
Citation: Lu, J.; Huang, M.; Wu, W.;

Wei, Y.; Liu, C. Application and

Improvement of the Particle Swarm

Optimization Algorithm in

Source-Term Estimations for

Hazardous Release. Atmosphere 2023,

14, 1168. https://doi.org/10.3390/

atmos14071168

Academic Editor: Martin Piringer

Received: 2 May 2023

Revised: 15 July 2023

Accepted: 17 July 2023

Published: 19 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Application and Improvement of the Particle Swarm
Optimization Algorithm in Source-Term Estimations for
Hazardous Release
Jinshu Lu †, Mengqing Huang †, Wenfeng Wu *, Yonghui Wei and Chong Liu

Department of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan 316022, China;
ljs_ljs@zjou.edu.cn (J.L.); huangmengqing@zjou.edu.cn (M.H.); z20086100067@zjou.edu.cn (Y.W.);
liuchong@zjou.edu.cn (C.L.)
* Correspondence: wuwf@zjou.edu.cn
† These authors contributed equally to this work.

Abstract: Hazardous gas release can pose severe hazards to the ecological environment and public
safety. The source-term estimation of hazardous gas leakage serves a crucial role in emergency
response and safety management practices. Nevertheless, the precision of a forward diffusion
model and atmospheric diffusion conditions have a significant impact on the performance of the
method for estimating source terms. This work proposes the particle swarm optimization (PSO)
algorithm coupled with the Gaussian dispersion model for estimating leakage source parameters. The
method is validated using experimental cases of the prairie grass field dispersion experiment with
various atmospheric stability classes. The results prove the effectiveness of this method. The effects
of atmospheric diffusion conditions on estimation outcomes are also investigated. The estimated
effect in extreme atmospheric diffusion conditions is not as good as in other diffusion conditions.
Accordingly, the Gaussian dispersion model is improved by adding linear and polynomial correction
coefficients to it for its inapplicability under extreme diffusion conditions. Finally, the PSO method
coupled with improved models is adapted for the source-term parameter estimation. The findings
demonstrate that the estimation performance of the PSO method coupled with improved models is
significantly improved. It was also found that estimated performances of source parameters of two
correction models were significantly distinct under various atmospheric stability classes. There is no
single optimal model; however, the model can be selected according to practical diffusion conditions
to enhance the estimated precision of source-term parameters.

Keywords: source-term parameter estimation; forward dispersion model; particle swarm optimization
algorithm; gas release; atmospheric diffusion conditions

1. Introduction

The release and diffusion of hazardous gas during production, transportation, and
storage can pose a serious threat to public safety and the natural environment. The rapid
and accurate identification of leakage source information is crucial for the rational dis-
posal of hazardous gas leakage and diffusion accidents. Source information is an essential
prerequisite for determining safety separation and emergency evacuation areas and fore-
casting the development of hazardous substances, which contributes to formulate scientific
emergency-response strategies. However, source information is often not readily available,
and when it is not directly available, source-term estimation becomes the primary means
of obtaining source information. Source-term estimation utilizes observed concentrations
of gas dispersion and meteorological information as well as other a priori information to
determine source parameters, such as the strength and location of the source [1]. Conse-
quently, conducting research on source-term estimation is crucial for public safety, economic
development, and the natural environment.
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A significant area of studies at present is enhancing the accuracy of source-term estima-
tions [2]. The precision of the forward dispersion model and the method employed to detect
source information are critical elements influencing the accuracy of source-term estimations [3].
Most previous studies on source-term estimations have concentrated on the application of
various methods [2,4–7]. To date, the methods for source-term estimation can be broadly
divided into indirect and direct methods. Direct methods, which typically require an extensive
placement of sensors in a vast region of the monitoring area and have the disadvantage of
higher costs, use the anomaly information identified by the monitoring network to determine
the source information. Hence, indirect methods based on probabilistic statistical theory
approaches [8–10] and optimization methods [11–15] are commonly used. The posterior
probability distribution of the estimated results can be obtained using prior information in the
methods based on the probability statistical theory, and then the uncertainty of the estimation
results can be obtained by the random sampling of the posterior probability distribution [1,7].
However, for methods based on the probabilistic statistical theory, the sampling procedure
is extremely time-consuming; thus, the computational efficiency of the algorithm needs to
be enhanced to handle the identification of source-term information during emergencies.
Conversely, optimization methods are deemed to be more appropriate to an actual accident
application with regard to computational speed [6], which is utilized to identify estimation
outcomes of source terms that cause the error (defined by means of an objective function)
between simulated concentration values of the forward diffusion model and observed concen-
tration values minimal, thus transforming source-term estimations into optimization problems
of fitting concentration fields [12]. Various optimization methods, such as the pattern search
(PS) [11] algorithm and simplex algorithm (NM) [6,11], have been employed in succession
to estimate the source terms. However, when the initial values are not chosen properly,
such algorithms tend to collapse into local minima, which cannot ensure convergence to the
global optimal solution. Heuristic optimization algorithms, including genetic algorithms
(GAs) [2,3,6,11,16], simulated annealing algorithms (SAs) [11,14], evolutionary strategies
(ESs) [15], particle swarm optimization (PSO) [5,6,17,18], and chicken swarm optimization
(CSO) [5], are widely utilized since they have no dependency on initial value selection and can
obtain the global optimal solution. To evaluate effective methods for source-term estimations,
Ma et al. [11] compared the performances of GA, PS, SA, and NM algorithms and their
coupled algorithms. The test results showed that the performance of different algorithms for
estimating different source parameters varied more significantly, with the difference in the
relative error being around 12% for source strength and around 25.1% for source location.
Mao et al. [5] investigated the performance of various bionic optimization methods (BIOs) for
source parameter estimations and found that the bacterial foraging optimization approach
(BFO) had the best estimation accuracy for the source parameters. These studies demonstrate
that the selection of algorithms affects the performance in estimating the source parameters.
The PSO algorithm, which has the advantages of rapid convergence, a simple structure, and
few parameters to adjust, is applied to solve high-dimensional nonlinear problems and has
been commonly employed for detecting source parameters [5,18,19]. Qiu et al. [20] estimated
the source parameters utilizing the PSO algorithm based on expectation maximization (EM).
Both Chen [6] and Ma [18] found that the PSO algorithm performed better for source-term
estimations than other algorithms (e.g., GA, NM, ant colony optimization (ACO), and firefly
algorithm (FA)) and was a useful tool for estimating source parameters. Consequently, this
paper utilizes the PSO algorithm to estimate the source parameters. Additionally, the precision
of the forward diffusion model in the source estimation process has significant effects on the
estimation accuracy of the source term [1,21].

For satisfying the computational efficiency requirements of the source-term estimation
method, researchers typically select the computationally efficient Gaussian model [6,9,12]
as the forward dispersion model, which results in the low accuracy of the source-term
estimation due to Gaussian model defects. For this problem, the artificial neural network
(ANN) was introduced into the field for gas dispersion modeling [11,20]. However, the
prediction outcomes of artificial neural networks beyond the training range are insuffi-
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ciently accurate. Due to the limitation of the precision of artificial neural network, it is hard
to acquire accurate source-term estimation outcomes. Mao et al. [22] discovered that the
dispersion parameters in the Gaussian dispersion model were crucial to the accuracy of
the source-term estimation because they affected the precision of the dispersion model.
Moreover, Mao et al. [3] optimized the Gaussian dispersion model’s dispersion parameters
to enhance the accuracy of the source-term estimation. This presents a novel idea for
enhancing the accuracy of source-term estimations.

Initially, this paper combines the PSO algorithm with Gaussian model for estimating
leakage source parameters, given the effect of atmospheric dispersion conditions on the
performance of the method for source-term estimations [23]. The proposed approach is
tested utilizing experimental cases from the prairie grass field dispersion experiment [24],
which includes diverse diffusion conditions, and the effect of atmospheric diffusion condi-
tions on estimation outcomes is investigated. Nevertheless, due to the inapplicability of
Gaussian dispersion models under extreme atmospheric stability, more accurate disper-
sion models have not been established under extreme atmospheric conditions, resulting
in some discrepancy in the source-term estimates from the actual values. Accordingly,
this paper presents improved models, namely, the Gaussian model with linear correction
coefficients and Gaussian model with polynomial correction coefficients under various
diffusion conditions, to enhance the precision of estimated outcomes of the PSO algorithm.

2. Methodology
2.1. Forward Dispersion Model Selection

Forward dispersion models are the primary factor affecting the precision of estimated
outcomes of source parameters, and many dispersion models have been applied to source-
term estimations, including the Gaussian model [3,6,11], computational fluid dynamics
(CDF) model [25], and Lagrangian stochastic (LS) model [26]. Among these dispersion
models, the CDF and LS models are inappropriate to rapidly estimate the leakage of source
information due to their excessive computational cost. In contrast, the Gaussian model is
frequently applied to source-term estimations due to rapid computation and highly accurate
predictions. This paper selected the Gaussian plume model to simulate concentration
distributions, with the wind direction along the x-axis and crosswind direction along the
y-axis. The concentration (g/m3) simulated by the Gaussian plume model at the (x, y, z)
location is shown in Equation (1):

C(x, y, z) =
Q0

2πuσyσz
exp
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× (y− y0)
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y

)
×
{

exp

(
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2
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z

)
+ exp

(
− 1

2
× (z + z0)

2
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z

)}
(1)

u (m/s) is the mean wind velocity; Q0 (g/s) is the source release strength; x0 (m) is the
horizontal coordinate of the leakage source; y0 (m) is the vertical coordinate of the leak
source; and z0 (m) is the vertical distance of the leakage source from the ground. The lateral
dispersion parameter σy (m) and the vertical dispersion parameter σz (m) are associated
with the atmospheric diffusion conditions and the distance between the horizontal scale of
the sampling point location and the horizontal scale of the leakage source [24]. Atmospheric
stability was classified using the Pasquill classification method [27].

2.2. Object Function

The idea of source-term estimation is to utilize optimization methods to locate the
source information that minimizes the error (defined by the means of an objective function)
between simulated concentration values of the forward diffusion model and observed
concentration values by sensors. Source-term estimations are transformed into optimization
problems of fitting concentration. That is, the objective function is optimally solved. The
objective function of the optimization problem is formulated, as illustrated in Equation (2),
for estimating the source parameters:

Objective function : f (Q0, x0, y0, z0) = min
n

∑
i=1

[Cmon,i − Ccal,i(Q, x, y, z)]
2

(2)
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where Cmon,i (g/m3) and Ccal,i (g/m3) are, respectively, the actual observed and simulated
concentration at the ith monitoring point; n denotes the number of sensors; Q0 (g/s) is the
source release strength; x0 (m) is the horizontal coordinate of the leakage source; y0 (m) is
the vertical coordinate of the leak source; and z0 (m) is the vertical distance of the leakage
source from the ground.

2.3. PSO Algorithm

The PSO algorithm [17] was developed to be inspired by the predatory behavior of
birds. Each particle searches at a certain speed through the search space and aggregates
towards the prior individual’s optimal position and population’s optimal position to search
for optimal solutions in complex spaces.

The computational process can be described as follows: firstly, the particle swarm is
randomly initialized, namely, the positions and velocities of the particles are randomly
initialized, and the fitness value of each particle is calculated; then, the optimization
was sought by iteration. In each iteration, each particle updates its position and velocity
by tracking the individual and the population optimal solutions until the termination
condition is reached. The velocities and positions of the particles are updated according to
Equations (3) and (4):

viD(n + 1) = w.viD(n) + c1r1(piD − xiD(n)) + c2r2
(

pgD − xiD(n)
)

(3)

xiD(n + 1) = xiD(n) + viD(n + 1) (4)

where w is the inertia weight, c1 and c2 are learning factors, and r1 and r2 are random numbers.
xiD and viD are the position and velocity of particle i in D-dimensional space, respectively.
piD and pgD are the prior individual optimal position and population optimal position,
respectively. The computational procedure of the PSO algorithm is shown in Figure 1.
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2.4. Definition of Score Index

Due to the numerous parameters to be estimated, the comprehensive score index is
constructed to assess the estimated precision of the source parameters. The comprehensive
score index consists of a series of sub-score indexes, each of which represents the estimated
precision of different parameters. Referring to the study by [6], the sub-score indexes were
designed as follows:

SQ = |(Qr −Qe)/ Qr| (5)

Sx =
|xe − xr |

max{|xmax− xr|, |xr− xmin|}
(6)

Sy =
|ye − yr |

max{|ymax− yr|, |yr− ymin|}
(7)

Sz =
|ze − zr |

max{|zmax− zr|, |zr− zmin|}
(8)

where the subscripts “r” and “e”, respectively, represent the real values and the estimates.
The subscripts “min” and “max” denote the lower and upper bounds of the searching
scope of every parameter in the algorithm. SQ represents the estimated precision of the
leakage source strength. Sx, Sy, Sz describe the estimated precision of the leakage source
location by estimation error and searching scope. If xe, ye, ze reach the boundary of the
searching scope, then the correspondent score is set to 1. When there is a score over 1, set it
to 1. Thus, the range for each score index is [0,1]. Based on the abovementioned sub-score
indexes, the comprehensive score index for the estimated effect of the source term can be
obtained as follows:

S =
(
w1SQ + w2Sx + w3Sy + w4Sz

)
/4 (9)

where, wi, i = 1, 2, 3, 4 represent the weight of each sub-score index, which can be flexibly
adjusted to highlight certain parameters according to the experimental results and analytical
requirements. This paper assigned equal weight to each sub-score index.

3. Results and Discussion

The effectiveness of the PSO algorithm for source-term estimations is validated utiliz-
ing the prairie grass experiment [24], which contains 68 consecutive releases of SO2 gas.
In each experiment, the SO2 gas was released from the source at 0.46 or 1.5 m (the last
four tests) for approximately 10 min. As shown in Figure 2, the mean concentrations were
observed by sensors disposed on five semicircular arcs of 50, 100, 200, 400, and 800 m from
the leakage source. The experiment was implemented under various atmospheric diffusion
conditions. Each test was classified using Pasquill atmospheric stability classes [27], which
can be classified as stability classes A to F. This paper selected six trials under various
diffusion conditions to prove the estimation performance of the PSO algorithm, and the
detailed experimental information is presented in Table 1. Figure 3a–f shows the com-
parison between observed and simulated concentrations by the Gaussian model utilizing
experimental parameters for six selected trials under atmospheric stability classes A to F.
Sensors were disposed of on five semicircular concentric arcs, which were represented with
alternating gray and white backgrounds, and the sensors were disposed counterclockwise
on each semicircular arc.
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experimental parameters: (a) R16 with stability class A; (b) R10 with stability class B; (c) R43 with
stability class C; (d) R30 with stability class D; (e) R66 with stability class E; (f) R39 with stability class F.
Sensors are disposed of in five semicircular concentric arcs, which are represented with alternating gray
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Table 1. Conditions of the experimental implementation and diffusion parameters.

Case (Q0,x0,y0,z0) U (m/s) Atmospheric
Stability Class σy(m) σz(m)

R16 (93.0, 0, 0, 0.46) 2.96 A σy = 0.22∆x/(1 + 0.0001∆x)0.5 σz = 0.20∆x
R10 (92.1, 0, 0, 0.46) 4.15 B σy = 0.16∆x/(1 + 0.0001∆x)0.5 σz = 0.12∆x
R43 (98.9, 0, 0, 0.46) 4.68 C σy = 0.11∆x/(1 + 0.0001∆x)0.5 σz = 0.08∆x/(1 + 0.0002∆x)0.5

R30 (98.4, 0, 0, 0.46) 6.28 D σy = 0.08∆x/(1 + 0.0001∆x)0.5 σz = 0.06∆x/(1 + 0.0015∆x)0.5

R66 (43.1, 0, 0, 1.50) 2.56 E σy = 0.06∆x/(1 + 0.0001∆x)0.5 σz = 0.03∆x/(1 + 0.0003∆x)
R39 (40.7, 0, 0, 0.46) 3.12 F σy = 0.04∆x/(1 + 0.0001∆x)0.5 σz = 0.016∆x/(1 + 0.0003∆x)

Note: ∆x = x− x0, which is the difference between the horizontal scale of the sampling point location and the
horizontal scale of the leakage source.

3.1. Estimated Results of Six Selected Trials

The estimated results of the source parameters [Q0, x0, y0, z0] of six selected trials under
different atmospheric stability classes are demonstrated in Figure 4. The estimated results
were based on 10 independent runs of PSO, where the means values were marked with gray
bars and the 95% confidence intervals were marked with red error bars. Satisfactory results
were attained (Figure 4a) regarding the estimation of the source strength. With the exception
of tests R66 (stability class E) and R39 (stability class F), the estimated values of source
strength Q0 for other trials were quite close to the actual values, with a source strength score
index less than 0.1. This demonstrates that the PSO algorithm can estimate source strength
accurately and with a reasonable estimation accuracy. However, the location parameter
x0 had the poorer performance (Figure 4b). Only R10 could estimate x0 quite accurately
and its confidence interval contained the actual value x0; the estimated values of x0 for the
remaining trials departed from the actual values to some extent. Especially, compared to
the remaining trials, R66 and R39 overestimated x0, whose scoring index Sx was greater
than 0.1. The location parameters y0 and z0 had outstanding estimation performances
(Figure 4c,d); the score indexes of y0 and z0 were less than 0.02 and 0.05, respectively, in
all tests. The comprehensive score index for all trials was less than or equal to 0.03. As
a conclusion, the results demonstrate that it is feasible to utilize the PSO algorithm for
source-term estimations.
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It is noteworthy that estimated outcomes for source strength Q0 and horizontal lo-
cations x0, y0 were worse under extreme (strongly unstable and more stable) diffusion
conditions, such as the estimated outcomes of R16, R66, and R39 (conducted under strongly
unstable, more stable, and stable diffusion conditions, respectively), and were not as good
as estimated outcomes of tests conducted under other diffusion conditions. It is likely that
the limitations of the Gaussian model and the poor quality of the observed concentration
data result in parameter estimation results that deviate significantly from the actual values.

Figure 5 shows observed and simulated concentration distributions for the six trials
selected, with the exception of R66 and R16, where there were some variations between
the simulated and observed gas dispersion directions. For the remaining tests, the simu-
lated and observed concentration distributions, leak source locations, and gas dispersion
directions are accurately reconstructed, as shown in Figure 5.

Figure 3 compares observed and simulated concentration values by the Gaussian
model for the six trials selected. In Figure 3a,e, there is a certain deviation between obser-
vation and simulation concentrations by Gaussian models for R16 and R66, which have a
lower correlation coefficient COR between the observation and simulation concentrations
of 0.81 and 0.78, respectively, compared to the remaining tests. There was an offset in the
location of the peak concentration of R16 and the crosswind profiles of the actual observed
concentrations for R16 and R66 showed bimodal distributions, whereas the crosswind
profiles of the simulated concentrations by the Gaussian model for R16 and R66 showed
unimodal distributions, where the bimodal distributions may have occurred due to changes
in the wind direction during the experiment. This indicates that certain limitations exist in
the Gaussian diffusion model itself, which does not account for the impact of meteorological
conditions on the simulations.
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Figure 5. Concentration distribution of the prairie grass experiment under stability classes A to F.
(Left) concentration distribution simulated by the Gaussian model utilizing experimental parameters;
(Right) concentration distribution of actual observations of the prairie grass experiment.
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3.2. Improvement of Gaussian Dispersion Model in Source-Term Estimation

As discussed in Section 2.1, the precision of the forward diffusion model had an effect
on the estimated outcomes of source parameters. The experimental data of the prairie grass
experiment were found to approach the Gaussian distribution; observed concentrations
from the experiments agreed well with the simulated results from the Gaussian dispersion
models. Consequently, the Gaussian dispersion model, which is simple and efficient, was
adopted for the estimation of the source-term parameters. Nevertheless, the concentrations
simulated by the Gaussian dispersion model were unlikely to adequately represent the
concentrations from the actual diffusion of the gas under extreme atmospheric diffusion
conditions, and there were inconsistencies and deviations between the concentrations simu-
lated by the Gaussian dispersion model and concentrations observed from the experiment,
as illustrated in the discussion of the estimated effects of the source terms for R16 and
R66 and presented in Figures 3 and 5. By adding correction coefficients to the Gaussian
dispersion model to enhance the precision of the estimated outcomes of source parameters
due to the inapplicability of the Gaussian diffusion model under extreme atmospheric
diffusion conditions, the objective function evolves into (10), (11) from Equation (2):

f (Q0, x0, y0, z0) = min
n

∑
i=1

[Cmon,i − (c1·Ccal,i(Q, x, y, z) + c2)]
2

(10)

f (Q0, x0, y0, z0) = min
n

∑
i=1

[
Cmon,i −

(
a·Ccal,i(Q, x, y, z)2 + b·Ccal,i(Q, x, y, z) + c

)]2

(11)

where [c1, c2] are linear correction coefficients and [a, b, c] are polynomial correction
coefficients, which are obtained from the correlation analysis between the experimental
data and Gaussian diffusion model simulation results. The 68 trials were divided by
atmospheric stability classes A to F. According to the releases of the experiment under
stability classes A to F, the simulated results of the Gaussian dispersion model were
fitted with the experiment data by linear least square and polynomial, respectively, which
obtained the linear correction coefficients [c1, c2] and polynomial correction coefficients [a,
b, c] under the stability classes A~F. The fitting results under various atmospheric stability
classes are illustrated in Figure 6.

The linear and polynomial correction coefficients under various stability classes were
integrated into the Gaussian dispersion model to enhance the estimated outcomes of the
source parameters. Figure 7 shows the prediction performance of the Gaussian dispersion
model, the Gaussian dispersion model with the linear correction coefficients and Gaussian
model with the polynomial correction coefficients on the experimental cases R16 and R66.
The prediction results for various diffusion models are presented in Table 2. The results
demonstrate that integrating the correction coefficients into the Gaussian dispersion model
can enhance its prediction precision. The prediction results of the Gaussian dispersion
model with correction coefficients have lower root mean square errors (RMSEs) and higher
correlation coefficients (CORs).

Table 2. Comparison the prediction results of different diffusion models of R16 and R66.

Model
R16 R66

RMSE COR RMSE COR

Gaussian model 0.026941 0.81442 0.079089 0.77518
Linear modified Gaussian model 0.026391 0.81442 0.051129 0.77552

Polynomial modified Gaussian model 0.025901 0.82765 0.049533 0.80841
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Hence, the values of the linear [c1, c2] and polynomial [a, b, c] correction coefficients
under stability classes A and E were employed to identify the source parameters for R16
and R66, respectively. Figure 8 compares the score indexes of source parameters of various
objective functions with and without correction coefficients utilizing the experiment data
of experimental cases R16 and R66. The results demonstrate that the score indexes of the
source parameters of the objective function with correction coefficients are less than those
of the objective function without correction coefficients, which implies that the addition of
correction coefficients enhances the precision of the estimated outcomes of source parameters.
Additionally, it was discovered that the performances of the source-term estimations of the
model with linear correction coefficients and model with polynomial correction coefficients
were significantly different under different diffusion conditions. For experimental case R16
(stability class A), the estimated performance of the source terms of the model with polynomial
correction coefficients outperformed model with linear correction coefficients; however, the
reverse was true for experimental case R66 (stability class E).

Atmosphere 2023, 14, x FOR PEER REVIEW 15 of 20 

 

 

of experimental cases R16 and R66. The results demonstrate that the score indexes of the 
source parameters of the objective function with correction coefficients are less than those 
of the objective function without correction coefficients, which implies that the addition 
of correction coefficients enhances the precision of the estimated outcomes of source pa-
rameters. Additionally, it was discovered that the performances of the source-term esti-
mations of the model with linear correction coefficients and model with polynomial cor-
rection coefficients were significantly different under different diffusion conditions. For 
experimental case R16 (stability class A), the estimated performance of the source terms 
of the model with polynomial correction coefficients outperformed model with linear cor-
rection coefficients; however, the reverse was true for experimental case R66 (stability 
class E). 

 

Figure 8. Different score indexes of R16 and R66 with Equations (2), (10) and (11). 

Therefore, studying the estimated performance of the source-term parameters of the 
two modified models under various atmospheric diffusion conditions can provide a ref-
erence for model selection in practical applications. Based on all 68 experimental cases, 
the values of the linear [c1, c2] and polynomial [a, b, c] correction coefficients under various 
atmospheric stability classes were employed to identify the source parameters of the tests 
under the corresponding atmospheric stability classes. Figure 9 compares the score in-
dexes of various objective functions with linear and polynomial correction coefficients and 
without correction coefficients for source-term parameters under stability classes A to F. 

Figure 8. Different score indexes of R16 and R66 with Equations (2), (10) and (11).

Therefore, studying the estimated performance of the source-term parameters of
the two modified models under various atmospheric diffusion conditions can provide
a reference for model selection in practical applications. Based on all 68 experimental
cases, the values of the linear [c1, c2] and polynomial [a, b, c] correction coefficients under
various atmospheric stability classes were employed to identify the source parameters
of the tests under the corresponding atmospheric stability classes. Figure 9 compares
the score indexes of various objective functions with linear and polynomial correction
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coefficients and without correction coefficients for source-term parameters under stability
classes A to F.
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Figure 9. Score indexes of different objective functions for source-term parameters under stability
classes A to F: (a) score index SQ of source strength Q0 of different objective functions under stability
classes A to F; (b) score index Sx of horizontal location x0 of different objective functions under
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functions under stability classes A to F; (e) comprehensive score index S of all source parameters [Q0,
x0, y0, z0] of different objective functions under stability classes A to F.



Atmosphere 2023, 14, 1168 15 of 18

The following conclusions can be drawn from Figure 9:

(1) For all source parameters [Q0, x0, y0, z0], comparing the estimation results of different
models, the Gaussian model with linear coefficients performed the best with the lowest
comprehensive score index S under stability classes A (0.6%), B (1.0%), and C (0.5%),
respectively (Figure 9e), whereas the Gaussian model with polynomial coefficients
performed the best with the lowest comprehensive score index S under stability classes
E (1.3%) and F (1.6%), respectively. This indicated that the performance of the Gaussian
model with linear correction coefficients for estimating all source parameters [Q0,
x0, y0, z0] outperformed the Gaussian model with polynomial correction coefficients
under stability classes A to C. The opposite was true under stability classes E and F;
the performance of the two correction models did not vary obviously under stability
class D.

(2) For source strength Q0, the estimation performance of all models showed significant
fluctuations under all diffusion conditions (Figure 9a). The worst performance ap-
peared in stability classes D, E, and F. Comparing the estimation results of different
models, the Gaussian model had the worst performance with the highest score index
SQ under stability classes A (6.1%), B (13.4%), C (6.6%), D (32.4%), E (23.6%), and F
(31.6%), respectively. While the Gaussian model with linear coefficients presented
the best performance with the lowest score index SQ under stability classes A (5.8%),
B (11.5%), and C (5.4%), respectively, the Gaussian model with polynomial coeffi-
cients performed the best with the lowest score index SQ under stability classes D
(28.6%), E (14.0%), and F (6.8%), respectively. This indicated that the performance of
the Gaussian model with linear correction coefficients for estimating source strength
Q0 outperformed the Gaussian model with polynomial correction coefficients under
stability classes A to C. However, the opposite was true for stability classes D to F.

(3) For the horizontal location x0, the estimation performance of all models displayed sig-
nificant fluctuations under all diffusion conditions (Figure 9b). The worst performance
appeared in stability class F. Comparing the estimation results of different models, the
Gaussian model had the worst performance with the highest score index Sx under
stability classes A (3.3%), B (5.4%), C (2.1%), D (2.6%), E (4.8%), and F (15.6%), respec-
tively. Where the Gaussian model with linear coefficients had the best performance
with the lowest score index Sx under stability classes A (2.1%), B (1.9%), and C (2.0%),
D (1.7%), and F (10.9%), respectively, the Gaussian model with polynomial coefficients
performed the best with the lowest score index Sx under stability class E (3.4%). This
indicated that the performance of the Gaussian model with polynomial correction
coefficients for estimating horizontal location x0 outperformed the Gaussian model
with linear correction coefficients under stability class E. The opposite was true for
the other stability classes.

(4) For horizontal location y0, the estimation performances of all models were comparable
to the similar score index Sy (0.3 ± 1.7%) under all diffusion conditions (Figure 9c).
Overall, the Gaussian model with polynomial coefficients was relatively better than
the other two models, with the lowest score index Sy under stability classes A (0.9%), C
(0.3%), and D (0.5%), respectively. This indicated that the performance of the Gaussian
model with linear correction coefficients for estimating the horizontal location y0
outperformed the Gaussian model with polynomial correction coefficients under
stability classes A, C, and D. However, the performance of the two correction models
did not vary obviously under other stability classes.

(5) For location parameter z0, comparing the estimation results of different models,
the Gaussian model had the worst performance with the highest score index Sz
under stability classes A (2.0%), B (1.5%), C (1.4%), D (5.4%), E (4.3%), and F (9.8%),
respectively (Figure 9d). Where the Gaussian model with linear coefficients had the
best performance with the lowest score index Sz under stability classes A (0.7%), C
(1.3%), E (2.4%), and F (5.2%), respectively, the Gaussian model with polynomial
coefficients performed the best with the lowest score index Sz under stability class
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D (3.7%). This indicated that the performance of the Gaussian model with linear
correction coefficients for estimating location parameter z0 outperformed the model
with polynomial correction coefficients under stability classes A, C, E, and F. The
opposite was true for stability class D; the performance of the two correction models
did not vary obviously under stability class B.

As discussed above, applying the two proposed correction models can increase the
estimated precision of source parameters under all diffusion conditions. However, the
estimated precision of the two correction models varied for different source-term parame-
ters under various diffusion conditions, and there was no single optimal model. Hence,
if enhancing the estimated precision of a certain source-term parameter or the overall
source-term parameters was desired, the model could be selected according to the practical
diffusion conditions, and the specific model selection scheme is provided in Table 3. The
conclusions attained in this paper may offer some reference for selecting models in practical
diffusion conditions. However, this paper conducted the research utilizing the experimental
cases from the prairie grass field dispersion experiment, which was conducted on a flat
terrain with almost no obstacles, and the Gaussian model was able to simulate gas disper-
sion relatively well in this ideal terrain. It could restrict the application of the proposed
modified model in a complex terrain. Thus, appropriate dispersion model schemes for
complex terrains need to be assessed further.

Table 3. Model selection scheme in practical applications.

Atmospheric Diffusion
Conditions A B C D E F

Q0 (10) (10) (10) (11) (11) (11)
x0 (10) (10) (10) (10) (11) (10)
y0 (11) (10)/(11) (11) (11) (10)/(11) (10)/(11)
z0 (10) (10)/(11) (10) (11) (10) (10)

[Q0, x0, y0, z0] (10) (10) (10) (10)/(11) (11) (11)

4. Conclusions

This work verified the effectiveness of PSO algorithms based on the Gaussian plume
dispersion model for identifying leakage source parameters and analyzed its performance
for source-term estimations. Cases from the prairie grass field experiment were used to
test the algorithm. The model was also optimized to enhance the estimated precision of
source-term parameters due to the inapplicability of the Gaussian dispersion model under
extreme diffusion conditions.

The proposed source-term estimation method was examined and the effect of atmo-
spheric diffusion conditions on estimation outcomes was emphasized, utilizing experimen-
tal cases under various diffusion conditions. The findings indicate that estimated results of
source-term parameters under extreme diffusion conditions are not as good as under other
diffusion conditions, with some deviations between the estimates and actual values of the
source-term parameters; however, the estimated precision of source-term parameters was
within an acceptable scope.

It was also discovered that the lower the deviation of the simulated concentration
by the Gaussian dispersion model from the actual observed concentration, the better
the estimated performance of the source-term parameters. Consequently, the Gaussian
dispersion model was optimized by introducing correction coefficients into it for the
purpose of enhancing the estimated precision of source-term parameters. By fitting the
data of 68 experimental cases with the simulation results of the Gaussian model by linear
and polynomial methods, respectively, we obtained linear and polynomial correction
coefficients under different stability classes. The test results show that the improved
Gaussian dispersion model is employed as a forward diffusion model in the PSO algorithm,
which enhances the estimated precision of the PSO algorithm.
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Furthermore, the performance of Gaussian dispersion models with linear correction
coefficients and Gaussian dispersion models with polynomial correction coefficients for
estimating the source-term parameters under various atmospheric stability classes was
discussed. The results show that the performances of two correction models differ signif-
icantly under various atmospheric stability classes. There was no single optimal model;
however, the model could be selected according to the practical diffusion conditions to
enhance the estimated effect of a certain parameter or the overall source-term parameters.
The conclusions determined in this paper can provide a reference for model selections in
practical diffusion conditions.
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