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Abstract: The re-deposition of detached dust during online pulse-jet cleaning is an important issue
encountered during filter regeneration. To reduce dust re-deposition, multi-pulsing jet cleaning
schemes were designed and experimentally tested. A pilot-scale pulse-jet cleaning dust collector was
built with one vertically installed pleated filter cartridge. The effects of pulse duration and interval
on the pulse pressure were tested, and the dust re-deposition rate and mechanism were studied
and analyzed. It was found that, for the single-pulsing jet, the pulse duration had a critical value
of approximately 0.080 s in this test, above which the pulse pressure remained at approximately
0.75 kPa and did not increase further. For the multi-pulsing jet with a small pulse interval (less than
approximately 0.10 s), the pulse flows superimposed and reached a higher pulse pressure with a
slight inhibition of dust re-deposition. For the multi-pulsing jet with a long pulse interval (over
0.15 s), dust re-deposition was clearly inhibited. The re-deposition rate decreased from 63.8% in the
single-pulsing scheme to 24.4% in the multi (five)-pulsing scheme with the same total pulse duration
of 0.400 s. The multi-pulsing scheme lengthens the duration of reverse pulse flow, resulting in more
elapsed time for the detached dust to freely fall, and inhibiting the re-deposition of dust. The elapsed
time in the five-pulsing jet scheme with the recommended pulse duration of 0.080 s and interval of
0.25 s was 2.8 times higher than that of the single-pulsing jet with the same total pulse duration.

Keywords: multi-pulsing jet; air filtration; filter cleaning; dust re-deposition; pulse interval

1. Introduction

Dust collection systems with air filters are extensively utilized in an industry for
removing particulate matter or recovering powders [1–4]. As particulates continue to
collect on the surfaces of filter cartridges during filtration, the airflow resistance increases.
Therefore, filter elements must be cleaned to remove the dust cake formed on filter surfaces
for the operation of dust collection. Reverse pulse-jet cleaning is now considered to be an
effective technique for the periodical regeneration of filter elements [5–8].

Pulse-jet cleaning can be conducted in online and offline modes. Online cleaning is
conducted without stopping the airflow in advance, which is simpler and quicker, and has
less influence on the continuity of the filtration/ventilation system. However, the reverse
pulse jet lasts for approximately 0.1–0.3 s, which is not long enough to allow the dust that
had detached from the filter element to fall into the hopper. When the reverse pulse flow
ceases, the filtration airflow begins to recover. Some of the detached dust that does not fall
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into the hopper is likely to be entrained by the filtration airflow and re-deposits on the filter.
The re-deposition rate can reach 9–32% [5] or 38–83% [9], which negatively influences the
efficiency of cleaning the filter element.

Many methods have been proposed to improve the effect of pulse-jet cleaning, most
of which are focused on improving pulse intensity and uniformity. These methods include
the usage of an induced nozzle [10], dual-slit injector [11], velocity-difference nozzle [12],
supersonic nozzle [13], annular-slit nozzle [14], special conical diffuser [15], or cone in-
stallation [16]; the design of a colliding [17] or multi-pulsing jet scheme [18,19]; and the
optimization of the nozzle area ratio [20], jet distance [21], or pleat shape [22]. These meth-
ods focus on improving the pulse-jet intensity and uniformity, but less research has been
conducted on the inhibition of the re-deposition of detached dust after pulse-jet cleaning. It
has been reported that re-deposition can be inhibited by lengthening the pulse duration,
decreasing the filtration velocity, or increasing the pulse pressure [23,24]. However, the
amount of compressed air will increase sharply when the pulse duration is lengthened, the
equipment will be enlarged when the filtration velocity is decreased, and it requires a high
amount of energy to sustain an air tank with a higher pressure.

If a reverse pulse jet is separated into multiple airflows and the reverse airflows jet
successively to hinder the recovery of the filtration airflow, the time available for the
detached dust to re-deposit could be reduced, and the duration could be reduced when
using the same amount of compressed air. The multi-pulsing jet cleaning method has been
researched [18,19], but the pulse interval was fixed to be short (approximately 0.005 s) to
allow the residual gas remaining from the previous jet to interact with the following jet,
which could increase the pulse pressure. However, the dust re-deposition issue was not
considered, and the longer pulse intervals have not been studied.

The object of this work is to investigate the efficiency of inhibiting dust re-deposition
using the multi-pulsing jet scheme. The effects of pulse duration and interval on the pulse
pressure were experimentally studied, and the re-deposition rate and cleaning efficiency
were tested during dust clogging and cleaning. The inhibition mechanism was further
analyzed. This study is useful for optimizing the design of dust filter cleaning.

2. Experimental Section
2.1. Experiment Setup

A schematic depiction of the dust collector test rig is shown in Figure 1. The width,
depth, and height of the filtration chamber were 1225 × 750 × 1100 mm, respectively. One
pleated filter cartridge that was 320× 240× 660 mm in external diameter, internal diameter,
and height, respectively, with 120 pleats was installed vertically in the filtration chamber.
The cartridge was composed of a non-woven long staple polyester with a porosity and
thickness of 59.9–60.1% and 0.55 ± 0.05 mm, respectively. The distance from the outlet of
the top nozzle over the filter to the opening mouth of the filter was 250 mm. The inner
diameter of the blow tube was 25 mm, and the outlet diameter of the nozzle was 17 mm.

The experimental system also included a dust feeder (LSC-100 with a range of 0–3500 g/min
and error of less than 3%), pressure tank (19.7 L), electromagnetic pulse valve (DMF-Z-25
type, 1-inch, Shenchi Pneumatic Co., Ltd., Wenzhou, China), pulse controller (QYM-ZC-
10D, Lingchuan Auto Technology Co., Ltd., Shanghai, China), differential pressure recorder
(DT-8920 type with a range of 0–5000 Pa, accuracy of 1 Pa, and data acquisition rate of
1 Hz), weigher (range of 0–40 kg, accuracy of 1 g, and data acquisition rate of 1 Hz),
and high-frequency pressure-acquisition subsystem (MIK-P350 diffused silicon pressure
transmitter with a range of 0–10 kPa and data acquisition rate of 64 Hz, Hangzhou Meacon
Automation Technology Co., Ltd., Hangzhou, China).
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Figure 1. Schematic view of the test rig.

The studied dust was GB 15342-TL75-2.5-C talc powder [25] produced by Guilin
Guiguang Talc Development Co., Ltd., Guilin, China. The D10, D50, and D90 of the dust
measured with a laser particle size analyzer (Malvern 3000 + Hydor EV, produced by
Malvern Panalytical Ltd., Malvern, UK) were 0.42, 0.83, and 2.06 µm, respectively [26].

The experimental system was operated as follows: the fan operation speed was
controlled with the frequency converter, and, under the action of the exhaust fan, air was
sucked into the dust collector from the inlet and flowed out through the upper outlet. The
outlet of the dust feeder was inserted into the dust collector inlet. Dust could be entrained
by the air flow into the filtration chamber and collect on the outer surface of the filter
cartridge. The pressure-drop transducer was used to monitor the filtration resistance. The
duration and interval time of the pulse valve were controlled with the pulse controller.
The pulsing airflow from the pressure tank flowed into the filter cartridge through the
nozzle when the pulse valve was opened, causing the dust (cake) deposited on the filter
surface to be freed and fall into the hopper. The mass of the dust falling into the hopper
was monitored with the weigher.

2.2. Experimental Design

In stage I, different pulse pressures (transient pressures on the middle of the filter inner
surface) during an offline single-pulsing jet were tested. The selected pulse durations td of
the single-pulsing jets ranged from 0.020 to 0.500 s. After comparing the pulse pressures,
one of the pulse durations was selected for the multi-pulsing jet schemes. The inlet of the
pressure tank was closed during each pulse jet for all the scenarios studied in this paper.

In stage II, the pulse pressures were tested under multi-pulsing, with pulse intervals
∆t (the interval of the pulse jet during a single cleaning cycle of the multi-pulsing scheme,
illustrated in Figure 2) ranging from 0.05 to 0.40 s. The pressures under online and offline
multi-pulsing jets were analyzed (online: pulse jetting with the fan still running and
airflow unstopped; offline: pulse jetting with the fan and airflow stopped). For the online
pulse-jet mode, the filtration pressure drop was maintained at 350 Pa, corresponding to an
appropriate test time and cleaning frequency, by adjusting the operating speed of the fan.
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In stage III, single- and multi-pulsing jets were used in the dust clogging and cleaning
operation process. The fan frequency was set at 40 Hz, and the calculated filtration velocity
was 0.88 m/min. The inlet dust concentration was set at 15 g/m3 by adjusting the speed of
the dust feeder. Clogging and cleaning operations were conducted in the clean-on-demand
mode with the maximum allowable pressure drop set at 350 Pa, which was the same as
the filtration pressure drop during the online pulse-jet tests in stage II. The pressure drop
and fallen dust mass were recorded in real time with a frequency of 1 Hz using a computer.
Each of the filter cleaning tests were conducted five times to obtain stable results.

3. Results and Discussion
3.1. Pulse Pressure during Single-Pulsing Jet

Figure 3 shows the evolution of pulse pressure at the center of the inner surface of
the filter during offline pulse jetting with a tank pressure of 0.5 MPa, nozzle diameter of
17 mm, and pulse durations of 0.020–0.500 s.
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Figure 3. Evolution of the transient pulse pressure on the inner surface of the filter during a single-
pulsing jet with pulse duration varying from 0.020 s to 0.500 s in offline cleaning mode.

As the pulse signal was activated, the pulse valve was triggered and the transient
pressure increased rapidly. As the pulse valve closed, the transient pressure decreased
rapidly. In cases that the pulse duration td was below approximately 0.080 s, the peaks of the
transient pressures increased with the pulse duration, indicating that pulse duration was the
main factor restricting the pulse intensity. When the pulse duration td was sufficiently long
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(over approximately 0.080 s), the peak pressure reached its maximum level of approximately
0.75 kPa at 0.12 s. Two stages were observed during the decrease in transient pressure, one
of which was a slowly decreasing stage, and the other was a rapidly decreasing stage. It can
be inferred that the rapidly decreasing stage is due to the closure of the valve, and the slowly
decreasing stage is due to the decrease in the pressure of the tank due to air consumption.

Regarding the maximum level that the peak pressure reached, it is analyzed that after
opening the pulse valve, the compressed air flows from the air tank through the jet tube to
the nozzle. Initially, the flow velocity of the air is low and the fluid resistance in the tube is
small. As the flow velocity gradually increases, the fluid resistance in the tube increases.
Finally, when the power provided by the pressure in the air tank is equal to the resistance
in the tube, the flow velocity in the jet tube reaches the maximum and the nozzle outlet
pressure also reaches the maximum.

There will be a moment when the pressure of the compressed air is reduced and the
power of the compressed air is equal to the resistance in the jet tube, corresponding to the
critical time (about 0.08 s in this paper). The outlet pressure of the nozzle also reaches the
maximum value.

If the pulse duration td is shorter than the critical time, the nozzle outlet pressure
cannot reach the maximum value. If the td is longer than the critical time, because the air
tank pressure has been consumed, it is impossible to increase the flow rate in the jet tube
and the nozzle outlet pressure any further.

As the peak transient pulse pressure acting on the filter is commonly used as an
indicator of the pulse-jet intensity [13,16,17,27], the peaks and durations of the changes in
pressures with the pulse duration were analyzed, as shown in Figure 4. The peak pressure
increased rapidly with the pulse duration td when td < 0.080 s, and remained almost the
same value when td > 0.080 s. The pressure duration exhibited a decelerating increase
with the pulse duration without a clear critical value. Therefore, from the aspect of pulse
intensity, the pulse duration td of 0.080 s was selected as the recommended parameter for
the research of the multi-pulsing jet in the following step.
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Figure 4. Peaks and durations of pulse pressures with varying pulse durations in the offline single-
pulsing scheme.

3.2. Pulse Pressure during Multi-Pulsing Jet

After testing the residual pressure in the tank several times, the compressed air was
found to be exhausted when the number of jet pulses reached seven with a pulse duration
td of 0.080 s. Figure 5 shows the evolution of the transient pulse pressure during multi-
pulsing. Figure 5a–c shows the results of the seven-pulsing, five-pulsing, and three-pulsing
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jet schemes in the offline modes, and Figure 5d shows these in online seven-pulsing
jet schemes.
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Figure 5. Pulse pressure on the inner surface of the filter during the (a) seven-pulsing, (b) five-pulsing,
and (c) three-pulsing jet schemes in the offline cleaning modes, and (d) seven-pulsing jet scheme in
the online cleaning mode with a pulse duration of 0.080 s and interval of 0.05–0.40 s.

According to the pulse pressure evolution curves in the offline seven-pulsing jet
schemes (Figure 5a), the pressure waves overlapped with the adjacent waves when the
pulse interval ∆t < 0.10 s and separated when ∆t > 0.15 s. The pressure waves had larger
distances with a longer pulse interval. When the waves were separated, their values with
the same pulse orders were equal among the varying pulse intervals, with first, second,
and final peak pressures of approximately 0.74, 0.68, and 0.25 kPa, respectively. The times
at which the pressure waves appeared were consistent with the pulse interval. For instance,
the average wave appearance time interval was 0.215 s when the pulse interval was 0.20 s,
and 0.397 s when the pulse interval was 0.40 s.

When the pulse interval was 0.050 s, the peak pressure was 0.998 kPa, which was
significantly greater than the maximum value of approximately 0.75 kPa in the single-
pulsing jet scheme. Therefore, not only were the pulse waves overlapped but also the pulse
pressures were superimposed. This type of multi-pulsing jet scheme with a small pulse
interval (below the 0.10 s found herein) has already been reported. Chen and Chen [18,19]
conducted 3D modeling to investigate the multi-pulsing jet scheme, and found that the
interaction of the residue gas from the previous jet pulse and the following jet pulse could
form a high-pressure zone. They also found that the peak pressures decreased with the
reduced pulsing frequency. These numerical simulation results support our experiment.

Owing to the poor cleaning effect of the negative pressure acting on the filter, the
negative pressure was not designed to be tested here, and a transient pressure transducer
without negative pressure was used. However, the negative transient pressure value could
be revealed during pulse jetting [16].
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The pulse pressures in the five- and three-pulsing jet schemes are shown in Figure 5b,c.
The times at which the pulse waves and the peak pulse pressures appeared were similar
for cases with the same pulse interval order in these three multiple pulsing jet schemes.
The following pulse pressure did not influence the previous pulse pressure, and the pulse
waves, if they were present, were similar between the different pulsed time multi-pulsing
jet schemes.

Figure 5d shows the pulse pressure evolution curves during the online seven-pulsing
jet scheme. Owing to the filtration pressure drop of 350 Pa, only five pressure waves were
observed on the filter inner surface during the seven jet pulses, with the final two waves
disappearing due to the filtration air resistance.

After comparing the pressure waves in the online and offline cleaning modes, the peak
pressures in online modes were 0.36 kPa less than those in the offline modes, on average.
The times at which the waves appeared with the same pulse order were almost the same
between the online and offline modes. An example is the intervals between the times at
which pressure waves of approximately 0.27 s appeared when the pulse interval was 0.25 s
in both the online and offline cleaning modes. However, the pressure durations in the
offline modes were longer than those under the online modes. This is primarily due to the
filtration airflow resistance.

3.3. Re-Deposition Rate Testing of Single- and Multi-Pulsing Online Cleaning

To investigate the re-deposition of dust and cleaning efficiency, dust clogging and
cleaning operation simulation experiments were conducted with pulse intervals ∆t of 0
to 0.40 s. The filtration pressure drop and total fallen dust mass were tested in real time
during operation. Each of the pulse-jet schemes was tested five times, and the experimental
results with ∆t = 0.05–0.15 s are shown in Figure 6. Comparing the pressure drop evolution
curves, as well as the fallen dust mass, among the cases with the same pulse interval, it
was found that the residual pressure drops, fallen dust masses, and filtration periods (the
time between two cleanings) exhibited similar values. Comparing the curves for the cases
with different pulse intervals, it was found that, with an increase in the pulse interval, the
residual pressure drop decreased, the fallen dust mass increased, and the filtration period
increased, indicating that a better pulse-jet cleaning effect was obtained with a longer pulse
interval in the range of ∆t = 0.05–0.15 s.
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Figure 6. Evolutions of the filtration pressure drop and fallen dust mass under the five-pulsing jet
scheme with a pulse duration td of 0.080 s and interval ∆t of 0.05 to 0.15 s.
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The average fallen dust masses with the same pulse interval were calculated to further
calculate the cleaning efficiency and dust re-deposition rate. The cleaning efficiency η
under the online cleaning mode for each pulse jet can be defined as the ratio of the fallen
dust mass m2 to the detached dust mass m0, and the re-deposition rate Rde can be defined
as the ratio of the re-deposited dust mass m1 to the detached dust mess m0, as illustrated
in Figure 7. However, the detached dust mass m0 under the online cleaning scheme is
not easily tested because just some of the detached dust falls into the hopper. Thus, an
approximate value of the detached dust mass needs to be found.
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Figure 7. Re-deposition rate for three- and five-pulsing jet cleaning.

It was assumed that the dust masses over the filter surface were the same in cases
with the same filtration pressure drops, and the detached dust masses were the same when
the filter was subjected to the same pulse pressure, regardless of whether the cleaning
mode was online or offline. The pulse pressure under the offline cleaning mode could be
controlled to have the same value as that under the online cleaning mode by adjusting
the tank pressure. The fallen dust mass m0 under the online cleaning mode could then be
indirectly obtained by testing the fallen dust mass m0

′ under the offline mode, i.e., m0 = m0
′.

Without the influence of filtration airflow, all of the detached dust under the offline cleaning
mode transformed into fallen dust, i.e., m0

′ = m2
′, as illustrated in Figure 7. Therefore, the

cleaning efficiency η can be calculated as the ratio of m2 to m2
′, and the re-deposition rate

Rde can be calculated as the ratio of m1 (=m2
′ − m2) to m2

′. The changes in the calculated
Rde value with the pulse interval ∆t in three- and five-pulsing jet schemes are shown in
Figure 7.

Rde decreased with the pulse interval when the pulse interval ∆t was <0.25 s, and
remained stable when ∆t > 0.25 s under both the three- and five-pulsing jet schemes. As
indicated by the curves with five-pulsing jet cleaning, Rde decreased from 63.8% when
∆t = 0 s (i.e., single-pulsing jet) to 24.4% when ∆t = 0.25 s, and the corresponding cleaning
efficiency η increased from 36.2% to 75.6%. Under the three-pulsing jet cleaning schemes,
Rde was higher than that under the five-pulsing modes, decreasing from 38.8% when
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∆t = 0 s to 36.0% when ∆t = 0.25 s. The multi-pulsing scheme was found to notably affect
the re-deposition phenomenon. The mechanism of this will be discussed in Section 3.4.

In a previous report, the re-deposition rate was tested within a range of 9–32% [5],
which was smaller than that of our overall result. This is mainly because six filters operated
in parallel in the previous study, and the influence on the total filtration airflow was lower
when only one filter was pulse jetted. The filtration airflow was not concentrated on the
cleaning filter and the detached dust could be entrained to the other filters. In another
report [9], the re-deposition rate was 38–83%, which was higher than our result. This is
mainly because they used a 2.44 m long filter, while ours was 0.66 m long. The detached
dust requires more time to fall into the hopper with a longer filter and it is more likely to
be re-deposited on the filter by the recovering filtration airflow.

In Section 3.2, the pulse pressure under the small pulse interval (∆t = 0.05 s) was
greater than that under other intervals due to the superimposed effect. However, no clear
peak of the re-deposition rate corresponding to ∆t = 0.05 s was observed, indicating that
the re-deposition was less influenced by the superimposing of pulse pressure than it was by
the pulse interval. The re-deposition rate became a relatively stable value when the pulse
interval exceeded 0.25 s, which was selected as a recommended parameter along with the
recommended pulse duration of 0.080 s.

3.4. Mechanism Analysis

To investigate the inhibition mechanism of dust re-deposition in the multi-pulsing
scheme, it is necessary to analyze the airflow. However, the filter face velocity is not
easily tested. Thus, some assumptions are made here and a semi-quantitative analysis
is conducted.

The single-pulsing with a pulse duration of 0.400 s and the five-pulsing with a pulse
duration of 0.080 s and intervals of 0.25 s and 0.40 s were selected for comparison. These
cases had the same total pulse duration (i.e., the same compressed air consumption).

Based on Darcy’s law and ignoring the inertia of the airflow, the filter face velocity is
assumed to be proportionate with the pressure difference across the filter when the loaded
dust on the filter is fixed. For a better comparison, the average peak pulse pressures in the
online five-pulsing jet schemes were calculated for cases with the same pulse order but
different pulse intervals. The face velocity of 0.88 m/min corresponding to the pressure
drop of 350 Pa indicates face velocities of −1.07, −0.78, −0.49, −0.33, and −0.11 m/min
(negative values indicate the flow direction against filtration), corresponding to average
peak pulse pressures of 427, 311, 196, 130, and 43 Pa, respectively. The peak pressure of
427 Pa is also the maximum value for the online single-pulsing jet. The time at which the
airflow reached the maximum or minimum is assumed to be consistent with the time at
which the pulse pressure reached its maximum or minimum value. The change in the face
velocity caused by the pulse pressure is assumed to be linear as the pulse pressure increased
rapidly. The recovery of filtration velocity is assumed to be a growth curve pattern. The
filter face velocity calculated based on a semi-quantitative analysis is shown in Figure 8.

For the single-pulse jet, the face velocity was found to become negative due to the
reverse pulse jet, remain at this value, and then recover to the filtration velocity value (line
L1 in Figure 8). With the multi-pulsing jet, the face velocity was found to become negative
multiple times with a longer duration for the reverse face velocity.

As the detached dust is inert and is at a distance from the filter shortly after the reverse
pulse flow ends, the detached dust cannot immediately reach the filter when the filtration
flow just begins to recover. Time is required for the detached dust to re-deposit on the
filter’s surface. It is assumed that line L2 in Figure 8 corresponds to the time at which the
detached dust begins to re-deposit on the filter with the entrainment of the recovering
filtration flow. The elapsed time required for the detached dust to fall before being re-
deposited on the filter under the multi-pulsing cleaning schemes is notably longer than
that under the single-pulsing cleaning scheme. The elapsed time t2 under the multi-pulsing
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scheme with the recommended pulse interval ∆t of 0.25 s is 1.48 s, which is 2.8 times the t1
value of 0.52 s under the single-pulsing scheme.

Atmosphere 2023, 14, x FOR PEER REVIEW 10 of 12 
 

 

multi-pulsing scheme with the recommended pulse interval Δt of 0.25 s is 1.48 s, which is 
2.8 times the t1 value of 0.52 s under the single-pulsing scheme. 

 
Figure 8. Comparison of the face velocities under the single- and multi-pulsing jet modes. 

However, with a longer pulse interval, such as Δt = 0.40 s, the detached dust could 
reach and re-deposit on the filter prior to the triggering of the following pulse pressure. 
The re-deposition of the dust continued until the filter face velocity reversed to negative 
under the action of the following pulse jet. Owing to this phenomenon, a longer pulse 
interval had no notable effect on further inhibiting dust re-deposition. Dust migration is 
complicated, and a further analysis should be conducted until more data can be obtained. 

It is inferred that the multi-pulsing jet lengthens the duration of the reverse pulse 
flow, increases the time available for the detached dust to fall before being re-deposited, 
inhibits the re-deposition rate, increases the fallen dust mass, and improves the cleaning 
efficiency. 

4. Conclusions 
Detached dust re-deposition is an important factor restricting online pulse-jet clean-

ing for filters. To improve the cleaning quality, multi-pulsing jet schemes were designed 
and experimentally tested. 

For the single-pulsing jet, the pulse duration had a critical value of approximately 
0.080 s, below which the pulse pressure could not reach the maximum value and above 
which the pulse pressure did not increase further. 

For multi-pulsing with a small pulse interval (less than 0.10 s), the pulse flows were 
superimposed and reached a notably higher pulse pressure, with the slight inhibition of 
dust re-deposition. For multi-pulsing with a long pulse interval (more than about 0.15 s), 
the pulse waves were separated and dust re-deposition was notably inhibited. The pres-
sure wave values with the same pulse orders were equal among the varying pulse inter-
vals. The re-deposition rate decreased from 63.8% in the single-pulsing scheme to 24.4% 
under the multi (five)-pulsing scheme with the recommended pulse duration of 0.080 s 
and interval of 0.25 s. 

The multi-pulsing scheme lengthens the duration time of reverse pulse flow, in-
creases the time available for the detached dust to fall freely, and inhibits dust re-deposi-
tion. The elapsed time under the five-pulsing jet scheme with the recommended parame-
ters is 2.8 times higher than that under the single-pulsing jet scheme. 

Figure 8. Comparison of the face velocities under the single- and multi-pulsing jet modes.

However, with a longer pulse interval, such as ∆t = 0.40 s, the detached dust could
reach and re-deposit on the filter prior to the triggering of the following pulse pressure.
The re-deposition of the dust continued until the filter face velocity reversed to negative
under the action of the following pulse jet. Owing to this phenomenon, a longer pulse
interval had no notable effect on further inhibiting dust re-deposition. Dust migration is
complicated, and a further analysis should be conducted until more data can be obtained.

It is inferred that the multi-pulsing jet lengthens the duration of the reverse pulse flow,
increases the time available for the detached dust to fall before being re-deposited, inhibits
the re-deposition rate, increases the fallen dust mass, and improves the cleaning efficiency.

4. Conclusions

Detached dust re-deposition is an important factor restricting online pulse-jet cleaning
for filters. To improve the cleaning quality, multi-pulsing jet schemes were designed and
experimentally tested.

For the single-pulsing jet, the pulse duration had a critical value of approximately
0.080 s, below which the pulse pressure could not reach the maximum value and above
which the pulse pressure did not increase further.

For multi-pulsing with a small pulse interval (less than 0.10 s), the pulse flows were
superimposed and reached a notably higher pulse pressure, with the slight inhibition of
dust re-deposition. For multi-pulsing with a long pulse interval (more than about 0.15 s),
the pulse waves were separated and dust re-deposition was notably inhibited. The pressure
wave values with the same pulse orders were equal among the varying pulse intervals. The
re-deposition rate decreased from 63.8% in the single-pulsing scheme to 24.4% under the
multi (five)-pulsing scheme with the recommended pulse duration of 0.080 s and interval
of 0.25 s.

The multi-pulsing scheme lengthens the duration time of reverse pulse flow, increases
the time available for the detached dust to fall freely, and inhibits dust re-deposition.
The elapsed time under the five-pulsing jet scheme with the recommended parameters is
2.8 times higher than that under the single-pulsing jet scheme.
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