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Abstract: The phase-field model (PFM) is gaining increasing attention in the application of multiphase
flows due to its advantages, in which the phase interface is treated as a narrow layer and phase
parameters change smoothly and continually at this thin layer. Thus, the construction or tracking
of the phase interface can be avoided, and the bulk phase and phase interface can be simulated
integrally. PFM provides a useful alternative that does not suffer from problems with either the mass
conservation or the accurate computation of surface tension. In this paper, the state of the art of PFM
in the numerical modeling and simulation of multiphase flows is comprehensively reviewed. Starting
with a brief description of historical developments in the PFM, we continue to take a tour into the
basic concepts, fundamental theory, and mathematical models. Then, the commonly used numerical
schemes and algorithms for solving the governing systems of PFM in the application of multiphase
flows are presented. The various applications and representative results, especially in non-match
density scenarios of multiphase flows, are reviewed. The primary challenges and research focus of
PFM are analyzed and summarized as well. This review is expected to provide a valuable reference
for PFM in the application of multiphase flows.

Keywords: phase-field model; multiphase flow; numerical simulation; variable density; pressure–
velocity coupling

1. Introduction

The difference and diversity of material properties contribute to the essence of the
world. Phase, as one of the material properties, defines the part with uniform physical
and thermal properties in a concerned thermodynamic system that can be separated nat-
urally by an interface [1]. Multiphase flow has found a wide range of applications in
various aspects of engineering and science fields, such as petroleum engineering, me-
chanical engineering, and chemical engineering, etc. [1–3]. However, whether multiphase
flow is favorable or not depends on a deep understanding of its physical essence. There-
fore, the study of multiphase flow has enormous scientific significance and engineering
application value.

In recent years, the development of production technology and the complexity of engi-
neering problems have motivated diverse researches in multiphase flows. The commonly
used approaches for multiphase flow investigation include theoretical analysis, experimen-
tal study, and numerical simulation [2], etc., among which the theoretical analysis is capable
of accurately providing the mathematical relationship between various phase parameters.
However, it is only applicable to simple multiphase flow problems. The experimental study
is close to engineering practice, but it is usually limited by the high cost, long experimental
period, and huge difficulties to be conducted in some special scenarios. In addition, the
semi-empirical or empirical formulas obtained from experimental research are not appli-
cable to various applications of multiphase flow. In addition, the influencing factors are
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usually difficult to separately investigate in the experimental study. Comparatively, the
numerical simulation which is performed based on mathematical models can be used as
an essential supplement for the theoretical analysis and experimental study. Moreover,
the cost of numerical simulation is relatively low and the research period is relatively
short. The obtained simulation data can help reveal the underlying mechanism behind the
‘flow pattern’ in detail. Therefore, the numerical simulation has been a highly appreciated
approach in the study of multiphase flows.

Significant advances have been witnessed in the numerical modeling and simulation
techniques for multiphase flows in past decades. Fuster et al. [4] summarized that an ideal
two-phase flow model and its numerical solution method should possess the following
characteristics: (1) it should be robust in describing the morphological changes of complex
phase interfaces; (2) it can calculate the surface tension accurately; (3) it can deal with
the large density ratio and viscosity ratio problems; (4) it should be capable of handling
multiphase flow at various spatial and temporal scales. However, at present, a single
numerical simulation method for multiphase flow is unable to take all above requirements
into account. Currently, the widely used numerical simulation approaches for multiphase
flows can be classified into different types from different perspectives, as shown in Table 1.
Among them, the interface modeling approach, including the interface capturing method
and the interface tracking method, enjoys more popularity in engineering practice [5,6],
which will be introduced in detail in this work.

Table 1. Commonly used numerical simulation methods for multiphase flows.

No. Classification Representative Methods

1 interface modeling interface-capturing method,
interface-tracking method

2 fluid motion Euler’s method, Lagrange method,
hybrid method

. . . . . . .

According to the interface morphology, the interface-capturing method shown in
Table 1 can be divided into sharp-interface method and diffuse-interface method. The
main differences between them are qualitatively compared in Figure 1 [7]. Generally,
the commonly used sharp-interface methods include volume of fluid (VOF) [8], level set
(LS) [9,10], and others [11,12]. The fundamental theories and algorithms of VOF and LS
methods are relatively mature, and they have been applied in many commercial software
packages [13]. However, there exist several distinctions between VOF and LS methods
regarding the calculation accuracy of phase parameters, such as the interface curvature
and surface tension, the ability of smoothing when physical quantities at the interfacial
region change violently, and the computational performance of mass conservation, etc.
To remedy the shortcomings of these two methods, several hybrid approaches have been
proposed in recent years, such as the coupled level-set and volume-of-fluid (CLSVOF)
method [14], the hybrid particle level-set (PLS) method [15], and the volume-of-fluid and
level-set (VOSET) method [16], etc. Despite the fact that these hybrid approaches can make
up for the limitations of VOF and LS methods to a certain extent, such as ensuring the
high accuracy of interface-curvature calculation and mass conservation characteristics,
the programming process becomes more complex and cumbersome due to the increasing
complexity. In addition, the program robustness is restricted, and the accurate calculation
of surface tension is still not well solved.

It is worth noting that both VOF and LS methods belong to the sharp-interface method.
In this type of method, the phase interface is assumed to have zero thickness and the
physical properties of two phases change suddenly at the interface, which is obviously
inconsistent with the real physical situation. In the 19th century, Rayleigh [17] and van
der Waals [18] developed the diffuse-interface method by introducing the gradient theory
of fluid interfaces based on the laws of thermodynamics. In the diffuse-interface method,
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the phase interface is considered to have a certain thickness and the physical properties of
two bulk phases change continuously at the transition zone. On this basis, Korteweg [19]
proposed the constitutive relation of interfacial stress tensor based on a free-energy func-
tional of mass density or molar concentration. The phase-field model (PFM) is a kind of
diffuse-interface method. Based on the diffuse-interface theory, PFM matches well with
the real physical situation: the phase interface has a certain thickness and the physical
properties of each bulk phase change continuously and rapidly in the transition region;
the surface tension in traditional multiphase flow models equals to the body force dis-
tributed in the transition region. Compared with the sharp-interface method, PFM can
offer many advantages from different points of view: (1) PFM is based on the energy
variation and principle of least action, which has a complete physical background and
allows the possibility to probe into the physical properties of the phase interface essentially.
For example, PFM can deal with the problems of a moving contact line in multiphase
flows, and the breakup and merging processes of a droplet with large deformations of
interface morphology. (2) Although the derivation process of PFM is complex, the final
expression of PFM is relatively simple and similar with that of the LS method. Thus, PFM
is also called a physically motivated LS method or “conservative” LS method. It is easy
to be extended from two-dimensional (2D) problems to three-dimensional (3D) problems.
(3) The reconstruction of the phase interface by the volume fraction in the VOF method and
the initialization of distance function in the LS method are not required in PFM. Therefore,
PFM takes into account the merits of both VOF and LS methods. (4) PFM is capable of
simulating the complex interface properties of fluids with different properties by defining
the energy functional in the phase-field equation, such as polymer solutions, two-phase
flows with soluble surfactant, etc. Therefore, it is of great significance to investigate the
phase-field method.
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In view of the advantages of the diffuse-interface method, PFM has emerged as a
powerful and flexible tool in the numerical simulation of multiphase flows in recent years.
A large number of researchers have devoted great effort to PFM from different aspects. In
this paper, the main research progress and advances of PFM in the numerical simulation of
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multiphase flows in recent years are reviewed and analyzed, including the fundamental
theory, mathematical models, numerical algorithms, and representative applications. The
existing primary challenges and future research trends of PFM in the numerical simulation
of multiphase flows are put forth and summarized.

2. Theory and Mathematical Models

In this section, the basic concepts, fundamental theory and mathematical models of
PFM are introduced (see Figure 2).
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2.1. Fundamental Theory

The fundamental theory of the PFM is based on the diffuse-interface theory of van
der Waals [18]. It is considered that when two kinds of isothermal immiscible and incom-
pressible fluids are in contact with each other, instead of being described by a geometric
sharp interface, the two phases are separated by a thin layer of interface with a certain
thickness. The physical properties of the two bulk phases are homogeneous, while the
components of the two bulk phases are mixed with each other at the interface (transition
zone) with a continuous and smooth change. The interfacial thickness is mainly dependent
on the equilibrium between the molecule dynamics of two bulk phases, the value of which
is approximately the same with molecules’ interaction range. The mixing effect between
two phases and the diffuse interface are schematically shown in Figure 3 [20].
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According to the diffuse-interface theory, a continuous scalar parameter φ(x, t) is
introduced in PFM to characterize the two phases and the interface, which is also called the
order parameter,

φ(x, t) =
ρ1C1 − ρ2C2

ρ1C1 + ρ2C2
(1)
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where φ(x, t) is the order parameter; ρ1 and ρ2 are the local density of bulk phases 1 and 2,
while C1 and C2 are the corresponding local concentrations with C1 + C2 = 1.

It can be seen from Equation (1) that the order parameter can characterize different
fluid component regions. When the fluid is in the bulk phase region, the value of the order
parameter is −1 or 1. When the fluid is in the interfacial region, the value of the order
parameter is between −1 and 1. Thus, we have

φ(x, t) =

{
1, C2 = 0 (fluid1)
−1, C1 = 0 (fluid2)

(2)

According to the diffuse-interface theory, for a given phase field, the internal driving
force of the phase distribution is the variation of the total free energy in the phase region.
Cahn and Hilliard [21,22], respectively, derived the general equation describing the free
energy of an intensity scalar field, i.e., the phase-field-governing equation, also known as
the Cahn–Hilliard (CH) equation. Considering the non-uniformity of the phase field at the
interface, Cahn modified the free energy density in the model to introduce the influence of
spatial heterogeneity. The modified free energy density consists of two parts: (1) One is
derived from the local material composition in the bulk phase. After expanding the free
energy density formula by the Taylor series formula, only the first term, namely the main
energy F(φ), is left in the free energy density formula when the local material components
remain uniform. (2) The other is from the material heterogeneity ∇φ at the phase interface,
which is also known as the ‘gradient energy’. As a result, the free energy density function
of a phase field can be expressed as

w ∝ (φ,∇φ) (3)

where w is the free energy density of the phase field; φ is the order parameter; and ∇φ is
the gradient energy.

The modified Helmholtz free energy function of the Ginzburg–Landau type can then
be given by  w(φ,∇φ) = λ

(
1
2‖∇φ‖2 + F(φ)

)
W(φ,∇φ) =

∫
Ω λ
(

1
2‖∇φ‖2 + F(φ)

)
dx

(4)

where w is the free energy density of the phase field; W is the total free energy of the phase
field; λ is the coefficient of mixed energy density; and F(φ) is the free energy of bulk phases.
The first term on the right-hand side of Equation (4) is the free energy of the phase interface,
which represents the nonlocal interaction between two phases, and its value denotes the
phase affinity (mixing trend) changing with the concentration gradient of two phases. The
second term on the right-hand side of Equation (4) is the free energy of the bulk phase,
indicating the separation property of two phases, which acts as the main driving force of
phase separation, and its value depends on the concentration of two phases. In the phase
separation process, the total free energy of the phase field decreases with the development
of fluid to a pure phase.

In the numerical simulation of multiphase flows, the double-well potential func-
tion shown in Figure 4 is usually selected as the free energy functional of bulk phases
F(φ) =

(
φ2 − 1

)2/4ε2 with ε being the capillary width of interface. As can be seen from
Figure 4, F(φ) has a maximum value at φ = 0 and minimum value at φ = ±1, which is
consistent with the energy distribution characteristics of bulk phases and phase interface.

Based on the diffuse-interface theory, the mixing between two-phase fluids is triggered
by the gradient flow of chemical potential at the interface. That is, the chemical potential is
the main driving force causing the phase separation and diffusion in the two-phase flow,
and it plays a dominant role in the variation of free energy of the interface. According to
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the principle of variational calculus, the chemical potential of a heterogeneous multiphase
flow system can be defined as the variation of free energy to the order parameter

µ =
δW
δφ

=
∂w
∂φ
−∇ · ∂w

∂∇φ
(5)

where µ is the chemical potential; W is the total free energy; w is the free energy density;
and φ is the order parameter.

Then, the chemical potential can be further written as

µ = λ

1
2

∂
(
‖∇φ‖2

)
∂φ

+
∂F(φ)

∂φ
−∇ ·

1
2

∂
(
‖∇φ‖2

)
∂φ

+
∂F(φ)
∂∇φ

 = λ( f (φ)− ∆φ) (6)

where f (φ) = F′(φ) =
(
φ3 − φ

)
/ε2.

When the interface is close to the limit of the sharp interface, based on f (φ), the rela-
tionship between the mixed energy density coefficient λ and the traditional surface tension
coefficient σ can be determined, by which PFM can be related with the traditional sharp-
interface method. This is also the mathematical expression of surface tension described by
PFM as the volume stress distributed in the interfacial region with a certain thickness. Take
the one-dimensional (1D) phase interface as an example, the relationship between λ and σ
at the 1D phase interface can be derived as follows [23–26].
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According to the phase field theory, the traditional surface energy equals the diffusive
mixing energy in the region. Thus, the surface tension coefficient can be obtained by
integrating the free energy in this region,

σ = λ
∫ +∞

−∞

(
1
2

(
dφ

dx

)2
+ F(φ)

)
dx (7)

where σ is the surface tension coefficient.
When the diffusive interface is at equilibrium, the chemical potential is zero.

µ = λ

(
−d2φ

dx2 + f (φ)

)
= 0 (8)

It is easy to know that lim
x→±∞

F(φ) = 0 and lim
x→±∞

dφ
dx = 0. Multiplying f (φ) = d2φ

dx2 by
dφ
dx and integrating it over the interval (-∞, x), one can obtain

∫ x

−∞
f (φ)

dφ

dx
dx =

∫ x

−∞

d2φ

dx2
dφ

dx
dx (9)
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Then, we have

F(φ) =
∫ φ

−1
f (φ)dφ =

∫ x

−∞

d
dx

(
1
2

∣∣∣∣dφ

dx

∣∣∣∣2
)

dx =
1
2

(
dφ

dx

)2
∣∣∣∣∣
x

−∞

=
1
2

(
dφ

dx

)2
(10)

When the diffuse interface is at equilibrium, Equation (7) can be further derived based
on Equation (10).

σ = λ
∫ +∞
−∞

(
1
2

(
dφ
dx

)2
+ F(φ)

)
dx = λ

∫ +∞
−∞ 2

√
1
2

(
dφ
dx

)2
F(φ)dx

= λ
∫ 1
−1

√
2
√

F(φ)dφ =
√

2λ
∫ 1
−1

1−φ2

2ε dφ

= 2
√

2
3

λ
ε

(11)

where σ is the surface tension coefficient; λ is the mixed energy density coefficient; and ε is
the capillary width of the interface.

It can be clearly seen from Equation (11) that when the capillary width of the interface
ε approaches to 0, the mixed energy density coefficient λ must approach to 0 as well. The
ratio of the two parameters determines the surface tension coefficient σ under the limiting
condition close to the sharp interface. However, it is worth noting that Equation (11) is only
valid at the equilibrium state.

2.2. Mathematical Models

In nature and engineering practice, multiphase flow often occurs under isothermal
conditions; the influence of temperature change is generally ignored. Under isothermal
conditions, the mathematical models of PFM include the phase-field equation, momentum
equation and continuity equation, which are, respectively, introduced below.

2.2.1. Phase-Field Equation

Commonly seen forms of the phase-field equation include the conservative Cahn–Hilliard
(CH) equation [21,22] and the non-conservative Allen–Cahn (AC) equation [27], both of
which are derived by the principle of variational calculus. According to the second law
of thermodynamics, the value of Helmholtz free energy is the smallest when the system
is at an equilibrium state. Therefore, the variation of order parameter is determined by
the minimization principle of Helmholtz free energy, and the phase-field equation can be
expressed as

φt + (u · ∇)φ = −M
δW
δφ

(12)

where φ is the order parameter; u is the velocity; W is the total free energy; and M is the
mobility parameter related to the relaxation time, which determines the intensity of the
diffusion effect, that is, the mixing capacity of fluid molecules. In the two-phase flow, M
determines the speed at which the phase interface reaches the equilibrium state.

The Cahn–Hilliard equation can be obtained by the variational operation to δW/δφ
in H−1 space. It is a conservative phase-field equation that can preserve the conservation
of order parameter in the whole computational domain for incompressible fluid. The
expression of the Cahn–Hilliard equation is shown as below:

φt + (u · ∇)φ = M∆µ (13)

If the variational operation is performed for δW/δφ in L2 space, the original formula
of the Allen–Cahn equation can be obtained. It is a non-conservative phase-field equation
given by

φt + (u · ∇)φ = −Mµ (14)
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To keep the mass conservation in the numerical computation, a Lagrange operator is
added to the Allen–Cahn equation. The modified Allen–Cahn equation can then be written as

φt + (u · ∇)φ = −Mλ( f (φ)− ∆φ− β(φ)), β(φ) =
∫

Ω f (φ)dx∫
Ω dx (15)

where the Lagrange operator β(φ) can ensure d
dt

∫
Ω φdx = 0.

Except for above derivation, it is also possible to derive the PFM in a geometric manner
starting from the LS method, in which the PFM is known as the so-called “conservative”
LS method [28]. It should be noted that the above Cahn–Hilliard equation, Allen–Cahn
equation and modified Allen–Cahn equation demonstrate different interfacial dynamics
in the absence of external driving forces or advection [29,30]. Generally, the Allen–Cahn
equation evolves by minimizing the mean curvature, the Cahn–Hilliard equation evolves
through a mixture of bulk and surface diffusion depending on the mobility form, and the
evolution of the modified globally conserved Allen–Cahn equation is somewhere between
that of the Cahn–Hilliard and Allen–Cahn equations. Additionally, the choice of Cahn–
Hilliard equation versus Allen–Cahn equation is dependent on a variety of factors such as
the number of components in the fluid, whether there are additional driving forces between
the phases beyond the interfacial energy, or whether there are reactions at the interfacial
region, etc. Compared with the Allen–Cahn equation, the Cahn–Hilliard equation is more
widely used in the numerical simulation of multiphase flows in wide applications. The
primary challenges in solving the Cahn–Hilliard equation lie in the four-order term ∇4φ
and the nonlinear term f (φ).

2.2.2. Momentum Equation

The general form of momentum equation for fluid flow can be written as follows,
whether it is a single-phase flow or a multiphase flow:

ρ(ut + (u · ∇)u) = ∇ · (ηD(u)− pI + τe) (16)

where ρ is the fluid density; η is the dynamic viscosity of fluid; u is the velocity; ηD(u)
stands for the viscous stress, ηD(u) = η

(
∇u + (∇u)T

)
; −pI denotes the pressure stress;

and τe represents the external stress.
In the derivation of the phase-field equation, the phase interface is treated as a free

condition. However, in the numerical calculation, it is essential to convert the surface
tension into a body force for both the sharp-interface method and the diffuse-interface
method. Therefore, a body-force term should be added to the momentum equation of PFM,
the effect of which equals the surface tension. This treatment corresponds to the energy
integral in the interfacial region. That is, PFM applies the interfacial free energy to describe
the interfacial tension. Therefore, compared with traditional methods, PFM can better
reflect the physical meaning of a problem.

(1) Matched density;

When the density of two-phase fluids matches with each other, we have
τe = −λ(∇φ⊗∇φ). Substituting τe into Equation (16) yields the following momentum
equation of PFM:

ρ(ut + (u · ∇)u) = ∇ · (ηD(u))−∇p− φ∇µ (17)

(2) Non-matched density with a small density difference;

In the presence of non-match density, if the density difference between two phase
fluids is small, the Boussinesq approximation can be used to treat the non-matched density
as a uniform quantity. An additional gravity term is added in Equation (17) to introduce
the effect of density difference. Then, the momentum equation of PFM can be expressed as

ρ0(ut + (u · ∇)u) = ∇ · (ηD(u))−∇p− φ∇µ + g(ρ1, ρ2) (18)
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where ρ1 and ρ2 are the local density of bulk phases 1 and 2; ρ0 = ρ1+ρ2
2 ; and g(ρ1, ρ2)

is the additional gravity term introduced by the Boussinesq approximation,
g(ρ1, ρ2) =

(
1−φ

2 ρ1 +
1+φ

2 ρ2

)
g; g is the gravitational acceleration.

(3) Non-matched density with a large density difference.

When the density difference of two phase fluids is large enough, the Boussinesq
approximation is no longer applicable. Both the fluid density and viscosity are functions
of the order parameter that need to be updated repeatedly in the calculation. Under this
condition, the mass conservation cannot be guaranteed by the non-solenoidal velocity field
(∇ · u 6= 0). To solve this problem, Guermond et al. [31] proposed that the two-phase
fluid components can only be mixed by pure convection. The velocity at a certain point in
the flow field is defined as the velocity of the phase component occupying this point. In
this method, the momentum equation is modified physically to make the mixing of two
phases driven only by convection, so as to guarantee the energy stability of the method.
The momentum equation of PFM with a large density ratio can be written as follows based
on the above pure convection mixing:

σρ(σρu)t +
1
2
∇ · (ρu)u + ρ(u · ∇)u = ∇ · (ηD(u))−∇p− φ∇µ (19)

where σρ =
√

ρ; ρ is the fluid density, ρ = ρ2−ρ1
2 φ + ρ1+ρ2

2 ; and η is the dynamic viscosity,
η = η2−η1

2 φ + η1+η2
2 .

In addition, Abels et al. [32] developed a model that satisfies both the divergence of
the velocity field and the energy law based on the idea of average volumetric velocity. In
this case, a diffusion flux caused by the chemical potential and the density difference is
introduced into the momentum equation. The modified momentum equation of PFM with
a large density ratio is then given by

ρ(ut + (u · ∇)u) + JD∇u = ∇ · (ηD(u))−∇p− φ∇µ (20)

where JD is the diffusion flux, JD = ρ1−ρ2
2 M∇µ; ρ is the fluid density, ρ = ρ2−ρ1

2 φ + ρ1+ρ2
2 ;

and η is the dynamic viscosity, η = η2−η1
2 φ + η1+η2

2 .

2.2.3. Continuity Equation

Besides the phase-field equation and momentum equation, the multiphase flow should
satisfy the continuity condition

ρt +∇ · (ρu) = 0 (21)

It should be noticed that when the density of two phase fluids matches with each other
or the density difference of two phase fluids is small, the fluid density can be approximately
treated as a constant independent of time. However, when the density of two phases differs
largely, the variation of density with time should be considered and the two phase fluids
are treated as the compressible fluid.

2.2.4. Boundary Condition and Initial Condition

In addition to the phase-field equation, momentum equation and continuity equation,
the corresponding boundary conditions and initial conditions should be given for a specific
problem. Assuming that the computational domain is Ω, the boundary conditions and
initial conditions can be, respectively, presented by

u · n|∂Ω = 0, ∇µ · n|∂Ω = 0, ∇φ · n|∂Ω = 0 (22)

u| t=0 = u0, φ|t=0 = φ0 (23)
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where n denotes the unit normal vector of the boundary; ∂Ω is the boundary of the domain;
and u0 and φ0 are the initial velocity and order parameter.

By coupling above phase-field equation, momentum equation and continuity equation,
we can use the Cahn–Hilliard and Navier–Stokes (CH-NS) system or Allen–Cahn and
Navier–Stokes (AC-NS) system to simulate multiphase flows. It should be noted that
the coupled CH-NS is often referred as the Model H phase field in the broader applied
physics communities. The classical Model H was initially developed by Hohenberg and
Halperin [33] for simulating the binary incompressible two-phase flows with density-
matched fluids, and was later generalized for simulating binary incompressible two-phase
flows with variable density. Then, Lowengrub and Truskinovsky [34] extended Model
H to be thermodynamically consistent for multiphase flows with large density ratios.
And different modifications were also developed after Model H, such as the work of
Guermond et al. [31], Abels et al. [32], and others [35,36].

3. Numerical Methods

In this section, the commonly used numerical schemes and algorithms used to solve
the governing equations of PFM in the application of multiphase flows are presented (see
Figure 5). Multiphase flow is a typical pressure–velocity coupling problem. Therefore, in the
numerical simulation of multiphase flows by PFM, the coupling solution of the phase-field
equation and momentum equation should be carried out to obtain the velocity, pressure,
order parameter and surface tension, etc., with physical meanings. In the numerical
calculation, the following should be noted: (1) Proper discrete schemes should be selected
to discretize the coupled CH-NS system or AC-NS system. These discrete schemes should
possess good numerical properties, such as the numerical stability, the conservation, etc.
In addition, the effective treatment of the fourth-order term in the phase-field equation
is one of the key issues in PFM. (2) An appropriate pressure–velocity coupling algorithm
should be used to decouple the velocity and pressure in numerical simulations. The
commonly used pressure–velocity coupling schemes are shown in Table 2 [37,38]. Among
them, the pressure-based approach is more widely used, such as the pressure-correction
method, the projection method, and fractional step method, etc. In the application of these
algorithms, the corresponding modifications are usually needed to obtain better numerical
properties, such as good accuracy, robustness, mass conservation, and discrete energy
decay, etc. One of the challenges of PFM is how to efficiently deal with the multiphase flow
with large density and viscosity contrasts. (3) The selected algorithm should have a good
applicability, which is capable of simulating the multiphase flows in both simple/regular
and complex/irregular regions. (4) The numerical methods should be able to handle the
multiphase flows at different spatial scales (such as the macroscale and microscale). With
different points of concern, much research has been conducted on the numerical methods
of PFM and some representative works are introduced and summarized below.

Table 2. Pressure–velocity coupling schemes.

Coupling Schemes Representative Methods

All equations are solved
simultaneously

Solving all variables simultaneously and globally;
Solving part of variables simultaneously and globally;

Solving all variables simultaneously and locally.

Equations are solved
separately

Non-pressure-based approach;
Vorticity–stream function method, vorticity–velocity method, etc.;

Pressure-based approach:
Pressure-correction method, projection method, fractional step

method, artificial compression method, pressure Poisson equation
method, etc.
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3.1. Discretization of Governing Equation

In the numerical solution of PFM, firstly, appropriate discrete schemes should be
selected to discretize the phase-field equation and momentum equation. The discrete
schemes should ensure the mass conservation, numerical stability and energy decaying
of the discrete systems with time step as large as possible. In the field of computational
fluid dynamics (CFD), a variety of discrete schemes for unsteady term, convection term,
and diffusion term have been well developed. For example, the commonly used discrete
schemes for unsteady term include the first-order forward difference scheme, second-
order Adams–Bashforth scheme, second-order Crank–Nicolson scheme, and Runge–Kutta
scheme, etc.; the widely used convective schemes contain the first-order upwind scheme,
second-order upwind scheme, QUICK scheme, bounded scheme, and high-order compact
scheme, etc.; the frequently used discrete schemes for the diffusion term include the second-
order central difference scheme, the fourth-order central difference scheme, etc. [39,40].

It is worth noting that there is a fourth-order term of order parameter in the phase-field
equation. Generally speaking, most of convection–diffusion equations are second-order
partial differential equations (PDEs); thus, the treatment of this fourth-order term is the
focus in the discretization of phase-field equation. If the fourth-order term is discretized
directly, the order parameter at one grid point to be solved will be related to that at multiple
surrounding grid points, which not only seriously affect the calculation efficiency, but also
deteriorate the numerical stability. The time step will also be restricted to a small value.
Therefore, it is necessary to apply some special treatments to deal with the fourth-order term
carefully, among which the convex-splitting technique and introducing a stabilizing term
are commonly used [39,40]. Especially, the convex-splitting technique is popular to reformu-
late it as a pair of coupled second-order equations: one for the chemical potential, and the
other for the evolution of order parameter. For example, suppose the free energy function of
bulk phase is a double-well potential function, i.e., F(φ) =

(
φ2 − 1

)2/4ε2, then F(φ) can be
split into two different convex functions Fc(φ) and Fe(φ) by the convex-splitting method,

Fc(φ) =
4φ2 + 1

4ε2 , Fe(φ) =
6φ2 − φ4

4ε2 (24)

where F(φ) = Fc(φ) − Fe(φ), F′′c (φ) ≥ 0 and F′′e (φ) ≥ 0. By using the convex-splitting
scheme, the resulting discrete system of Cahn–Hilliard and Allen–Cahn equations is still
unconditionally stable and satisfies the discrete energy law. Readers of interest can refer
to [7,41,42] for the detailed proof.
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Based on the convex-splitting method, many discrete schemes with good numerical
properties have been developed for the discretization of PFM. For example, Shin et al. [40]
combined the convex-splitting method with a multi-stage implicit–explicit Runge–Kutta
method, and developed a convex-splitting Runge–Kutta (CSRK) scheme with high-order ac-
curacy in time. The CSRK scheme can solve the Allen–Cahn, Cahn–Hilliard and phase-field
crystal equations well with the calculation results possessing three-order accuracy. By us-
ing the adaptive mesh refinement and a nonlinear multigrid finite-difference method,
Chen et al. [43] developed efficient energy stable numerical methods for solving the
Cahn–Hilliard system with isotropy and strong anisotropy based on the convex-splitting
approach. Liu et al. [44] proposed a fully discrete virtual element scheme coupling the
virtual element discrete nonlinear term with the convex-splitting method for the mixed
form of Cahn–Hilliard equation in arbitrary polygons. The proposed scheme was proved
to possess properties such as the unconditional unique solvability, mass conservation,
discrete energy decaying and large time step. Bu et al. [45] presented a stable second-order
numerical scheme for space-fractional Cahn–Hilliard and Allen–Cahn equations, which
performed the spatial discretization through the Fourier spectral method and the temporal
discretization by the convex-splitting method, respectively. Numerical experiments showed
that the scheme can preserve mass and is unconditionally energy stable.

In addition to the convex-splitting method, some other accurate and efficient numerical
schemes have been put forward for the phase-field equation. For instance, Aboelenen et al. [46]
developed a high-order nodal discontinuous Galerkin method for the linearized fractional
Cahn–Hilliard equation. Through this method, the derivatives of fractional order in space
can be expressed as a composite of first-order derivatives and integrals, and the linearized
fractional Cahn–Hilliard system can be transformed as a low-order system of differential or
integral equations. Zhao et al. [47] proposed a second-order fully discrete linear scheme for a
thermodynamically consistent hydrodynamic PFM of binary compressible viscous fluids, in
which the Crank–Nicolson scheme was firstly applied to discretize the model in time and a
semi-discrete partial differential equation (PDE) was output, and then the second-order finite-
difference scheme was used to discretize the semi-discrete PDE on staggered grids to obtain
a fully discrete scheme in space. Yang et al. [48] put forward a second-order time-marching
scheme based on an invariant energy quadratization method for the viscous Cahn–Hilliard
equation with hyperbolic relaxation. In this method, all nonlinear terms were discretized by
the semi-explicit scheme to arrive at a linear system of a symmetric positive definite equation.
Numerical cases illustrate the proposed scheme is unconditionally energy stable and can
converge in time with the second-order accuracy. Ahammad et al. [49] and Alam [50] pre-
sented a wavelet-based approach for the phase-field modeling of two-phase flows, in which
the interfacial dynamics are described by the AC-NS equation and are solved by a weighted
residual collocation method based on Deslauriers–Dubuc interpolating wavelets.

3.2. Multiphase Flows with Large Density and Viscosity Contrasts

In actual multiphase flows, it is common to see that the physical properties of two
phase fluids differ greatly. For example, the densities of the oil phase and gas phase can up
to thousands of orders different, which poses a great challenge to the stability of numerical
algorithms. Therefore, another difficulty in using PFM to simulate multiphase flows is to
deal with the fluid phase with large density and viscosity contrasts. The difference exists in
numerical algorithms for handling multiphase flows with matched density and variable
density mainly lies in the momentum equation. Due to the influence of variable density
and viscosity, the numerical algorithm for non-matched-density multiphase flows is usually
difficult to preserve the properties of divergence-free velocity field, mass conservation and
energy stability, etc.

At present, there are two commonly used numerical methods for non-matched-density
flows with large density and viscosity ratios. One is to modify the momentum equation
based on a pure convection mixing idea, in which the fluid mixing is only driven by
the convection and then the energy stability of numerical algorithms can be ensured.
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For example, Ding et al. [51] applied the above algorithm to study the applicability of
PFM for incompressible two-phase flows with large density and viscosity differences; the
convergence properties and numerical accuracy of the algorithm for binary mixtures with
large density ratio was investigated. Kay et al. [52] proposed an efficient multigrid finite-
element solver for the variable density CH-NS system based on this algorithm, in which
the nonlinear multigrid method was used to solve the Cahn–Hilliard equation, and the
multigrid preconditioned GMRES approach was used to solve the Navier–Stokes equation.
Other cases can also be found in the literature [53–55], etc. The other way of dealing with
multiphase flows with large density and viscosity contrasts is to treat the mixed fluids
as a compressible fluid, and the interfacial velocity is calculated by the volume average
or the mass average. The commonly used method is based on an additional flux caused
by the chemical potential and density difference. For instance, Dong [56] developed an
efficient numerical method in the CH-NS system for wall-bounded flows of immiscible
incompressible two-phase fluids with a large density ratio, in which the dynamic contact
angle boundary conditions were applied. Gao et al. [57] and Yu et al. [58] presented
energy-stable numerical schemes for a moving contact line problem of two-phase flow
with variable densities and viscosities; the coupled system of Cahn–Hilliard equation with
dynamic contact line conditions and Navier–Stokes equation with generalized Navier
boundary conditions was solved efficiently. Other representative works can be found in
the literature [36,59–61].

In addition to the two widely used methods introduced above, several other numerical
approaches have been developed to overcome the challenges in solving multiphase flows
with large density and viscosity ratios. For example, Joshi and Jaiman [61] developed a
positivity-preserving and conservative variational scheme for the phase-field modeling
of two-phase flows with large density differences. The mass conservation was achieved
by a Lagrange multiplier and the energy stability was guaranteed by the mid-point ap-
proximation method. Wang et al. [62] proposed an entropy–viscosity method (EVM) for
the Cahn–Hilliard system to simulate two-phase flows with large density and viscosity
ratios at a high Reynolds number. Through the artificial interface-compression method
(AICM), which is based on the EVM, the stability of the simulation process was realized
and the sharpness of the phase interface was well maintained. The readers can be referred
to [63–65] for other representative works.

3.3. Multiphase Flows in Complex/Irregular Domains

Researches on PFM in the early stage mainly focused on the basic theory and numerical
algorithms, most of which were aimed at the problems in simple or regular geometries. Few
studies were conducted for the problems in complex or irregular domains. In recent years,
with the development of phase-field theory and the advances in numerical algorithms, PFM
has been frequently applied to complex domains with irregular boundary shapes [66–71],
in which the description of domain geometry, mesh generation and algorithm stability are
the primary challenges that attract much attention.

For example, Li et al. [66] developed a PFM applicable to the multicomponent Cahn–
Hilliard system in complex domains. With the aid of an adaptive mesh refinement technique
and an unconditionally gradient-stable nonlinear splitting scheme, the robustness of the
proposed model was guaranteed. Luo et al. [67] solved the CH-NS model with gener-
alized Navier boundary conditions by using the finite-element method (FEM) based on
unstructured mesh, and 3D droplet spreading on a rough solid surface was investigated.
In this method, the mass compensation algorithm was applied to guarantee the mass
conservation of droplets and the domain decomposition approach was used to improve the
computational efficiency. Li et al. [68] proposed a simple direct discretization method for
the Cahn–Hilliard equation on an evolving surface, in which the unstructured triangular
mesh was used to discretize the curved surface and the surface evolution was realized
by moving the mesh nodes according to the given velocity field. Numerical experiments
illustrated that the proposed method has second-order accuracy and is easy to implement.
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This method was also applied to solve the phase-field crystal equation on surfaces [69].
Zimmermann et al. [70] put forward an iso-geometric FEM for mass-conserving phase
transitions on the deforming surface. The Cahn–Hilliard equation was used to describe the
phase transition on the curved surface, and the Kirchhoff–Love thin-shell equation was ap-
plied to capture the surface deformation. In addition, the surface geometry was described
by the structured NURBS meshes and unstructured quadrilateral meshes. Guo et al. [71]
coupled a diffuse domain (DD) method with a quasi-incompressible CH-NS model to
simulate two-phase flows with moving contact lines in complex geometries. In the DD
method, the original complex domain is extended to a larger regular domain, and the
complex domain boundary is replaced by an interfacial region with finite thickness. By
using the DD method, no modifications are required in standard commercial software
packages and the stationary/moving complex boundary can be imposed easily.

3.4. Multiphase Flow at Microscale

Besides the application in simulating multiphase flows at macroscale, PFM is also
a powerful tool for multiphase flow simulations at mesoscale when combined with the
lattice Boltzmann method (LBM). The primary advantages of PFM within the framework
of LBM can be summarized as follows: (1) The mass and heat transfer of multiphase flows
can be described by LBM well without the restriction of a continuous hypothesis. (2) The
evolution object of LBM is the distribution function of discrete particles. Thus, LBM can
not only easily describe the interactions between different fluids or between the fluid and
solid, but also can conveniently deal with various complex boundaries. (3) The collision
process of discrete particles in LBM occurs partially in the domain, which is in general
more efficient and easier to be parallelized.

In recent years, many scholars have focused on the phase-field–lattice Boltzmann
method (PF-LBM), in which different distribution functions were used to describe the phase
field, velocity and pressure [72–86]. By coupling LBM with PFM, it can be applied to solve
multiphase flows with large differences in physical properties, and various measures are
taken to preserve the mass conservation of different phases. For example, Fakhari et al. [72]
presented a multiple-relaxation-time LBM (MRT-LBM) for low-viscosity binary fluids,
which was then coupled with PFM for multiphase flows with moderate density ratios. The
case study showed that PF-LBM can easily handle the phase interface with a large deforma-
tion rate. Banari et al. [73] developed an efficient PF-LBM for 3D multiphase flows based
on the Cahn–Hilliard system. Both the phase-field equation and the momentum equation
were solved by LBM in the framework of a parallel GPGPU co-processor for acceleration.
This method can solve two-component multiphase flows with large density ratios at a
high Reynolds number efficiently and accurately. Liang [74] established a PF-LBM for 2D
and 3D multiphase flows in complex microchannels. The presented model can achieve
an overall improvement in the accuracy and stability of the capturing interface, and the
macroscopic pressure and velocity can be calculated much easier. Geier et al. [75] proposed
a single-relaxation-time LBM (SRT-LBM) based on an improved Allen–Cahn model, which
can recover the conservative phase-field and guarantee local and global mass conservation.
Wang et al. [76] developed an MRT-LBM for a 3D multiphase flow with moderate density
ratios, and the method adopted two distribution functions: one is the order parameter
distribution function for solving the Cahn–Hilliard equation, and the other is the pressure
distribution function for solving the momentum equation. Fakhari et al. [77] proposed a
mass-conserving MRT-LBM for immiscible two-phase flows, in which the interface tracking
and pressure evolution were described by the PF-LBE. This method has also been used
to model 3D contact line dynamics on curved boundaries [78], and is capable of simulat-
ing multiphase flows at high density ratios and high Reynolds numbers in the Cartesian
coordinate. Su et al. [79] applied an improved Allen–Cahn PF-LBM to numerically study
the rising dynamics of a single bubble with large density ratios in quiescent viscous fluid,
and the influences of Eotvos/Reynolds number, density ratio, viscosity ratio, bubble size
and bubble shape were systematically investigated. Zhang et al. [80] conducted a compar-
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ative study on the capability of PF-LBM and the Lagrange–Euler finite-element method
(ALE-FEM) in solving multiphase flows. Numerical experiments demonstrated that the
PF-LBM is more dissipative than the ALE-FEM due to the nature of PFM. Zhang et al. [81]
developed an LBM based on the PFM for simulating large-density-ratio two-phase flows.
An improved MRT-LBM was developed to solve the conserved AC equation. By utilizing a
nondiagonal relaxation matrix and modifying the equilibrium distribution function and
discrete source term, the conserved AC equation can be correctly recovered by the proposed
MRT-LBM with no deviation term. Other works can also be referred to [82–85].

It is worth pointing out that the influence of temperature change is usually neglected
in most of the literature when the PFM is used to study multiphase flows. If the effect
of temperature variation is taken into account, it is necessary to consider the influence of
temperature on the physical properties of phase fluids, surface tension, etc. However, the
relevant research is still lacking at present. Hu et al. [86] proposed a PF-LBM based on the
conservative Allen–Cahn equation for thermocapillary flows. Three different distribution
functions were applied to describe the evolution of order parameter, velocity and tempera-
ture, respectively. The proposed PF-LBM possesses high numerical stability and is capable
of simulating thermocapillary flows with large density ratios and thermophysical proper-
ties contrasts such as specific heat capacity, thermal conductivity, etc. As the standard LBM
is only applicable to Cartesian grids, the vast majority of research on PF-LBM focuses on
multiphase flows in Cartesian coordinates, and that for complex geometries are rarely stud-
ied. Ambrus et al. [87] put forward a finite-difference PF-LBM based on the Cahn–Hilliard
system, which was able to solve multicomponent multiphase flows on curved surfaces
by rewriting the Boltzmann equation through vielbein formalism on arbitrary geometries.
This method can be easily extended to other curved surfaces and coupled to other dynamic
phenomena. In addition to the traditional LBM, some scholars have proposed energy-based
MRT-LBM. For example, Alpak et al. [88] presented a PF-LBM based on the Helmholtz
free energy minimization that couples the Cahn–Hillard equation and the energy-based LB
equation. By this model, the DNS of two-phase flows at a pore-scale is achievable on 3D
digital images of real rocks obtained by micro-CT scanning.

3.5. Multi-Component Multiphase Flows

The PFMs are also capable of solving the multi-component multiphase flow problems.
The solution of this type of problem is more complex than multiphase flows because
of the following reasons: (a) the relations between phases and components should be
considered; (b) the component equations should be modeled; and (3) the efficient numerical
schemes and algorithms are more complex and challenging to develop. Some scholars
are devoted to this topic. For the state of the art of the of PFMs for multi-component
systems, Nestler et al. [89] reviewed the application of PFM for studying phase transitions
and microstructure evolution in multi-component systems. Kim [90] presented a review
on PFMs and their numerical methods for multi-component fluid flows with interfacial
phenomena. Santra et al. [91] comprehensively analyzed the development of PFM for
multicomponent and multiphase flows in microfluidic systems. For the research work,
Shi and Wang [92] put forth a PFM consisting of CH-NS equations for the simulation
of three-component immiscible flows on a solid surface. The core idea of the proposed
approach was to develop a particular formulation of boundary conditions to satisfy the
extra consistency conditions for the system. Huang and Lin [93] developed a consistent and
conservative model for multiphase and multicomponent (namely N-phase-M-component)
incompressible flows based on the PFM. In this model, components were dissolvable in
some specific phases and a dissolvability matrix was defined to indicate relations between
phases and components. The component equation was finalized by incorporating the
thermodynamical effect from the PFM so that the volume fraction equation derived from
the component equation was consistent with the one from the PFM. Far et al. [94] proposed
a PFM to simulate the soluble surfactant in a multicomponent multiphase system. In their
model, the LBM was used to solve the Cahn–Hilliard equation for the order parameter and
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the surfactant concentration, and the interfacial tension of the system in the presence of the
surfactant can be calculated analytically. Hester et al. [95] developed a second-order PFM
to combine melting and dissolution in multi-component flows. In this method, a general
framework for the asymptotic analysis of diffuse-interface methods in arbitrary geometries
was put forth to eliminate the error proportional to the thickness of the phase interface.
Yang [96] proposed PFMs for the evaporation of a single droplet and multiple droplets on a
substrate. In the proposed model, to describe the evaporation of multiple droplets under
different contact angles or pining boundary conditions, the multi-component Allen–Cahn
model was adopted in the computation.

3.6. Others

The discretization and solution of PFM can be realized by traditional numerical
methods such as the finite-difference method, finite-element method, and finite-volume
method, etc. Other effective numerical methods have also been developed by considering
the specific characteristics of the investigated problems. For example, Ahammad et al. [49]
and Alam [50] solved two-phase flows described by the AC-NS equation through the
wavelet transform method.

In PFMs, the interface width and the spatial/temporal steps should be chosen carefully
and their values are always small enough in order to obtain accurate simulation results.
Therefore, limited by computing capabilities and the problem scale, at present, the appli-
cations of PFM are more common in mechanism studies than in real engineering practice.
Barrett et al. [97] compared the practicality and accuracy of PFMs and sharp-interface
models through Stefan problems with applications to crystal growth. It was found that
sharp-interface models were computationally cheaper than PFMs for simulating interface
evolutions in materials science. Egger et al. [98] and Cervera et al. [99], respectively, com-
pared the PFM with the family of FEM methods (XFEM, GFEM, SBFEM, MFEM) in the
application of linear elastic fracture mechanics and quasi-brittle cracking. Bazant et al. [100]
and Diehl et al. [101] compared the PFMs with the peridynamic model and crack band
model in the study of fracture tests and engineering fracture mechanics. Jain [102] pro-
posed an accurate conservative PFM for the simulation of two-phase flows; it was showed
that the proposed model imposes a lesser Courant–Friedrich–Lewy restriction and is thus
less computationally expensive compared to previous conservative PFMs. Overall, the
cost-efficiency issue of the PFM is challenging.

On the premise of ensuring the numerical accuracy and energy stability of the algo-
rithm, many scholars have focused on highly efficient solvers or acceleration techniques
for solving the discrete PFM system, such as the adaptive mesh and time step, multigrid
method, domain-decomposition technique, and CPU/GPU parallel computing, etc. Espe-
cially, with the improvement of GPU computing power and the GPU parallel programming
framework, the multi-GPU parallel computing on high-performance clusters has become a
significant means for the highly efficient simulation of PFM. For example, Zhao et al. [103]
developed a first-order energy-stable efficient scheme for simulating binary mixtures of
viscous fluids and nematic liquid crystals in the framework of PFM. The 3D efficient
simulation was achieved by the CUDA on GPUs. Liu [104] carried out the CPU+GPU
heterogeneous parallel computing of the phase field, flow field and other external physical
fields when solving the multi-field coupled-phase PF-LBM, as shown in Figure 6. Xu [105]
explored the parallel computing of PFM based on an adaptive FEM, and realized the
phase-field simulation of Al-Cu binary alloys by using the parallel programming of MPI
and MPI+OpenMP on a computer cluster. Alpak et al. [88] adopted the GPGPU parallel
computing to efficiently simulate two-phase pore-scale flows described by the Helmholtz
free energy—minimizing phase-field model within the framework of LBM. In general,
the CPU/GPU parallel computing is an effective and universal acceleration method for
large-scale simulation of multiphase flows in the framework of PFM.
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It should be noted that, actually, the phenomena and applications of multiphase
flow systems are complex. There are also other simulation methods that are widely used,
such as the family of discrete particle methods [106–108] for dense particle systems, the
methods with point particle approximation [109,110] for dispersed multiphase flows, etc.
In this paper, we only mainly focused on the PFM. Through the above six subsections,
the numerical methods for PFM were reviewed and analyzed from different perspectives.
Although PFM has some obvious advantages, it should also be noted that there are some
well-known pitfalls of the PFM in the numerical methods, such as the mesh anisotropy,
artificial numerical trapping and pinning of the interface when it is insufficiently resolved
or when there are large discontinuities in the material properties.

4. Applications

In recent years, PFM has been widely applied in a wide range of fields, such as
hydrodynamics, petroleum science, materials science, and biomedicine, etc. Specifically,
PFM is a valuable tool for the interface tracking of multiphase flows with large density
or/and viscosity contrasts, and for the description of microstructure evolution of metals or
alloys. Several typical applications of PFM in fluid mechanics and materials science are
briefly reviewed here, especially in multiphase flows.

4.1. Application of PFM in Fluid Mechanics

In fluid mechanics, the primary difficulty of multiphase flow simulations is to accu-
rately capture the evolution of the phase interface and calculate the surface tension, while
the PFM possesses advantages in dealing with the above key issues. Nochetto et al. [111]
established a mathematical model to describe flow behaviors of two-phase ferrofluid flows
based on PFM, and presented an energy-stable scheme for the efficient solution of this
model. Li et al. [112] developed a two-phase flow model considering the dynamic wetting
effect based on PFM and a modified dynamic contact-angle model. The dynamic process
of droplets impacting on a wall was simulated using this model on the OpenFOAM plat-
form. Feng et al. [113] simulated oil–water two-phase flows in pore channels of porous
media using the PFM. The effects of displacement velocity, fluid properties, and wettability
on the oil recovery were analyzed in detail. In this study, the water flooding process of
water–wet-sandstone porous media obtained from the proposed model was presented.

Balashov et al. [114] investigated the compressible isothermal two-phase flow of
binary mixtures with surface effects based on a 1D CH-NS regularized system, and a
semi-discrete scheme satisfying the thermodynamical consistency was proposed. Taking
into account the double-sided model with equal diffusivity in liquid and solid phases,
Subhedar et al. [115] extended the thin-interface limit of PFM to transport through melt
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convection. Conti et al. [116] discussed the well-posedness of PFM for the motion of bi-
nary fluids with large viscosity contrasts. In a 3D-bounded domain, the existence and
uniqueness of the global weak solution and strong solution were proved for the Brinkman–
Cahn–Hilliard system with logarithmic free energy density. Soligo et al. [117] combined the
direct numerical simulation (DNS) of turbulent flow and the second-order-parameter PFM
to depict the dynamic behaviors of droplets and surfactants. The breakage and coalescence
events of surfactant-laden droplets in turbulent flows were simulated, and the influences of
surface tension and surfactant types on these phenomena were analyzed. Zhang et al. [118]
established a gas–liquid two-phase model by PFM to study the coalescence and separation
of bubbles in an electrochemical system, and the coalescence of complex microbubbles
on and departing the electrode and the separation of bubbles from the electrode surface
were predicted. Based on a thermodynamically consistent CH-NS model, Bonart et al. [119]
employed the PFM to simulate the commonly seen sliding phenomenon of liquid droplets
along the solid surface, such as raindrops on leaves. Zhang et al. [120] studied the spon-
taneous behavior of droplets on partially wetting surfaces, and the critical radius below
which the droplet will eventually disappear was theoretically predicted and numerically
verified with different contact angles, domain sizes, and interface widths. Yang et al. [121]
developed a novel PFM to describe compound droplets in contact with a solid, in which
the solid was represented by the fixed phase of a four-component CH system. Comparison
validated that the numerical and analytical results for the compound droplets on a flat
solid are in good agreement with each other.

4.2. Application of PFM in Material Science

In material science, PFM can be conveniently applied to describe the crack propagation
of materials [122–128] and the evolution of metal/alloy microstructures [129–134]. For
example, Zhou et al. [122] numerically studied the fluid-driven dynamic crack propagation
in poroelastic porous media by PFM, in which the arbitrary crack was controlled by the
evolution of the phase field. The 2D and 3D examples of dynamic crack branching and
their interaction with pre-existing natural fractures were carried out by the COMSOL Multi-
physics software. Xia et al. [123] employed an extended PFM to simulate the hydraulic
fracturing and cracking in heterogeneous fluid-saturated porous media. The evolution
of crack phase fields during the hydraulic fracturing of realistic heterogeneous medium
was presented. In Li et al. [124], PFM was used to simulate the crack nucleation and
propagation in rock-like materials with prefabricated cracks. The comparison between sim-
ulation results and experimental data illustrated that PFM is capable of predicting the crack
nucleation and propagation with different rock bridge angles under uniaxial compression.
Ambati et al. [125] developed a novel PFM for modeling the ductile fracture of elasto-plastic
material in a quasi-static linear regime. The merit of this model is that it couples the evolu-
tion of crack phase field with the accumulation of plastic strains in a thermodynamically
consistent way. Makvandi et al. [126] proposed two different phase-field fracture models
based on the strain gradient elasticity theory. A second-order and a fourth-order phase
field formula were used, respectively, which eliminated the singularities at the crack tips
and improved the performance of conventional models. Goswami et al. [127] presented a
new adaptive PFM based on the dual mesh to deal with the brittle fracture, in which the
elastic field adopts the coarser mesh and the phase field uses the finer mesh, respectively.
To facilitate the information exchange between the meshes, an efficient data transmission
algorithm was developed. Zhu et al. [128] put forward a PFM for the propagation of
electrical tree in nanocomposite materials based on an improved Allen–Cahn equation.
Simulation results demonstrated that the PFM can vividly reproduce the dendritic shape of
electrical tree.

Wang and Cai [129] adopted the PFM to investigate rising behaviors of a single
Taylor bubble in liquid lead–bismuth eutectic (LBE) along a vertical tube. This study
proved that the PFM provides a useful alternative for simulating two-phase flows of Taylor
bubble rising in the liquid metal. Using the PFM of a Karma thin interface with solid
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diffusivity, Zhang [130] employed a 3D adaptive mesh method to explore the influences
of interface width and thermal noise on the dendrite growth in undercooled melt of Al-
Si alloy. Pinomaa et al. [131] proposed a numerical approach that couples the CH-NS
system with the heat transfer equation for modeling the powder-bed scale melt pool, in
which the Cahn–Hilliard model was applied to predict the formation of rapid solidification
microstructures for Ti-6-4 alloy in epitaxial and equiaxed growth regimes. The phase
separation in liquid crystal was simulated in the work of Riahinasab et al. [132] using the
Cahn–Hilliard equation, and the effect of cooling rate on the partitioning of nanoparticles
into isolated domains was explored qualitatively. Zhang et al. [133] developed a novel
phase-field crystal model based on the L2-gradient flow and put forward a second-order
unconditionally energy-stable scheme with the mass conservation for solving this model.
By comparing with the phase field of classical H−1 gradient flows, the robustness of the
new model was proved and the stability of the newly developed scheme was verified.
Restricted to the article length, readers of interest can also refer to reference [134] for other
representative works.

4.3. Other Interesting Applications

The PFM also enjoys popularity in many other scientific fields and engineering ap-
plications. For example, PFM can be used for binary image inpainting based on the
modified Cahn–Hilliard model [135], and to predict the hydrate growth [136] and cell
growth [137–139], and to model the formation of biofilm structure [140], etc. It should
be mentioned that the application of PFM is not only restricted to small-scale structures;
instead, it can also model the formation and evolution of large-scale structures and objects.
For instance, the irregular structure of Saturn’s B ring was modeled by PFM based on the
Cahn–Hilliard equation in the literature [141].

5. Conclusions and Future Work

Compared with conventional sharp-interface methods, the PFM possesses obvious
advantages in the numerical modeling and simulation of multiphase flows in a wide range
of applications. At present, the fundamental theory, mathematical model and numerical
methods of PFM have been well studied by scholars at home and abroad. The PFM is more
and more widely applied in scientific and engineering fields involving fluid mechanics,
material sciences, etc. In this paper, the state-of-the-art of PFM in the numerical simulation
of multiphase flows is briefly reviewed.

(1) PFM is relatively mature in either fundamental theories or mathematical models.
By coupling the commonly used phase-field models (Cahn–Hilliard or Allen–Cahn
equations) or its modified versions with the momentum equation, the multiphase
system of fluid/solid mixtures with large density and viscosity contrasts can be well
modeled. However, it is also worth noting that classical PFM is always restricted to
isothermal conditions without considering the influence of temperature variation,
which needs more to pay attention to more effects in future study.

(2) In terms of numerical methods, the discretization of the fourth-order term of order
parameter and the numerical algorithm of multiphase flows with large density and
viscosity ratios have been well developed. At present, the PFM is capable of dealing
with multiphase flow problems with large differences in physical properties. How-
ever, the primary challenge of PFM in the numerical simulation is still to develop
the robust, high-accurate and energy-stable numerical algorithms or schemes with
mass conservation and thermodynamic consistency, especially to be applicable to
the conditions of large density and viscosity ratios at a high Reynolds number. In
addition, due to the limitation of computing capability, PFM now is most widely used
in mechanism investigations, and its application in engineering practice is still at an
initial stage. Thus, a stable and efficient numerical method for PFM is still a research
hotspot for future work.
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(3) With respect to the application, PFM has been widely applied in various scientific
and engineering fields such as fluid mechanics, material science, computer science,
petroleum engineering, chemical engineering, biomedicine and astrophysics, etc.
However, the application of PFM primarily remains on the mechanism study on
simple or/and regular geometries; applications in practical engineering problems
in complex/irregular domains are in initial stage and still need more effort. Thus,
extending PFM to the real complex or large-scale engineering problems is still a
research trend in the near future.
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