can measure the degree of interdependence
between two random variables. When the information of a random variable is obtained,
the degree of uncertainty reduction in another variable can be determined by the mutual
information value. Then, the features of the top 15 predictors are retained with mutual
information value from high to low. Finally, the features selected by the correlation analysis
method and the mutual information value method together constitute the features which
input to the neural network model.

The forecast variables of the ECMWF-IFS model after feature selection, such as the
daily maximum temperature, 2-m temperature, etc., with 19 in total. In addition to the
ECMWF-IFS model predictors, auxiliary variables are also retrieved to make the model
better mine the temporal and spatial information in the predictors. These were chosen
broadly based on meteorological intuition. Table 2 shows these feathers.

In this study, the forecast and observation data are divided into the training set, valida-
tion set and test set, covering the periods from 15 January 2015 to 30 September 2019, from
1 October to 31 December of 2019 and from 1 January to 31 December of 2020, respectively.
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Table 2. The descriptions and abbreviations of all features.

No. Feather Abbreviation

1 Maximum of temperature 2Tmax

2 2-m temperature 2T

3 2-m dewpoint temperature 2D

4 Skin temperature SKT

5 Maximum temperature at 2 m in the last 6 h MX2T6

6 Minimum temperature at 2 m in the last 6 h MN2T6

7 Total column water TCW

8 Total column water vapor TCWV

9 Convective effective potential energy CAPE

10 Mean sea level pressure MSL

11 Level height of zero-degree layer DEG0L

12 Temperature at 850 hPa T850

13 Temperature at 700 hPa T700

14 Temperature at 500 hPa T500

15 Specific humidity at 850 hPa Q850

16 Specific humidity at 700 hPa Q700

17 Specific humidity at 500 hPa Q500

18 Geopotential height at 700 hPa Q700

19 Geopotential height at 500 hPa Q500

20 Daily maximum temperatures lagged the forecast target date by 1 day 2Tmax_lag1

21 Daily maximum temperatures lagged the forecast target date by 2 days 2Tmax_lag2

22 Longitude station Station_lon

23 Latitude of station Station_lat

24 Altitude of station Station_alt

25 Identification serial number of station Station_ID

26 Season Season

27 Month Mon

3. Methods
3.1. Construction of Ensemble Neural Network Model

Due to the randomness of initial weight parameters, neural network models generally
have high variances. Using ensemble models can effectively reduce the variance and
enhance the model generalization ability [36]. Stacked generalization method is one of the
effective methods to construct ensemble models. By integrating multiple models, a better
generalization performance can be obtained compared with a single model. Deep learning
is a powerful tool to deal with complex nonlinear problems and has started to play a role
in weather forecasting. However, the accuracy and dependence of neural network model
depend on the different types of neural network adopted, the input features, the methods
of feature processing, the addition of auxiliary variables and the hyperparameter settings
of the model, which are often required to be selected and designed by the model designer
according to the object of modeling prediction. In this study, an ensemble neural network
model is constructed based on three neural network models of the ED-FCNN, the LSTM
and the TCN by using the stacking ensemble technique (hereafter referred to as the FLT).
Usually, the stacking method is divided into the following two levels. Leve-0 trains several
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different machine learning models to obtain the predictions of each model for the target
separately. Leve-1 takes the output result of each model trained in level-0 as the input
element and then trains a new model as a level-1, and the output of the level-1 is taken as
the final forecast.

In order to reduce the variance of a single neural network model, in this study, as
shown in the Figure 2, the ensemble learning FLT model is proposed, which consisted
of ED-FCNN, LSTM and TCN by using a stacking approach. The first level of ensemble
learning takes the ED-FCNN, LSTM and TCN as the Level-0 models, and the second level
uses the fully connected neural network (FCNN) as the Level-1. The FCNN is selected
in this paper as the Level-1 model because the FCNN has the characteristics of multiple
inputs, so it can process multiple neural networks in the Level-0 sub-network, and then
learn how to best integrate the predictions from each sub-neural network model, and it
allows the stacked ensemble model to be regarded as a single large model. Figure 3 is the
flow chart of this study.
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ization technique.

One of the sub-neural network models at level-0 of the integrated neural network
FLT model in this study is ED-FCNN, which is a fully connected neural network with
embedding layer. Spatial and temporal information in the features need to be input into the
integrated model FLT. In order to process multi-category variables and integrate the spatio-
temporal information into the neural network, a fully connected neural network with an
embedding layer is induced in this study, namely, ED-FCNN [26], which can be adapted
to general regression tasks and does not require the data to have a temporal sequence
relationship. For the ED-FCNN, the input features are numbered 1 to 27 in Table 2, which
are forecast factors of the ECMWF-IFS model after feature selection, the auxiliary variables
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and time lagged variables. The input data of all stations is stacked in the ED-FCNN. As
these data are in obvious chronological order, the flags of the season and month to identify
the temporal information in the data sample are added when constructing the input feature
data set for the ED-FCNN. There are two input layers for the ED-FCNN. The first input
layer transmits three categorical variables of station number, month and season, where
the station number and month are transmitted into the embedded layer after the process
of label encoding, and the variable of season is processed by the one-hot encoding. The
second input layer passes various meteorological factors and other features, and finally the
connection layer connects all the above features.

The other two sub-neural network models at level-0 of the integrated neural network
FLT model are Long Short-Term Memory Network (LSTM) (Figure 4a) and Temporal
Convolutional Network (TCN) (Figure 4b), respectively. The LSTM is a kind of RNNs,
which is specifically used to deal with time series. Compared with the ordinary structure
of RNN, LSTM can solve problems such as the long-term dependence of sequence and
gradient vanishing. LSTM is also composed of the input layer, hidden layer and output
layer. A unique gating mechanism is added to the LSTM cell in the hidden layer, and the
information will be updated when the information passes through the LSTM cell. The TCN,
is a neural network architecture proposed by Bai in 2017 [22]. It migrates the convolutional
neural network (CNN) to time-series applications and mainly applies one-dimensional
convolution. Compared with the LSTM and other RNNs neural networks, TCN has
the advantage of large-scale parallel processing. It further integrates the technologies
of causal convolutions, dilated convolutions and residual connections on the basis of
one-dimensional convolution [22]. The causal convolution mainly ensures that the future
information will not be leaked during the prediction, which is in line with the characteristics
of time-series prediction.
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For LSTM and TCN constructed in this study, the time-series data set with a fixed
form should be constructed as the model input, and the shape of the input array includes
the batch size, time-series length and feature number. The steps of constructing the time-
series data set are as follows. Firstly, the feature factors for the time-series data set are
selected. Considering the structural features of LSTM and TCN, the input feature factors
are numbered 1 to 24 in Table 2, which are forecast factors, time lagged variables and the
longitude, latitude and altitude of the meteorological stations. Secondly, a time sliding
window is applied to all time series (all features) at each station, and a number of batch
samples with consistent length of time series will be generated by the time sliding window
segmentation technique. Then, the batch samples generated at each station are connected
to form the final data set. Among them, the setting of the time sliding window for the
segmentation of time-series data is shown in Figure 2. For the feature data set (X in Figure 5),
the length of the sliding window is set to 7 days, and after the sliding, the shape of the
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feature data samples in the training set is obtained as (1712 × 2238, 7, 24), where 1712 is the
number of sequences generated at a single station after the time sliding window, and 2238
is the total number of stations. For the target data set (Y in Figure 5), the time-series length
is set to 1, the day-by-day sliding is applied through the sliding window, and the shape of
the target data sample is (1712 × 2238, 1, 1). So far, the feature data set and the target data
set have achieved one-to-one correspondence on each batch. After completing the data set
construction, the data set can be directly input into the LSTM and TCN.
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3.2. Hyperparameter Settings and Training

For all neural network models (the ED-FCNN, LSTM, TCN and FLT), the common
hyperparameters are as follows. The optimizer algorithm in the neural network is the
adaptive moment estimation (Adam), and the batch size is set to 64. The number of neurons
in the input layer and output layer is determined by the number of features in the input
and output neural networks, respectively. The number of neurons in output layer of all
model in this study is 1, and the activation function is the Linear function (linear units).

Specifically, the number of neurons in the hidden layer of the neural network in this
study is determined by grid search. The number of neurons in the hidden layer is generally
set to multiples of 16 and 16, such as 16, 32, 64, etc. Hence, the number of neurons in the
hidden layer of the above neural networks is determined by means of grid search. The
values of 16, 32, 64, 128 and 256 are set for the grid search, and a cross-validation method
adaptive to time series is applied for the grid search, which can avoid the crossover of
temporal features in the data, aiming to make the model selection steadier and more robust.
Finally, the hyperparameters with the smallest average RMSE of all validation sets are
selected. The results of hyperparameters selection of each neural network are as follows:
The number of hidden layers is 1, the number of neurons in the hidden layer is 64 and 128
both in ED-FCNN and LSTM, respectively. The network structure of TCN is different from
ED-FCNN and LSTM. TCN migrates Convolutional Neural Networks (CNN) to time series.
Due to its specific network structure, the hyperparameters of TCN are different from those
of ED-FCNN and LSTM. The main hyperparameters of TCN include convolution kernel
size, expansion coefficient and convolution kernel number. Therefore, the hyperparameter
setting of TCN in this study is: the size of one-dimensional convolution kernels is set as 3,
and the dilations are set as 1, 2, 4, 8, 16 and 32, successively, and the number of convolution
kernels of TCN is finally determined to be 128.

When training the neural network, the loss function is set to mean absolute error
(MAE). Early stopping is selected as the regularization method to prevent the model from
over-fitting. The number of model epochs is set to 50 times. If the validation error in
training increases instead of decreasing for three consecutive times, the training is stopped
and the model with the best performance is stored in the validation set.
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3.3. Decaying Average Model

As a contrast, we compare performance of the proposed method with that of the
decaying averaging (DA) method, which is an adaptive error correction method of KF
type [37–39]. The principle of the DA method for error correction is as follows.

B(t) = (1− w)× B(t− 1) + w× (F− a) (1)

where B(t) is the lagged average error of temperature forecasts for each leading time t at the
station, and B(t−1) is the lagged average error of the day before. F, a and w are the station
forecast, observation and weight coefficient, respectively.

By referring to a previous study [40], the training period is set to 35 days in this study.
In the training set, the method of day-by-day rolling update will be adopted at each station,
and the weight coefficient corresponding to the minimum average RMSE at all stations
is finally selected as the best weight of the corresponding station through comparisons
among multiple groups of sensitivity tests. Here, the weight coefficient is set in the range
of 0.001–1, with the step size being 0.001.

For a given station and leading time t, the steps of temperature forecast correction are
as follows. Firstly, the cold start is carried out when t = 1, that is, B(t − l) = 0. Secondly, the
optimal weight coefficient of W in the training period is calculated. Thirdly, the average
lagged error B(t) is calculated according to Equation (1). The fourth step is to repeat the
third step. After the iterative accumulation during the training period, the obtained error
tends to be stable and can represent the situation of systematic error to a certain extent.
Finally, the corrected forecast value is obtained by subtracting the latest B(t) from the
current forecast.

3.4. Verification Method

The forecast performance for daily maximum temperature of each model is evaluated
by using the RMSE, mean absolute error (MAE), the accuracy of temperature forecast (ATF).

RMSE =

√
∑n

1 ( f (xn)− yn)
2

n
(2)

MAE =
1
N ∑n

1 | f (xn)− yn| (3)

where f is the deep-learning-based regression function, xn is the input, f (xn) is the model
forecast, yn is the observation, and n is the total number of forecast samples.

ATF is the percentage of the samples (Nr) whose absolute difference between the
forecast value and observed value is no greater than m ◦C in the total samples (Nf ) [19],
where m is the temperature threshold. ATF is calculated as follows.

ATF =
Nr

N f
× 100% (4)

Following previous studies [19,41], m is set to 2 ◦C in this study, and the higher the
ATF value is, the more accurate temperature forecast will be.

4. Results
4.1. General Evaluation

For each neural network model, DA and the ECMWF-IFS model, the validation metrics
averaged over all stations during the entire validation period in 2020 are summarized in
Table 3. Overall, for the test period in 2020, the neural network models (ED-FCNN, LSTM,
TCN and FLT) and the DA reduce the average RMSE (MAE) by 43.27% to 52.36% (42.00% to
51.50%) and increase the average ATF by 34.12% to 43.12% compared with the ECMWF-IFS
model output. Among them, only neural network models decreased the average RMSE
(MAE) by 48.00% to 52.36% (46.50% to 51.50%) and improved the average ATFs by 38.89%
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to 43.12%. The neural network models also reduce the average RMSEs (MAEs) by 8.33% to
16.03% (7.76% to 16.38%) and increase the average ATFs by 3.56% to 6.71% compared with
the DA model. The FLT model integrated by the stacking ensemble technique achieves
the best results, with the RMSE reduced by 52.36% compared with the ECMWF-IFS model
and by 16.03% compared with the DA model, respectively. For the neural network model,
the models of LSTM and TCN adaptive to the time-series data set perform better than the
ED-FCNN model, but the ensemble learning model of FLT is better than the above three
models. Compared with the ED-FCNN, LSTM and TCN models, the RMSEs of the FLT
model are decreased by 8.39%, 1.50% and 2.96%, the MAEs are decreased by 9.35%, 3.00%
and 3.00%, and ATFs are increased by 3.04%, 0.67% and 0.83%, respectively, indicating
that the FLT model can combine the advantage of a single model to effectively reduce
forecast error.

Table 3. Mean verification metrics of each neural network model for daily maximum temperature on
the test set.

Metrics ECMWF-IFS ED-FCNN LSTM TCN FLT DA

RMSE (◦C) 2.75 1.43 1.33 1.35 1.31 1.56
MAE (◦C) 2.00 1.07 1.00 1.00 0.97 1.16
ATF (%) 62.04 86.17 88.2 88.06 88.79 83.21

In addition, the overall performance of all neural network models (the ED-FCNN,
LSTM, TCN and FLT) on extreme events are also compared with the ECMWF-IFS model
output (Table 4). Here, the extreme events are defined as those with the daily maximum
temperature on the second day observed at the station being above the 90th percentile or
below the 10th percentile during the study period (test set). The performance improvement
of all neural network models compared with the ECMWF-IFS model on extreme events
is similar to the overall evaluation. For samples of extreme events at the station with the
daily maximum temperature above (below) the 90th (10th) percentile, compared with the
ECMWF-IFS models, the RMSEs are improved by 60.63% to 66.67% (35.63% to 44.06%), the
MAEs are decreased by 60.08% to 67.08% (33.15% to 41.57%) and the ATFs are increased by
81.96% to 89.92% (19.40% to 25.12%), respectively. The TCN (FLT) model has the largest
improvement, followed by the FLT (TCN) model, for the extreme events above (below) the
90th (10th) percentile.

Table 4. Mean verification metrics for extreme events related to maximum temperature on the test set
for each neural network model.

Metrics ECMWF-IFS ED-FCNN LSTM TCN FLT DA

RMSE (◦C) 3.15 (2.61) 1.19 (1.68) 1.24 (1.49) 1.05 (1.47) 1.08 (1.46) 1.27 (1.77)
MAE (◦C) 2.43 (1.78) 0.93 (1.19) 0.97 (1.07) 0.80 (1.06) 0.83 (1.04) 0.97 (1.27)
ATF (%) 49.50 (69.28) 91.31 (82.72) 90.07 (85.77) 94.01 (86.43) 93.39 (86.68) 89.29 (80.25)

The improvement of each neural network model is better than that of the DA model.
For the samples of extreme events higher (lower) than the 90th (10th) percentile, the neural
network models reduced the RMSEs by 2.36% to 17.32% (5.08% to 17.51%), the MAEs are
decreased by 0% to 17.53% (6.30% to 18.11%) and ATFs are increased by 0.87% to 5.29%
(3.08% to 8.01%) compared with the DA model. The improvement for samples lower than
the 10th percentile is not as good as that of the samples above the 90th percentile in each
neural network model.

4.2. Evaluation of the Spatio-Temporal Continuous Forecast Skill

Figure 6 shows the spatial distributions of RMSEs over the Chinese mainland for the
daily maximum air temperature forecasts of different neural work models, the ECMWF-IFS
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and DA model. Great improvements are achieved by all neural network models and the DA
compared with the ECMWF-IFS model. More than 94.33% stations of each neural network
model have RMSE less than 2.0 ◦C, while the ECMWF-IFS has only 53.40% stations with
RMSE less than 2.0 ◦C. The most obvious correction effect is mainly distributed in the
Qinghai-Tibet Plateau, and the RMSE of ECMWF-IFS in this region is decreased from more
than 3.0 ◦C to 2.0 ◦C.
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Figure 6. Spatial distributions of average RMSE of daily maximum air temperature forecasts at all
stations using different neural work models and the ECMWF-IFS model (unit: ◦C; the ring chart
in the lower left corner represents the proportion of the number of stations (less than 6% are not
shown) with different RMSE interval values to the total number of stations). (a) ECMWF-IFS, (b) DA,
(c) ED-FCNN, (d) LSTM, (e) TCN and (f) FLT.

Compared with the ECMWF-IFS and DA, the neural network models of ED-FCNN,
LSTM, TCN and FLT, increase the proportion of stations with the RMSE between 1.0 ◦C
and 1.5 ◦C from 52.37% of DA model and 13.67% of ECMWF-IFS to 69.53%, 79.00%, 77.35%
and 79.94% respectively. Especially in the area south of the middle and lower reaches of the
Yangtze River (See Figure 1 for the location), the RMSEs of most stations of the DA model
are between 1.5 ◦C and 2.0 ◦C, while the RMSEs of all neural network models in this area
are between 1.0 ◦C and 1.5 ◦C.

The spatial distributions of RMSEs of neural network models reveal that the propor-
tions of stations with RMSE values less than 1.0 ◦C are 0.80%, 3.66%, 3.75% and 5.50% in
ED-FCNN, LSTM, TCN and FLT, respectively. Thus, the FLT model shows the best perfor-
mance in terms of the overall RMSE at stations. Moreover, compared with other neural
network models, the RMSE in the Guangxi Province and Hunan Province (See Figure 1 for
the location) is obviously reduced by the FLT model. This implies that the ensemble neural
network integrated by the stacking of ED-FCNN, LSTM and TCN improves the forecast
error based on the models with good performance in the Level-0 layer.

Figure 7 shows the daily RMSE of each model averaged at all stations in the test
set. Among all the models, RMSE of the ECMWF-IFS model is much larger than those
of other neural network models or the DA model, and fluctuates more greatly over time
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compared with other models, while RMSEs of the DA and other neural network models
are relatively more stable over the year. The RMSE of each neural network models and
DA in summer is lower than that in winter. The DA performs better in reducing the RMSE
than the ECMWF-IFS, but each neural network model is even better. The average RMSE of
four neural network models is 1.34 ◦C, and is 12.95% lower than that of DA model. The
FLT model exhibits the lowest RMSE among the three single machine-learning models.
Specifically, the FLT model maintains the lowest RMSE on a daily basis throughout the test
period. That is, the FLT model yields the best performance compared with other models.
FLT reduces the RMSE by 16.23% and 52.74% compared with the DA and ECMWF-IFS for
the day-by-day average, respectively.
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Figure 7. The average RMSE at all stations over the Chinese mainland on each calendar day during
the validation period using five post-processing models and the ECMWF-IFS model (the average
RMSE of each model is also shown in the top; unit: ◦C).

4.3. Accuracy of Maximum Air Temperature Forecast

The bivariate distributions of the forecast accuracy of daily maximum temperature at
all stations by the ECMWF-IFS model and neural network models are given in Figure 8.
The point falling on the upper left side of the diagonal line in the figure means that the
forecast accuracy of daily maximum temperature at that station is greater than the forecast
accuracy by the ECMWF-IFS model. As is shown in Figure 8, except for the ED-FCNN and
DA models that have 19 and 47 cases of sample points located at the bottom right of the
diagonal line, the rest of the models have less than 4 cases of sample points located at the
bottom right of the diagonal line. That is, the majority of sample points fall at the upper
left of the diagonal line for both neural network models and the DA model, indicating that
the ATFs at almost all station have been improved compared to that by the ECMWF-IFS.

From the histogram above each main figure, the distribution of ATF in the ECMWF-IFS
mode is a significantly negative skewness with the left tail being very long. The values of
ATF are mainly concentrated between 75% and 85%. There are many sample points with
an ATF value of less than 60%, and a considerable number of sample points with an ATF
value of 0%. To the sample with the ATF between 0 and 60% in the ECMWF-IFS model
have disappeared, and the value of ATF increases to more than 60% and even up to 90%
for the vast majority of samples after the correction of each neural network model. The
ATF values of the DA model are in the range of 60% to 95%, compared with the DA model,
while the ATF values of each neural network model are in the range of 70% to 95%. It is
significantly higher and more concentrated in the range of 85% to 95%. The LSTM model
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has the ATF distribution very close to the FLT model, while FLT performs the best among
all the models.
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Figure 8. Bivariate of temperature forecast accuracy for (a) ED-FCNN, (b) LSTM, (c) TCN, (d) FLT
and (e) DA model relative to the ECMWF-IFS model (horizontal coordinates are the ATF of the
daily maximum temperature by the ECMWF-IFS model on the test set, vertical coordinates represent
that of neural network models and DA model, red solid lines represent the contour of temperature
forecast accuracy, blue solid lines are diagonal lines, the histogram at the top of the main figure
is the distribution of temperature forecast accuracy of the ECMWF-IFS model, and the histogram
at the right of the main figure is the frequency of temperature forecast accuracy of each neural
network model).

5. Conclusions and Discussion

In this study, an ensemble deep neural network model named FLT is developed to
forecast the daily maximum temperature over the Chinese mainland by using a stacking
generalization approach, and its performance is further compared with three individual
neural network models (i.e., ED-FCNN, LSTM and TCN) and a decaying averaging model
(i.e., the DA method). To train this model, we use the daily maximum temperature data from
2238 national surface meteorological stations and forecast products from the ECMWF-IFS
model in the past 4 years to validate the training effects of the FLT, the 3 individual neural
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network models and the decaying averaging model. The main findings are summarized
as follows.

Each neural network model can effectively improve the forecast bias of the ECMWF-IFS
model. Specifically, the RMSE (MAE) decrease is between 48.00% and 52.36% (46.50%
and 51.50%) and the ATF increase is between 38.89% and 43.12% compared with the
ECMWF-IFS model. In addition, the models also exhibit good performance for extreme
events. For the extreme temperature events above the 90th percentile (or below the
10th percentile), the RMSE decrease ranges from 60.63% to 66.67% (from 35.63% to 44.06%)
and the ATF increase ranges from 81.96% to 89.92% (from 19.40% to 25.12%) compared
with the ECMWF-IFS model. Among them, the FLT model yields the best performance
compared with other models.

The neural network models can improve the forecast accuracy at almost all stations.
All neural models can significantly improve the prediction ability of samples from the
ECMWF-IFS model, whose ATFs are less than 60%. The ATFs of each neural network
model are significantly concentrated in a relatively high level (85% to 95%) compared with
the DA model. In addition, all models can significantly improve the forecast performance
of the ECMWF-IFS model in day-by-day, and the forecast performance is better in summer
than in winter. This is probably because the cold air activity is stronger and more frequent
in winter than in summer, and the forecast ability of neural network models is weaker
when the temperature changes abruptly. Compared with the commonly used DA model
(1.54), FLT (1.29) improves the day-by-day averaged RMSE by 16.23%.

Different neural network architectures have different adaptability to similar modeling
tasks. In this study, the learning effect and forecast performance of the LSTM and the TCN
are better than the ED-FCNN. Although two features of month and season that characterize
the temporal information have been added to the data samples for the ED-FCNN, the LSTM
and the TCN with the input of time-series data set are able to mine the time dependencies
in the time-series data, indicating that the construction of the time-series data set is crucial.
The ensemble learning model constructed by applying stacked generalization based on
different types of neural networks can effectively reduce the forecast bias in the Level-0
model and enhance the model’s generalization ability.

However, some issues in this study still remain to be explored in depth.
For example, the bilinear interpolation method was used to interpolate the forecast

data to the stations during the data preprocessing, which inevitably brought some errors.
Additionally, the physical quantities input into the model were not in the form of a grid,
which might destroy the relatively complete structure of the surface pressure field and the
structure of the upper-air synoptic situation field. In future studies, it is suggested that
the grid structure of the forecast products can be retained to construct new models based
on the new forms of input and output data (grid as input and station as output in this
study). In addition, the extraction of spatio-temporal features of meteorological data can
also be achieved by fusing the two-dimensional convolutional networks with the RNNs.
As to feature selection, this study adopts the combination of variance filtering, correlation
analysis and mutual information value, and the effect of other feature selection methods on
model effectiveness can be explored in future research.

In terms of model construction, this study selects the size of 7 days for the time window
when constructing the time-series data set, while there were no more sensitivity tests on
the size of time window. Because the LSTM unit is relatively sensitive to the time-series
length, which usually cannot handle the long-range dependence, the time-series length
may have some influence on the modeling effect. In addition, this study only compares the
effects of different models on modeling effects and explores the ability of different types of
neural network frameworks in dealing with the problem of error correction for a model’s
temperature forecast. The reasons for how features affect neural networks to make them
work have yet to be explored, which is also limited by the uninterpretability of neural
networks themselves. This may be the focus of future research work.
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In general, the prediction performance of the decreasing average method is between
ECMWF-IFS and the neural network, and the improvement of ECMWF-IFS is significant,
but it is far less than that of the single neural network, let alone the ensemble neural
network model. The deep learning, including mentioned in this paper, belongs to the
MOS method. Compared with the MOS method, the deep learning method can extract
more complex nonlinear relationships between features and targets. The results of this
study show that the ensemble learning methods based on stacked generalization can obtain
better prediction results than traditional statistical post-processing methods and single
deep learning methods. However, ensemble learning methods are also diverse, and the
effects of ensemble methods such as Snapshot Ensembling and Boosting need to be further
tested. In addition, this study only verifies the effectiveness of each model to correct the
forecast error of daily maximum temperature of the ECMWF-IFS model at the national
meteorological stations, and the applicability to other forecast leading time and other
meteorological elements (e.g., precipitation) needs to be further verified. Moreover, the
effectiveness of their performance on gridded data can also be measured.
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