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Abstract: Relative dispersion (ε) is a key expression used to parameterize various cloud processes
in global circulation models (GCMs) and meteorological mesoscale models. Aerosols, updraft
velocity (w), and different growth stages of warm clouds are known to affect relative dispersion.
A two-dimensional detailed bin microphysical cloud model is used to investigate the combined
impacts of aerosol number concentration (Na) and updraft velocity on relative dispersion in the
collision–coalescence stage. In addition, the causes potentially controlling the changes in ε with
updraft velocity are explored. There are three main influence regimes: the updraft velocity main
influence regime, the aerosol main influence regime, and the joint influence regime. The cause of the
variations in εwith updraft velocity is found to be different in the three main influence regimes. In
the updraft velocity main influence regime, vigorous collision–coalescence due to stronger w results
in a shift in the cloud droplet number concentration spectrum toward larger droplets, and the average
cloud droplet radius increases, but the spectral width is less variable, so ε decreases. In the joint
influence regime, stronger cloud droplet evaporation due to the stronger dragging effect of large
cloud droplets widens the spectrum, mainly by reducing the cloud droplet number concentration
(Nc) of 4–30 µm, and ε increases with the reduction in w. In the aerosol main influence regime, the
strongest dragging effect reduces Nc at all radii with decreasing w, and the cloud droplet number
concentration spectrum (CDNCS) narrows, which becomes the formation mechanism of the positive
correlation between ε and w. Evaporation mainly causes a negative correlation between ε and Nc, but
weak evaporation causes the correlation to become positive under the background of high aerosol
concentration. At low aerosol concentrations, a strong collision–coalescence effect leads to a negative
correlation between Nc and ε, but at high aerosol concentrations, the correlation is the opposite due
to a weak collision–coalescence effect.

Keywords: relative dispersion; aerosol; updraft velocity; collision–coalescence

1. Introduction

Aerosols affect cloud albedo and lifetime, which are referred to as the first and second
aerosol indirect effects [1]. The cloud number concentration effect [2] and dispersion
effect [3] are included in the first aerosol indirect effect. Atmospheric observations suggest
that the first aerosol–cloud indirect effect can be enhanced or suppressed by the dispersion
effect [4–12].

Relative dispersion, defined as the ratio of the standard deviation (σ) to the mean
radius (rc) of cloud droplets, is an important parameter for studying the dispersion effect [3].
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Some previous studies assumed that ε was a constant and focused mainly on the effects
of the liquid water content (LWC) and Nc. Consequently, the effects of ε were largely
ignored when quantifying the first indirect effects of aerosols [1,13]. However, recent
studies have shown that ε has a major impact on the assessment of the first indirect effects
of aerosols [6,9,14–17]. Changes in Na can affect ε and are referred to as aerosol dispersion
effects or spectral effects [11]. Wang [15] found that ε first increases and then decreases with
an increase in Na, which provides observational evidence for numerical simulations in the
recent literature. Ghan et al. [16] suggested that nearly half of the aerosol indirect radiative
forces were caused by changes in the cloud droplet size distribution. Peng and Lohmann [9]
found that an increase in Na can potentially lead to changes in ε. Liu and Daum [6] analyzed
measurements of marine clouds under clean and polluted conditions and pointed out that
the increase in Nc and ε due to an increase in Na can offset the Twomey effect by 10–80%.
Therefore, it is necessary to provide detailed descriptions of the dispersion effects to obtain
cloud albedo accurately and evaluate the indirect climatic effects more precisely.

Many studies have indicated that additional factors affect ε, including aerosols [18,19],
vertical velocities and entrainment effects [8,17,19–23], and various microphysical pro-
cesses [24,25]. Liu et al. [22] found that ε was negatively correlated with w. It was observed
that ε became larger in weak updraft or downdraft zones (w less than or equal to 2 m/s)
due to strong evaporation effects and became smaller in strong rising air regimes, where
condensation effects are dominant [23]. Lu and Seinfeld [24] stated that Nc decreased but ε
increased during collision–coalescence processes and that collision–coalescence processes
were enhanced when aerosol concentrations were low. Chen et al. [19] explored the effects
of w and Na on ε during warm cloud nucleation and condensation processes and found
that ε showed different characteristics in different configurations of aerosol and updraft
velocity. Chandrakar et al. [20] identified ε independent of Nc for a non-precipitating cloud
in a controlled laboratory environment by creating a turbulent cloud. Kumar et al. [17]
investigated the effect of entrainment and turbulent mixing on cloud microphysics using
direct numerical simulations of turbulent mixing followed by droplet evaporation at the
cloud–clear air interface in a meter-sized volume using an ensemble of up to almost half
a billion individual cloud droplets. The shape of the droplet size distribution varied sig-
nificantly with the spatial scale. Enhancement of ε during the transient mixing process is
strongly dependent on the scale of the mixing. Using the digital in-line holography tech-
nique, Desai et al. [25] obtained variations in Nc and droplet diameter in marine boundary
layer clouds. They considered stochastic condensation to be one of the mechanisms causing
the broadening of the CDNCS and breaking in the bottleneck of droplet growth that are
attributable to diffusion and collision–coalescence. Stochastic condensation can result in
increasing ε and droplet diameters with decreasing Nc.

Based on the current state of research, the effects of the joint dependence of aerosol and
updraft velocity on ε have not been explored in warm clouds using a bin model including
detailed microphysics processes. Therefore, we accurately performed such research by
changing Na based on a bin cloud model considering condensation and evaporation and
collision–coalescence microphysical processes to obtain the characteristics and formation
mechanism of ε and provide background support for the assessment of aerosol indirect
climate effects.

2. Description of the Model and Simulation Setup
2.1. The Model Description

A two-dimensional axis symmetrical nonhydrostatic cloud model developed by Tel
Aviv University in Israel was used in this study [26]. The model used a vorticity equation
and fluid function to solve the radial and vertical wind calculations, and the mass and num-
ber concentrations (e.g., for water droplets, ice, snow, and graupel), potential temperature
levels, and CCN concentrations were successfully predicted. The microphysical processes of
warm clouds include activation, condensation, evaporation, collision–coalescence, breakup,
and sedimentation mechanisms. Each hydrometeor was divided into 34 bins, with the
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second bin having twice the mass of the first, and so on. The aerosol number concentration
size distributions were divided into 57 bins, and the minimum was set to 0.0041 µm.

2.2. Model Initialization

The domain was 10 km in the radial direction and 4 km in the vertical direction. The
grid size was 200 m. The dynamic time step was 5 s, and the total duration was set to
60 min. The outputs are from the 10th minute, and the interval was two minutes. The
sounding profile was obtained from the previous literature (Figure 1) [27]. The temperature
perturbation was set at 2 ◦C.
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Figure 1. Temperature (T) and dew point temperature (Td) as the simulation input.

2.3. Experimental Schemes Design

The average aerosol number concentration size distribution obtained in 2011
(Figure 2) [28] was used in the control experiment. The total number concentration was
2790 cm−3 (exp3). Then, with the shape of the spectrum unchanged, Na in each bin of the
other schemes was obtained by multiplying Na of each bin in exp3 by a certain number of
times (0.1 to 3.5). Eighteen experimental schemes were presented to explore the dependence
of ε or Nc on w and Na, and the distribution of w with height and time derived from the
results of the eighteen simulations. Exp1, exp2, exp3, and exp4 were used to analyze the
characteristics of the cloud droplet number concentration size distribution with changes in
Na. These were designed as follows:
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Exp1: Na in each bin is one-tenth of exp3;
Exp2: Na in each bin is one-half of exp3;
Exp3: control experiment based on observations;
Exp4: Na in each bin is two times that in exp3.
Exp1 and exp2 represent low Na backgrounds, and exp3 and exp4 represent high Na

backgrounds. The simulations for the 18 schemes were analyzed in detail.

3. Results and Discussion
3.1. Selection of the Domain and the Time Division of Growth Stages

To avoid entrainment and mixing influences, the region of strong updraft in the center
of the clouds must be taken as the research domain. In this study, the spatial distributions of
the wind fields correspond to the aforementioned aerosol schemes, as illustrated in Figure 3.
The wind fields are represented by wind vectors (the black arrows). For example, in the
same aerosol scheme, the maximum values of w first increases and then decreases with
time. It is more than 3 m/s at the 18th minute, more than 7 m/s at the 30th minute, and
more than 1 m/s at the 38th minute. The heights corresponding to the maximum values of
w increase with time. For example, the height is below 2 km in the 18th minute but above
2 km in the 30th minute. The domain field is within the radial distance of 0.2 km, where
the strong center of w is located.
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Tas et al. [10] suggested that dlnLWC/dt ≥ 0 at a certain height indicates the condensa-
tion growth stage, whereas dlnLWC/dt < 0 indicates the collision–coalescence stage. Based
on this method, the condensation growth stage and collision–coalescence growth stage
were obtained using the distributions of LWC with height and time in the stronger w regions
(Figure 4).
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3.2. Temporal Changes in Cloud Microphysics

This study also investigated changes in ε with height and time. The results are
presented in Figure 5. When the time is constant, ε first decreases and then increases with
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height. The maxima of ε are at the top and bottom of the cloud, whereas the values in the
central regions are smaller. Moreover, ε obviously decreases with an increase in Na. For
example, the average value of ε in exp1 is 0.69 but is 0.43 in exp4.
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Figure 6 illustrates the variations in Nc with time and height. When w is large, Nc is
more abundant. At the same height, Nc tends to decrease with an increase in time due
to collision–coalescence growth. High aerosol concentrations result in increases in Nc,
decreases in ε, and reductions in rc, which makes the CDNCS narrow.
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3.3. Joint Effects of Updraft Velocity and Aerosol Loadings on Relative Dispersion

Figure 7 shows the dependence of ε on w and Na during the collision–coalescence
stage. When Na is fixed, ε increases slowly and then decreases rapidly with increasing
w. In addition, in the regime where w is smaller than 1.5 m/s, ε mainly decreases with
increasing Na, but it changes slowly or remains unchanged with changing w. Therefore, this
regime is the aerosol main influence regime. Furthermore, where w is greater than 3 m/s, ε
decreases slowly with Na but decreases strongly with increasing w, so this regime is the w
main influence regime. When w is between 1.5 m/s and 3 m/s, ε also decreases with w, but
first increases and then decreases with Na, so this regime is the joint influence regime.
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Figure 7. Joint dependence of aerosol number concentration and updraft velocity on relative dispersion.

In the aerosol main influence regime (w < 1.5 m/s), the characteristics of ε with w
vary with Na. For example, when Na < 2000/cm3, ε increases slowly, but σ and rc increase
obviously, with increasing w (Figure 8a,b). Therefore, under this condition, the rc of cloud
droplets is the main factor affecting the change in ε with increasing w. However, in the case
of 2000/cm3 < Na < 4000/cm3, ε does not change with w because of equivalent contributions
from rc and σ (Figure 8). In addition, when Na > 4000/cm3, ε decreases only slightly with
w, and the main reason is the increasing rc with increasing w (Figure 8a,b).
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In the aerosol main influence regime and the joint influence regime, when w is constant,
ε first increases significantly and then decreases with an increase in aerosol loadings. In the
next section, we further explain these phenomena in combination with the characteristics
of the CDNCS with Na.

3.4. Variation in Relative Dispersion with Updraft Velocity and Aerosol Number Concentration

To investigate the reasons for the characteristics of ε with w and Na in more detail,
CDNCSs under the different aerosol schemes and the influence regimes are examined
(Figures 9–11). In the main influence regime of w (w ≥ 3 m/s), w is in the early stage and at
a lower height (Figure 12), and there is an inverse correlation between ε and w (Figure 7).
In this regime, the larger cloud droplets are formed for vigorous collision–coalescence
because rc increases with the increase in w, which to some extent indicates that w has a
promoting effect on collision–coalescence growth [29,30]. For each aerosol scheme, there is
an obvious broadening in the CDNCS toward larger droplets with increasing w (Figure 9).
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This finding is consistent with conclusions reported in the literature [30]. By comparison,
we find that rc is obviously larger at higher w than at lower w, but there are discernible
differences in σ (Figure 8a,b). The slower increase in rc with Na is the reason for the less
obvious characteristics of the decrease in ε with increasing w when the aerosol loadings are
higher (Figure 9).
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In the joint influence regime (1.5 ≤ w < 3 m/s), as shown in Figure 10, 4–30 µm
droplets increase, but the large cloud droplet concentration changes little with the increase
in w, so the CDNCS becomes narrower (i.e., σ becomes smaller) with increasing w due to
the explosion of smaller droplets. As shown in Figure 12, w values between 1.5 m/s and
3 m/s occur after the 34th minute and above the height of 2.8 km during the later period of
the collision–coalescence stage. At this time, the drag effect on w steadily increases [31],
and some scholars have also found this feature, that is, above the maximum of w, w
decreases [32,33]. Hence, the drag effect is enhanced with the decreasing w [31], and the
evaporation of falling cloud droplets [31] significantly reduces the 4–30 µm cloud droplets
(Figure 10), which widens the CDNCS (i.e., higher σ) and increases rc (Figure 8a,b).

In the aerosol main influence regime, the mechanism for the increase in ε with the
increase in w is similar to that in the joint influence regime, as is also the case for the drag
effect and the evaporation effect [32,33]. However, the drag effect is more intense in the
regime as a result of the smaller w [31] because the regime occurs at the end of the collision–
coalescence stage (Figure 12). At this time, the evaporation effect is also more significant
because the evaporative cooling can reduce w and even change into a downdraft [34]. As
can be seen in Figure 11, under the four aerosol schemes, when the evaporation effect is
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stronger, the CDNCS is narrower (i.e., smaller σ), rc becomes smaller (i.e., less than the
change in σ) by the reduction in Nc of all sizes. A positive relationship exists between ε
and w (Figure 7).

This discussion leads to an interesting question: Why does ε first increase and then
decrease with an increase in Na in the aerosol main influence regime and the joint influence
regime? To answer this question, the main aerosol influence regime can be taken as an
example. As illustrated in Figures 8 and 11, the differences in σ are smaller between exp1
and exp2, but rc significantly decreases with Na (from exp1 to exp2), so rc plays a major
role in the increase in ε with an increase in Na. As shown, from exp3 or exp4, rc and σ
significantly decrease because the collision–coalescence effect is noticeably weakened with
increasing Na [35]. Thus, it can be concluded that the characteristics of σ resulted in a
decreasing εwith the increase in Na (Figure 8a,b).

3.5. Joint Dependence of the Relationship between Nc and ε on Na and w

This study also analyzed the correlations between ε and Nc within the different
main regimes. Under low w conditions (w ≤ 1.5 m/s), negative correlations are observed
between ε and Nc, and the relationship becomes weaker with the increase in Na (Figure 13a).
However, when w > 1.5 m/s, the negative correlations gradually weaken or even become
positive correlations with Na (Figure 13b,c). The positive correlations are found at higher
Na (exp3 or exp4).
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In each scheme, Nc is arranged from small to large, and the corresponding average
values of ε, rc, and σ under higher Nc and lower Nc, respectively, are calculated. The
physical quantity values are determined using the difference between the values at higher
Nc and the values at lower Nc, which are defined as the variations (e.g., ∆Nc, ∆ε, ∆rc, and
∆σ). The variation in each quantity to the quantity under a lower Nc multiplied by 100% is
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defined as the change rate (CRx =∆x/x, x under lower Nc), where x represents the cloud
microphysical quantities (Nc, ε, rc, or σ). This method can determine the main causes for
the correlation between Nc and ε in the different main influence regimes.

As shown in Table 1, CRσ and CRr are both negative. The absolute values of CRσs are
higher than those of CRrs at lower w (w ≤ 1.5 m/s, the main influence regime of aerosol),
and become smaller with the increase in Na. Variations in σ are the main reason for the
negative correlation between ε and Nc (Table 1). The absolute values of CRσ reduction with
Na result in a weakening of the negative relationship between ε and Nc (Figure 11). The
mechanism for this negative correlation can be understood by also considering the analysis
in Figure 11. That is, stronger evaporation [34] (i.e., corresponding to a weaker w) causes
Nc to decrease, σ to become obviously larger (Figure 8b), and ε to increase. The increase
in Na leads to weakening in the evaporation effect and σ effect [36], and thus the negative
correlation.

Table 1. Change rates in cloud microphysical quantities under different Na and w during the collision–
coalescence growth stage (units: %).

w ≤ 1.5 m/s 1.5 ≤ w ≤ 3 m/s w > 3 m/s

CRNc CRε CRr CRσ CRNc CRε CRr CRσ CRNc CRε CRr CRσ

exp1 163 −22 −26 −42 264 −4 −29 −32 303 −35 −33 −57
exp2 247 −18 −23 −37 353 −21 −19 −36 81 −5 −9 −14
exp3 409 −18 −16 −31 247 −2 −16 −17 85 8 −10 −2
exp4 171 −5 −11 −12 203 4 −15 −10 99 4 −5 −1

In the joint regime, there are negative correlations between Nc and ε in exp1, exp2,
and exp3 (Figure 13b). The evaporation of cloud droplets reduces Nc of 4–30 µm, increases
rc and σ (the increase in σ is more significant), and then increases ε (Table 1). Finally,
the negative correlation between Nc and ε appears. When Na is very high (exp4), the
relationship between Nc and ε becomes positive (Figure 13b). The reason for this change is
that the evaporation of cloud droplets reduces Nc and decreases ε (i.e., the increase in rc is
stronger than the increase in σ) (Table 1).

In the main influence regime of w, the collision–coalescence strength is proportional
to w (Figure 9). Collision–coalescence growth is the main mechanism affecting the CD-
NCS. When the collision–coalescence growth is stronger, Nc is lower, the CDNCS widens
toward large diameters, σ increases, and rc becomes larger (Table 1). The effect of collision–
coalescence is stronger in lower Na backgrounds (exp1, exp2) than in the higher Na back-
grounds (exp3, exp4). The broadening of the CDNCS toward larger cloud droplets is more
significant in lower Na, so the degree of σ change is stronger than that of rc. However,
when Na is higher, collision–coalescence growth is relatively weaker, and the increase in
rc is stronger than the increase in σ. In conclusion, in the lower Na background, stronger
collision–coalescence causes a negative correlation between Nc and ε, but the relatively
weak collision–coalescence in the higher aerosol background results in a positive correlation
between the two (Figure 13c).

4. Conclusions

The joint dependence of aerosol number concentration and updraft velocity on relative
dispersion during the collision–coalescence growth process under similar dynamic and
thermal atmospheric environmental conditions was investigated by performing cloud
model simulations with wide ranges of aerosol concentrations virtually covering ambient
aerosol concentrations, thus improving our understanding of the regime dependence in the
aerosol–cloud interaction. The main conclusions are stated below.

In the aerosol main influence regime, ε first increases and then decreases with an
increase in Na, but it changes slowly or even remains unchanged with w. In the updraft
velocity main influence regime, ε decreases slowly with an increase in Na but decreases
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most substantially with increasing w. In the joint influence regime, ε also decreases with
increasing w, and the changes with Na are similar to those in the aerosol main influence
regime.

The cause of the variation in the relative dispersion with updraft velocity is different
in the different main influence regimes. In the updraft velocity main influence regime,
vigorous collision–coalescence causes the cloud droplet number concentration spectrum to
move toward large droplets and an increase in rc, but the spectral width is less variable.
In the joint influence regime, the dragging effect of large cloud droplets leads to a smaller
updraft velocity, and their evaporation widens the spectrum by mainly reducing cloud
droplets of 4–30 µm. Finally, a decrease in ε with an increase in w appeared. In the aerosol
main influence regime, the strong drag effect of cloud droplets causes the cloud droplet
number concentration of all sizes to decrease and the cloud droplet number concentration
spectrum to narrow. This becomes the mechanism for the positive correlation between the
relative dispersion and updraft velocity.

In the middle and late stages of collision–coalescence growth, there are both a positive
correlation and a negative correlation between Nc and ε. Cloud droplet evaporation
produces a negative correlation between the two. When the aerosol number concentration
is very high, weaker evaporation results in a positive correlation between Nc and ε. In
the early stage of collision–coalescence growth, the collision–coalescence effect results in a
negative correlation under the background of a lower aerosol number concentration. At
this time, the collision–coalescence effect is weak at higher aerosol number concentrations,
and Nc and ε present a positive correlation relationship.
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