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Abstract: To increase the accuracy of drought prediction, this study proposes a drought forecasting
method based on the Informer model. Taking the Yellow River Basin as an example, the forecasting
accuracies of the Autoregressive Integrated Moving Average (ARIMA), Long Short-Term Memory
(LSTM), and Informer models on multiple timescales of the Standardized Precipitation Evapotran-
spiration Index (SPEI) were compared and analyzed. The results indicate that, with an increasing
timescale, the forecasting accuracies of the ARIMA, LSTM, and Informer models improved grad-
ually, reaching the best accuracy on the 24-month timescale. However, the predicted values of
ARIMA, as well as those of LSTM, were significantly different from the true SPEI values on the
1-month timescale. The Informer model was more accurate than the ARIMA and LSTM models on
all timescales, indicating that Informer can widely capture the information of the input series over
time and is more effective in long-term prediction problems. Furthermore, Informer can significantly
enhance the precision of SPEI prediction. The predicted values of the Informer model were closer to
the true SPEI values, and the forecasted SPEI trends complied with the actual trends. The Informer
model can model different timescales adaptively and, therefore, better capture relevance on different
timecales. The NSE values of the Informer model for the four meteorological stations on SPEI24 were
0.968, 0.974, 0.972, and 0.986.

Keywords: drought forecasting; SPEI; Informer; Yellow River Basin; multi-timescale

1. Introduction

From a global perspective, anthropogenic climate change, carbon emissions, defor-
estation, and urbanization have increased the frequency of drought [1]. The World Me-
teorological Organization (WMO) classifies drought according to the affected domain as
meteorological, agricultural, hydrological, and socio-economic. In the world, few natu-
ral hazards are as devastating as drought [2]. The frequent and persistent occurrence of
drought can lead to substantial losses in the socio-economic sphere, particularly in agri-
culture, and it can cause various detrimental ecological and environmental impacts, such
as water scarcity, desertification, and frequent occurrences of sand and dust storms [3].
Drought prediction is a crucial field in addressing climate change and effectively managing
water resources. Drought, characterized by prolonged water scarcity, has severe impacts on
global ecosystems, agriculture, economies, and societies. The ability to accurately forecast
drought events and their spatiotemporal patterns is of paramount importance for taking
proactive measures and minimizing adverse impacts [4–7]. Conducting a series of stud-
ies on drought monitoring, assessment, and prediction has become a hot issue of great
global concern and is of great practical significance [8]. Monitoring drought and issuing
timely warnings are essential precursors for disaster mitigation and prevention. Accurately
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predicting the occurrence of drought offers useful resources for risk management and
pre-warning, helping to reduce disaster damage to the greatest extent possible [3].

The use of a drought index is crucial for the quantitative assessment of drought severity
and impacts [9]. Several meteorological drought indexes have been developed over the
last few decades, such as SPI [10], SPEI [11], PDSI [12], and SMDI [13], which are utilized
extensively at distinct spatial scales on global, regional, national, and different basins [14].
Vicente Serrano et al. [15] proposed SPEI, which builds on the algorithms used in both SPI
and PDSI [16] and incorporates multi-scale features to evaluate the effects of temperature
variations on drought conditions [3]. At present, there are two potential evapotranspiration
models commonly used in the SPEI calculation process in China, which are Thornthwaite
and Penman–Monteith. The occurrence and evolution of drought usually form a multi-
timescale process, and the selection of different scales of SPEI is important for drought
research. So, this study selected the timescales of SPEI at 1 month (SPEI1), 3 months (SPEI3),
6 months (SPEI6), 9 months (SPEI9), 12 months (SPEI12), and 24 months (SPEI24).

At present, drought prediction methods can be classified into two types: numerical
prediction and statistical prediction. Numerical prediction [17,18] builds on meteorologi-
cal principles to predict drought conditions by solving atmospheric dynamics equations.
The effectiveness of the numerical prediction method relies on the precision of model
parameters, the stability of driving variables, and the support of a lot of meteorological
statistics [2,3]. Statistical prediction uses mathematical modeling techniques, such as regres-
sion prediction and grey system prediction, to model meteorological data [18]. However,
the statistical prediction method has difficulty in accurately predicting future drought
conditions during meteorological leaps and bounds [18]. With the rapid development of
artificial intelligence [19], some new intelligent drought prediction models have emerged
and become the mainstream methods for drought prediction. Hu et al. [20] adopted the
LSTM model for SPEI spatiotemporal prediction on multiple timescales, and the results
suggested that the forecasting efficiency of LSTM gradually improved as the SPEI timescale
increased. Xu et al. [3] introduced a hybrid model that combines ARIMA and LSTM for
drought prediction based on the deep learning method, and the results suggested that
the hybrid model predicts SPEI with high precision on long timescales and with lower
precision on short timescales. Zhang et al. [21] utilized two integration methods, Bag-
ging and Boosting, which integrate multiple single models into a more powerful model
with predictions on different timescales. Through a comparison of the forecasting results
of various models with actual observations, the study found that the models based on
the integration methods have higher accuracy and stability relative to the single models.
Xu et al. [22] combined Complementary Ensemble Empirical Mode Decomposition (CEEMD)
and ARIMA, and they showed that the CEEMD-ARIMA model was applicable to drought
prediction; the model could also identify multiple modalities of drought variability on
diverse timescales [23], improving the comprehensiveness and accuracy of the prediction.

Currently, most of the machine learning methods widely applied for drought predic-
tion on multiple timescales are mostly based on recurrent neural networks, which can solve
the sequence prediction problem better than other deterministic and traditional models [24].
For these problems, some new methods have been proposed, such as the Transformer [25]
model and the Informer [26] model, which can handle long series data and increase the
precision of prediction.

The Informer model used in this paper is an effective improvement to the Transformer
model. A sequence-to-sequence model proposed by a Google team in 2017, Transformer
adopts a self-attentive mechanism to handle sequential information as a whole and can
avoid the recursion of information while enabling attention to be paid to local information
with strong relevance [27]. Informer is essentially an improvement on Transformer. By
modifying the structure of Transformer and the probabilistic sparsification of the original
self-attentive mechanism, Informer speeds up the computation speed of Transformer and
effectively improves the precision of sequence prediction.
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The accuracy of SPEI prediction on short timescales is still low in existing studies.
Thus, this paper adopts the multi-layer Transformer structure of the Informer model; adopts
a novel position encoding method introduced to capture the long-term and short-term
dependencies in time series; and incorporates an attention mechanism, which effectively im-
proves the accuracy of short-timescale SPEI prediction. In this article, a drought prediction
model is constructed using the Informer algorithm, it is validated with four meteorological
stations in the Yellow River Basin, and it is verified with the LSTM and ARIMA models to
demonstrate the higher precision of the model’s prediction.

2. Materials and Methods
2.1. Study Area

The Yellow River Basin is a major watershed in China and is known as the Mother
River (Figure 1). It is a major agricultural and economic region of China. The Yellow
River Basin is located at 90°33′−122°25′ E and 24°30′−35°45′ N, with a mainly temperate
monsoon climate [8]. The temperature difference throughout the year is extremely large [19].
However, environmental problems, such as severe land sanding and water shortage, also
exist in the basin.

Figure 1. Study area.

2.2. Data Source

The meteorological data in this paper were obtained from the monthly value dataset of
the terrestrial climate information from the China Meteorological Data Network
(https://www.data.cma.cn/ accessed on 6 April 2022), and they include precipitation
(mm), maximum temperature (◦C), minimum temperature (◦C), average temperature (◦C),
wind speed (m·s−1), sunshine hours (h), latitude (◦), longitude (◦), and altitude (m) for the
period of 1960–2019. This study selected 4 meteorological stations in the Yellow River Basin
to apply validation. Table 1 shows the information of the 4 representative stations.

Table 1. Profile about representative meteorological stations.

Station ID Station Name Longitude (◦E) Latitude (◦N) Altitude (m)

53420 Hangjinhouqi 107.12 40.85 1024
53821 Huanxian 107.3 36.57 1255.6
54827 Taian 117.15 36.17 129.8
56043 Maqin 100.23 34.48 3719

2.3. Methods
2.3.1. Standardized Precipitation Evapotranspiration Index

This study uses the Penman–Monteith model to estimate potential evapotranspiration
by calculating multi-scale SPEI values for four meteorological stations located within the

https://www.data.cma.cn/
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study area for the period of 1960 to 2019 [15], which allows for the determination of the
influence of precipitation, temperature, and evapotranspiration on drought in an integrated
manner and has the advantages of multiple timescales and clarity of the mechanism. The
procedures for calculating SPEI_PM are as follows [16]:

(1) The Penman–Monteith model is utilized to generate the reference crop evapotran-
spiration ET0, which is determined using the following equation:

ET0 =
0.408 ∆ (Rn − G) + γ

900
T + 273

U2 (es − ea)

∆ + γ (1 + 0.34 U2)
(1)

where ET0 indicates the evaporation from the reference crop (mm/d); ∆ is the saturated
hydraulic pressure curve slope (kPa/◦C) [6]; γ is the moisture constant (kPa/◦C); Rn means
solar net radiation (MJ·m−2·d−1); G is the thermal flux of the soil (MJ·m−2·d−1) [11]; T is
the mean temperature for the calculation period (◦C); U2 is the mean speed of the wind at a
height of 2 m above the ground; es is the pressure of saturated water (kPa); and ea is the
real water pressure (kPa) [15].

(2) The monthly values of the difference between precipitation and evaporation
is calculated.

Di = Pi − E T0 (2)

where Di indicates the difference between precipitation and evapotranspiration; Pi repre-
sents the precipitation amount per month; ET0 is the monthly actual evaporation volume [15].

(3) The data series of Di is normalized. Di is fit with the cumulative probability
distribution function F(x), and the corresponding SPEI value for each Di [15] is calculated,
making the data fit the probability distribution.

F(x) =

[
1 +

(
α

x− γ

)β
]−1

(3)

where F(x) is the probability distribution function, and the other parameters are as follows:

α =
(a0 − 2 a1)β

τ(1 + 1/β)τ(1− 1/β)
(4)

β =
2 a1 − a0

6 a1 − a0 − 6 a2
(5)

γ = a0 − α(1 + 1/β)τ(1− 1/β) (6)

where τ is the factorial function; a0, a1, and a2 are the weighted moment of the probability
of data series Di [15].

The probability of exceeding a certain value of Di can be written as P = 1− F(x).
Then, SPEI can be written as a function of P as follows:

SPEI =


w− g0 + g1w + g2w2

1 + e2w + d1w2 + e3w3 , with w =
√
−2 ln P, for P ≤ 0.5

−w +
g0 + g1w + g2w2

1 + e2w + e1w2 + e3w3 , with w =
√
−2 ln(1− P), for P > 0.5

(7)

where w =
√
−2 ln(1− P). The other parameters in Equation (7) are e1 = 1.432788,

e2 = 0.189269, e3 = 0.001308, g0 = 2.515517, g1 = 0.802853, and g2 = 0.010328. Referring
to the national standard meteorological drought grade (GB/T20481-2017) stipulated by the
drought grading standard, the drought categories classified according to the SPEI values
are shown in Table 2.
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Table 2. Drought classification based on SPEI.

Level Type SPEI

1 No drought SPEI ≥ −0.5
2 Mild drought −1.0 ≤ SPEI < −0.5
3 Moderate drought −1.5 ≤ SPEI < −1.0
4 Severe drought −2.0 ≤ SPEI < −1.5
5 Extreme drought SPEI ≤ −2.0

2.3.2. Informer

Informer is considered a supervised learning model built on the attention mechanism,
which, as a whole, consists of two components: an encoder and a decoder [26]. Informer
is a Transformer-based time series prediction model that better captures the long-term
dependencies of time series by adding processing steps, such as position encoding, the
block attention mechanism, and adaptive length sequence sampling, where the encoder is
used to obtain a long-term dependence on the robustness of the original input sequence
and the decoder can further implement sequence prediction. The structure of the Informer
model is illustrated in Figure 2. The left encoder primarily receives longer sequence inputs
and incorporates sparse self-attention [27], an alternative to the conventional self-attention
mechanism [28]. The trapezoidal component refers to the extracted operation of self-
attention, which can dramatically reduce the size of the network, while the stacking of
multiple layers further enhances the model’s robustness again [28]. The right decoder takes
the input of the long-term sequence, padding the target elements to zero, by which an
attention-weighted constituent of the feature graph is measured; then, these elements are
output in a rapidly generated format [29].

Figure 2. Informer model structure.

Informer Model Inputs

The input data at time t are as follows:

xt = {xt
1, · · · , xt

Lx
| xt

i ∈ Rdx} (8)

and the output is the corresponding sequence of predictions.

yt = {yt
1, · · · , yt

Ly
| yt

i ∈ Rdy} (9)

where Lx and Ly are the input length and output length, respectively; dx and dy are the
feature dimensions.
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For time series prediction problems, the sequence of the data is particularly important.
To keep the order structure of the series data from being lost after they are input to the
model, Informer encodes the location information PE(pos, 2j) and PE(pos, 2j+1) for each set of
input data, and the specific formulae are implemented as follows:

PE(pos, 2j) = sin
pos

(2L)2j/dmodel
(10)

PE(pos, 2j+1) = cos
pos

(2L)2j/dmodel
(11)

where pos is the position (sequence order). The index j =1, 2, · · · , dmodel/2, indicates the
dimension. dmodel represents the dimensionality of the characteristics represented by the
input, and L is the input sequence.

Self-Attention Mechanism of Informer Model

In probability form, the A(qi, K, V) of the attention coefficient for the i-th Query is
as follows:

A(qi, K, V) = ∑
j

k(qi, k j)

∑l k(qi, kl)
Vj = Ep(kj |qi)

[
Vj
]

(12)

where p(k j | qi) =
(
k(qi, k j)

)
/(∑l k(qi, kl)), and k(qi, k j) selects the asymmetric exponen-

tial kernel exp
(
(qi kT

j )/
√

d
)

[23].
To measure the sparsity of Query, Informer uses Kullback–Leibler divergence. Ignor-

ing the constant, the sparsity measure formula for the i-th Query is equated as follows:

M(Qi, K) = ln
LK

∑
j=1

exp
(

qikT
√

d

)
− 1

LK

LK

∑
j=1

qikT
j√
d

(13)

where the first is the logarithmic sum expansion (LSE) of qi on all the keys, and the second
is their arithmetic average [26].

According to the proposed measurement, the formula of ProbSparse self-attention can
be written as follows:

A(Q, K, V) = Softmax
(

Q̄KT√
d

)
V (14)

where Q̄ is a sparse matrix of the same size as q, which only contains Top− u queries under
the sparsity measurement M(q, M) [26].

Encoder for Informer Model

The aim of the encoder is to capture the long-range dependency of the robustness
of the long sequence of inputs [26]. A sketch of the encoder is shown in Figure 3. The
procedure of the distillation operation from layer j-th to layer (j + 1)-th is as follows:

Xt
j+1 = MaxPool

(
ELU

(
Convld

([
Xt

j

]
AB

)))
(15)

where [Xt
j ]AB represents the attention module, which includes the multi-head ProbSparse

self-attention and basic operations. Concld represents one-dimensional convolution opera-
tions on a time series, which is performed by using ELU as the activity functions [30].

The self-attention distillation mechanism proposed by Informer enables each decoder
layer to reduce the input sequence length by half, which dramatically saves the memory
spending and computational time of the encoder [26].
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Figure 3. The single stack in Informer’s encoder.

Decoder for Informer Model

The standard decoder structure is used in part of the decoder, proposed by VASWANI
in 2017 [27], which is composed of two identical multi-head attention layers. The decoder
Xt

de is supplied with the following vectors:

Xt
de = Concat(Xt

token , Xt
0) ∈ R(Ltoken+Ly)×dmodel (16)

where Xt
token ∈ RLtoken×dmodel is the start token; Xt

0 ∈ RLy×dmodel is a placeholder for the target
sequence [30].

ProbSparse self-attention adopts blocked multi-headed attention, fully connected layer
output dimensions to determine uni/multivariate predictions, and a generative structure
to shorten the prediction decoding time.

2.3.3. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a recurrent neural network (RNN) architecture for
handling sequential data; it was developed as an improvement over traditional RNN [31],
and it effectively resolves the problem of prolonged dependence by using three gating
mechanisms and a memory unit. By contrast with the ordinary RNN, LSTM incorporates a
memory cell to determine whether the information is available [32]. The cell state is the key
of LSTM. To protect and control the state of a memory cell, three control gates are placed
in a memory cell, called the input gate, forget gate, and output gate [33]. Each control
gate consists of a neural network layer containing a sigmoid function and a dot product
operation [34]. The LSTM memory cell structure is illustrated in Figure 4.

Figure 4. The structure of the LSTM memory cell.
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2.3.4. Autoregressive Integrated Moving Average

ARIMA is the combination of AR, MA, and Difference (Diff), which converts unsteady
time series into a steady-state series by performing one or more differences and then fitting
it with ARIMA [35]. Its composition is as follows:

ARIMA(p, d, q) = AR(p) + Diff(d) + MA(q) (17)

where AR(p) represents the autoregressive model; Diff(d) indicates the difference model;
MA(q) indicates the moving-average model; p, d, and q are the parameters corresponding
to the three models. The ARIMA model prediction equation for C(t) is as follows:

C(t) = ϕ0 +
p

∑
i=1

ϕi Ct−i + εt +
q

∑
i=1

γi εt−i (18)

where C(t) represents the reconstructed component time series formed after the SE al-
gorithm; εt represents the current period random error disturbance; ϕi and γi represent
model parameters; p denotes the quantity of autoregressive terms; d indicates the variance
number in a steady time series; q denotes the amount of terms in the moving average [36].

2.3.5. Evaluation Metrics

To estimate the efficiency of the contrasting model more reasonably, NSE, RMSE, and
MAE were used in this paper to perform an evaluation. The formula used to calculate
above metrics is shown below.

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ỹi)2 (19)

NSE = 1− ∑N
i=1 (yi − ỹi)

2

∑N
i=1 (yi − ȳ)2

(20)

MAE =
1
N

N

∑
i=1
|yi − ỹi| (21)

where yi indicates the true value; ỹ indicates the forecasted value; ȳ represents the average
value of yi; and N indicates an amount of the total data for yi.

3. Results
3.1. SPEI Values on Different Timescales

The 1−, 3−, 6−, 12−, and 24−month timescale SPEI values of Hangjinhouqi, Huanxian,
Taian, and Maqin were calculated using monthly meteorological data. The results are shown
in Figure 5. Combined with the Mann−Kendall trend test (Table 3), it can be observed that
the SPEI1, SPEI3, SPEI6, SPEI12, and SPEI24 of the four stations show a decreasing trend. In
particular, the following show a significant decreasing trend: SPEI9, SPEI12, and SPEI24 of
the Hangjinhouqi site; SPEI3, SPEI6, SPEI12, and SPEI24 of the Huanxian site; SPEI9, SPEI12,
and SPEI24 of the Taian site; and SPEI24 of the Maqin site. The four stations show a high
frequency of extreme droughts. In the past decade, the temperature of the Yellow River Basin
has been increasing, and the runoff of the main and tributary streams has been decreasing
since 1960 [8], which has caused the SPEI values to decrease.
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Figure 5. Observed SPEI values on different timescales of the example stations.
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Table 3. Mann–Kendall trend test for SPEI.

Example Stations SPEI Series p Value Trend

Hangjinhouqi SPEI1 0.00055 decreasing
SPEI3 1.31 × 10−6 decreasing
SPEI6 5.973 × 10−14 decreasing
SPEI9 0 decreasing
SPEI12 0 decreasing
SPEI24 0 decreasing

Huanxian SPEI1 1.349 × 10−7 decreasing
SPEI3 0 decreasing
SPEI6 0 decreasing
SPEI9 0 decreasing
SPEI12 0 decreasing
SPEI24 0 decreasing

Taian SPEI1 5.975 × 10−5 decreasing
SPEI3 1.372 × 10−10 decreasing
SPEI6 2.22 × 10−16 decreasing
SPEI9 0 decreasing
SPEI12 0 decreasing
SPEI24 0 decreasing

Maqin SPEI1 3.162 × 10−5 decreasing
SPEI3 1.086 × 10−9 decreasing
SPEI6 6.443 × 10−13 decreasing
SPEI9 2.44 × 10−15 decreasing

SPEI12 2.22 × 10−16 decreasing
SPEI24 0 decreasing

3.2. Analysis of Model Prediction Results

Using multi-scale SPEI data from 1960–2007 as training data, the SPEI values of the
four meteorological battle sites on multiple timescales were predicted using the LSTM,
ARIMA, and Informer models for 2008–2020. A comparison of the prediction performance
of the three models and the prediction evaluation indexes are shown in Figures 6–9 and
Table 4. It is suggested that the Informer model accurately fit the predicted values to the
true values compared to the ARIMA and LSTM models, and it effectively captured the
variations in the SPEI values.

The predicted values of ARIMA, as well as those of LSTM, for the four meteorological
stations were significantly different from the true SPEI values on the 1-month timescale.
In particular, LSTM lost prediction ability in predicting SPEI1 for Hangjinhouqi. The
differences between the predicted and actual values of ARIMA and LSTM decreased when
predicting SPEI3, SPEI6, SPEI9, SPEI12, and SPEI24. In this study, the data of SPEI1 changed
relatively fast and fluctuated more, which required more complex modeling methods to
predict, and, therefore, the prediction was the worst on this timescale.

The Informer model predictions were more similar to the true SPEI values, and the
predicted SPEI trends were consistent with the actual trends. In Figures 6–9, the Informer
model shows better prediction results on SPEI3, SPEI6, SPEI9, SPEI12, and SPEI24. The
Informer model is able to handle long sequences, and it performs better when dealing with
long-term dependencies. It can model different timescales adaptively and, therefore, better
capture relevance on different timescales. As a result, Informer has good performance in
predicting SPEI for each meteorological station.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 6. Prediction results of multi-timescale SPEI values of the ARIMA, LSTM, and Informer
models at Hangjinhouqi: (a) 1−month timescale (b) 3−month timescale; (c) 6−month timescale;
(d) 9−month timescale; (e) 12−month timescale; (f) 24−month timescale.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Prediction results of multi-timescale SPEI values of the ARIMA, LSTM, and Informer models
at Huanxian: (a) 1−month timescale (b) 3−month timescale; (c) 6−month timescale; (d) 9−month
timescale; (e) 12−month timescale; (f) 24−month timescale.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. Prediction results of multi-timescale SPEI values of the ARIMA, LSTM, and Informer
models at Taian: (a) 1−month timescale (b) 3−month timescale; (c) 6−month timescale; (d) 9−month
timescale; (e) 12−month timescale; (f) 24−month timescale.



Atmosphere 2023, 14, 951 14 of 20

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9. Prediction results of multi-timescale SPEI values of the ARIMA, LSTM, and Informer models
at Maqin: (a) 1−month timescale (b) 3−month timescale; (c) 6−month timescale; (d) 9−month
timescale; (e) 12−month timescale; (f) 24−month timescale.
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Table 4. The statistical criteria of the ARIMA, LSTM, and Informer models.

Example Stations SPEI Series Model MAE RMSE NSE

Hangjinhouqi SPEI1 ARIMA 0.800 1.027 0.022
LSTM 0.799 1.021 0.032

Informer 0.531 0.688 0.561
SPEI3 ARIMA 0.633 0.827 0.371

LSTM 0.635 0.824 0.375
Informer 0.388 0.521 0.434

SPEI6 ARIMA 0.455 0.655 0.573
LSTM 0.452 0.642 0.590

Informer 0.277 0.416 0.828
SPEI9 ARIMA 0.279 0.397 0.821

LSTM 0.291 0.402 0.817
Informer 0.271 0.382 0.835

SPEI12 ARIMA 0.166 0.279 0.910
LSTM 0.187 0.296 0.899

Informer 0.182 0.287 0.905
SPEI24 ARIMA 0.124 0.201 0.940

LSTM 0.145 0.214 0.932
Informer 0.123 0.190 0.968

Huanxian SPEI1 ARIMA 0.804 1.006 −0.049
LSTM 0.804 1.003 −0.042

Informer 0.666 0.842 0.264
SPEI3 ARIMA 0.628 0.826 0.250

LSTM 0.617 0.812 0.276
Informer 0.271 0.402 0.822

SPEI6 ARIMA 0.423 0.594 0.580
LSTM 0.415 0.581 0.598

Informer 0.211 0.271 0.912
SPEI9 ARIMA 0.243 0.354 0.842

LSTM 0.254 0.361 0.836
Informer 0.191 0.286 0.896

SPEI12 ARIMA 0.166 0.255 0.915
LSTM 0.176 0.272 0.904

Informer 0.096 0.133 0.977
SPEI24 ARIMA 0.109 0.177 0.945

LSTM 0.127 0.193 0.936
Informer 0.086 0.123 0.974

Taian SPEI1 ARIMA 0.844 1.007 −0.013
LSTM 0.835 0.994 0.014

Informer 0.507 0.672 0.548
SPEI3 ARIMA 0.0.619 0.791 0.289

LSTM 0.620 0.792 0.288
Informer 0.508 0.699 0.445

SPEI6 ARIMA 0.401 0.552 0.575
LSTM 0.413 0.554 0.573

Informer 0.391 0.542 0.591
SPEI9 ARIMA 0.270 0.387 0.789

LSTM 0.277 0.397 0.777
Informer 0.201 0.283 0.887

SPEI12 ARIMA 0.193 0.295 0.876
LSTM 0.202 0.316 0.858

Informer 0.133 0.192 0.948
SPEI24 ARIMA 0.137 0.202 0.909

LSTM 0.148 0.216 0.897
Informer 0.131 0.192 0.972
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Table 4. Cont.

Example Stations SPEI Series Model MAE RMSE NSE

Maqin SPEI1 ARIMA 0.846 1.052 −0.047
LSTM 0.857 1.059 −0.061

Informer 0.543 0.738 0.484
SPEI3 ARIMA 0.592 0.753 0.418

LSTM 0.635 0.788 0.363
Informer 0.245 0.335 0.884

SPEI6 ARIMA 0.389 0.555 0.655
LSTM 0.382 0.550 0.661

Informer 0.162 0.329 0.879
SPEI9 ARIMA 0.231 0.334 0.858

LSTM 0.235 0.338 0.855
Informer 0.124 0.193 0.952

SPEI12 ARIMA 0.162 0.247 0.920
LSTM 0.172 0.261 0.911

Informer 0.101 0.145 0.972
SPEI24 ARIMA 0.102 0.159 0.959

LSTM 0.117 0.169 0.954
Informer 0.064 0.092 0.986

As the timescale becomes smaller, the prediction abilities of the Informer, ARIMA,
and LSTM models decrease, but Informer still performs better than ARIMA and LSTM,
indicating that Informer can widely capture the information of the input series over time
and is more effective in long-term prediction problems. In this paper, to assess the prediction
performance of the ARIMA, LSTM, and Informer models, three evaluation metrics, MAE,
RMSE, and NSE, are utilized (Table 4). The MAE values of ARIMA and LSTM are both
above 0.7 at SPEI1 and below 0.2 at SPEI24. The MAE and RMSE values tend to decrease
with an increasing timescale, while the values of NSE show the reverse trend. These
trends suggest that the prediction accuracy of the ARIMA, LSTM, and Informer models
improves with increasing timescales. The prediction performance of the Informer model is
superior to that of the ARIMA and LSTM models on different timescales, indicating that the
Informer model can significantly enhance the prediction accuracy of SPEI. The NSE values
of the Informer model for the four meteorological stations on SPEI24 are 0.968, 0.974, 0.972,
and 0.986. On all timescales, the Informer model is superior to the ARIMA and LSTM
models in evaluating metric data for prediction results.

Informer solves the problem of the dependencies between the output and input being
not well captured due to long distances when predicting long time series. Moreover,
the Informer model optimizes the temporal and spatial sophistication of the attention
mechanism in the Transformer model so that Informer can obtain higher prediction accuracy.
From the analysis, it is obvious that the LSTM and ARIMA models have lower prediction
accuracies due to their own structural limitations.

4. Discussion

Drought forecasting is crucial for mitigating risks and preparing measures to alleviate
its impact [37]. In this paper, we used the newest time series prediction model, namely,
Informer, to predict the drought in the Yellow River Basin, and we compared the prediction
results with those of the ARIMA and LSTM models, which showed that the Informer model
exhibits superior prediction accuracy compared to both the ARIMA and LSTM models
on multiple timescales. Because the data of SPEI1 changed relatively fast and fluctuated
more, the predicted values of ARIMA, as well as those of LSTM, for the four meteorological
stations were significantly different from the true SPEI values on the 1-month timescale,
which is consistent with the conclusion reached by Xu et al. [22]. In particular, LSTM lost
prediction ability in predicting SPEI1 for Hangjinhouqi. As the timescale increased, the data
series tended to be smooth, and the prediction accuracy of ARIMA and LSTM gradually
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improved. Xu et al. [2] found that the prediction accuracy was related to the timescale based
on the ARIMA-SVR model for multi-scale SPI prediction, and the prediction precision
gradually improved with an increasing timescale. Hinge et al. [37] found that the hybrid
WPT-MLR model has the potential to be employed for drought warnings in the study
region, but the prediction accuracy decreased as the timescale increased. The predicted
values of the Informer model were closer to the measured SPEI values, and the predicted
SPEI trends aligned with the actual trends. The Informer model can model different
timescales adaptively and, therefore, better capture relevance on different timescales. The
NSE values of the Informer model for the four meteorological stations on SPEI24 were
0.968, 0.974, 0.972, and 0.986.

The Informer model provides various advantages for capturing long-term dependen-
cies in time series data using a self-attentive mechanism [38], which enables the prediction
of droughts over a longer term. In addition, the Informer model adopts the adaptive length
idea, which can automatically adapt to different timescales and data features with high
flexibility and adaptability [39]. The Informer model is also able to process multiple time
series in parallel using the multi-headed self-attentive mechanism, which improves the
training and prediction efficiency of the model, and there is no need to manually perform
feature engineering, which can automatically extract important features in time series with
better generalizability and interpretability. Applying Informer to drought prediction in
the Yellow River Basin can improve the accuracy and reliability of drought prediction [40],
which, in turn, can improve the efficiency and quality of water resources management and
agricultural production [24].

Although the Informer model in this study outperforms that in existing studies in
the accuracy of small-scale SPEI prediction, the fit of small-scale prediction results is still
not as good as that of a large timescale. In the future, the predictive capability of Informer
for different timescales can be improved by combining it with the multi-scale method. In
addition, multi-source data and deep learning techniques can be brought in to build deep
drought prediction models to better predict the evolution and trends of drought [41]. These
measures are expected to improve the timescale of Informer’s performance in drought
prediction and further refine its role in practical applications.

There are some aspects of the Informer model that can still be improved to further
enhance prediction precision. Future improvements of the Informer model for drought pre-
diction in the Yellow River Basin include adding multi-scale mechanisms to better capture
multiple patterns and periodicity in the time series; integrating domain knowledge, such
as meteorological and hydrological data, to improve prediction accuracy and interpretabil-
ity; combining other traditional time series models, such as LSTM and GRU, to build a
powerful integrated model; and integrating multiple target prediction problems to deal
with multiple indicators and factors in drought prediction to improve prediction accuracy
and comprehensiveness. The next steps in research on using the Informer model to predict
small-scale SPEI drought could include exploring the use of additional data sources to
improve prediction accuracy, such as combining meteorological or remote sensing data.
In addition, further investigation into the model’s limitations on larger timescales could
be carried out to improve its performance. Other areas of future research could include
expanding the model’s application to other meteorological forecasting domains, studying
prediction uncertainty, and improving the model’s overall reliability and accuracy.

5. Conclusions

In this paper, multi-scale SPEI was calculated using meteorological station monitoring
data in the Yellow River Basin; the SPEI values were predicted using the Informer, ARIMA,
and LSTM models; and the following conclusions were obtained from a comparative
analysis of the prediction results:

(1) Because the data of SPEI1 changed relatively fast and fluctuated, the predicted values
of ARIMA, as well as those of LSTM, for the four meteorological stations were significantly
different from the true SPEI values on the 1-month timescale. The differences between the
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predicted and actual values of ARIMA and LSTM decreased when predicting SPEI3, SPEI6,
SPEI9, SPEI12, and SPEI24. The Informer model showed better prediction results on SPEI3,
SPEI6, SPEI9, SPEI12, and SPEI24. This indicates that the Informer model is able to handle
long sequences and performs better when dealing with long-term dependencies.

(2) The predicted values of the Informer model were closer to the measured SPEI
values, and the predicted SPEI trends were consistent with the actual trends. The Informer
model can model different timescales adaptively and, therefore, better capture relevance
on different timescales, and it can capture sudden changes in SPEI values in a timely and
effective manner.

(3) As the timescale became smaller, the prediction ability of the Informer, ARIMA,
and LSTM models decreased, but Informer still performed better than ARIMA and LSTM,
indicating that Informer can widely capture the information of the input series over time,
that it is more effective in long-term prediction problems, and that it can be efficient in
improving the prediction precision of SPEI. As a result, Informer has good performance in
predicting SPEI for each meteorological station.

Drought prediction not only enables the assessment of drought risks but also guides
water resource management, agricultural planning, and ecosystem management and facili-
tates climate change research. The accuracy and timeliness of drought forecasts empower
decision-makers to take appropriate measures, mitigating the adverse impacts of drought
on society, economy, and the environment and ensuring sustainable development and
resource utilization goals.
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