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Abstract: PM2.5, a critical air pollutant, requires health-conscious management, with concentrations
varying across regions due to diverse sources. This study, conducted in South Korea in 2021, em-
ployed the geographically weighted regression model to analyze the spatiotemporal correlations of
PM2.5 with O3 and the normalized difference vegetation index (NDVI). Regional differences in the
correlation between PM2.5 and O3 were observed, influenced by common precursors (SOx, NOx, and
volatile organic compounds (VOCs)), seasonal temperature variations, and solar radiation differences.
Notably, PM2.5 and O3 exhibited a heightened regression coefficient in summer, emphasizing the need
for specific management targeting VOCs and NO2. The interplay between PM2.5 and NDVI revealed
a negative overall impact but a positive effect in the central region of Korea, suggesting vegetation’s
role in the PM2.5 concentration increase due to atmospheric stagnation caused by mountain ranges.
These findings enhance our understanding of PM2.5 distribution mechanisms, highlighting the need
for tailored policies in each region for effective concentration reductions.
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1. Introduction

Air pollution, exacerbated by industrialization, has become a pressing environmental
concern [1]. Of all air pollutants, PM2.5, particulate matter (PM) with an aerodynamic
equivalent diameter of 2.5 µm or less, is particularly significant. Due to its large surface
area, PM2.5 efficiently adsorbs toxic materials, accumulating them deep within the body [2].
Recognized as a Group 1 carcinogen by the International Agency for Research on Cancer
under the World Health Organization [3], PM2.5 poses a substantial health risk.

PM2.5 stems from both artificial and natural sources [4]. Artificial sources include
vehicle emissions, fugitive dust from construction sites, incineration facility smoke, and
fossil fuel soot [5]. Natural sources encompass volcanic ash, pollen, dust from forest
fires, and yellow dust [6]. Primary sources involve solid particles directly emitted, while
secondary sources generate PM2.5 through chemical reactions from gaseous substances in
the atmosphere [7–9].

PM2.5 is influenced by atmospheric precursors, industrial processes, forest fires, waste
incineration, and natural resource combustion [5,6,8]. In addition, PM2.5 has high trans-
portability, so it is evenly distributed in a large area, but it shows different distribution
patterns for each region depending on the source of the emission and the weather [10].

Given the regional variability in PM2.5 concentration, various geographic information
system methods have emerged, with the geographically weighted regression (GWR) model
proving effective for spatial PM2.5 analysis [11,12]. In a GWR analysis studying PM2.5,
O3, and weather factors [13], PM2.5 and O3 showed different correlations depending on
the season in the south and north, and the O3 concentration was highest when the PM2.5
concentration was approximately 50 µg/m3. In a study that conducted GWR analysis
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for PM2.5 and architectural environment [14], GWR was performed for surrounding ar-
chitectural environments, such as roads and green areas, revealing a positive correlation
between PM2.5 and areas with many artificial structures. The GWR model proves useful
in identifying spatially variable factors, providing a method to address issues interpreted
with a singular result, neglecting regional diversity [11]. GWR accounts for spatial diversity,
offering accurate insights into regional changes and factors [12]. In GWR model studies for
PM2.5, O3, and normalized difference vegetation index (NDVI), these variables, especially
O3 and NDVI, are commonly used and deemed valuable. This study focused on these two
independent variables due to their intricate interactions with PM2.5.

Therefore, this study sought to analyze the spatial distribution of PM2.5 using the
GWR model, with the goal of formulating region-specific countermeasures against PM2.5.
Building on this, a comparative analysis of PM2.5 with O3 and NDVI was conducted to
explore the characteristics of PM2.5 concentration in 2021 and discern spatial heterogeneity.

2. Materials and Methods
2.1. Study Area

This study encompassed South Korea, situated between longitudes 124◦ and 131◦

E and latitudes 33◦ and 38◦ N (Figure 1). South Korea experiences a range of climatic
influences, with cold and dry continental pressure prevailing in winter and hot and humid
oceanic pressure in summer. The annual average temperature is 13.2 ◦C, with minimum
and maximum annual averages of 8.9 ◦C and 17.5 ◦C, respectively. Annual precipitation
totals 1237.4 mm, with a concentration of 638.7 mm during the summer rainy season.
Positioned in the mid-latitude temperate zone, the region exhibits distinct seasonality [15].

Atmosphere 2024, 15, x FOR PEER REVIEW 2 of 18 
 

on the season in the south and north, and the O3 concentration was highest when the PM2.5 
concentration was approximately 50 µg/m3. In a study that conducted GWR analysis for 
PM2.5 and architectural environment [14], GWR was performed for surrounding architec-
tural environments, such as roads and green areas, revealing a positive correlation be-
tween PM2.5 and areas with many artificial structures. The GWR model proves useful in 
identifying spatially variable factors, providing a method to address issues interpreted 
with a singular result, neglecting regional diversity [11]. GWR accounts for spatial diver-
sity, offering accurate insights into regional changes and factors [12]. In GWR model stud-
ies for PM2.5, O3, and normalized difference vegetation index (NDVI), these variables, es-
pecially O3 and NDVI, are commonly used and deemed valuable. This study focused on 
these two independent variables due to their intricate interactions with PM2.5.  

Therefore, this study sought to analyze the spatial distribution of PM2.5 using the GWR 
model, with the goal of formulating region-specific countermeasures against PM2.5. Building 
on this, a comparative analysis of PM2.5 with O3 and NDVI was conducted to explore the 
characteristics of PM2.5 concentration in 2021 and discern spatial heterogeneity. 

2. Materials and Methods 
2.1. Study Area 

This study encompassed South Korea, situated between longitudes 124° and 131° E 
and latitudes 33° and 38° N (Figure 1). South Korea experiences a range of climatic influ-
ences, with cold and dry continental pressure prevailing in winter and hot and humid 
oceanic pressure in summer. The annual average temperature is 13.2 °C, with minimum 
and maximum annual averages of 8.9 °C and 17.5 °C, respectively. Annual precipitation 
totals 1237.4 mm, with a concentration of 638.7 mm during the summer rainy season. Po-
sitioned in the mid-latitude temperate zone, the region exhibits distinct seasonality [15]. 

Characterized by numerous mountain ranges, South Korea features complex coast-
lines along its eastern, southern, and western sides. The altitude varies, with the east ex-
hibiting higher elevations exceeding 1000 m, while the west remains predominantly be-
low 200 m (Figure 1). Over the years, South Korea has witnessed an increase in air pollu-
tants, attributed to rapid development and industrialization since the 1960s. The Seoul 
metropolitan area and some industrial cities, experiencing rapid economic growth, dis-
play significant differences in population density, leading to varied causes for air pollu-
tant distribution across different regions.  

 
Figure 1. (a) Geographical location and elevation profile of the study area, (b) Regional names in 
South Korea (yellow space represents metropolitan city, white space represents province). 

2.2. Dataset Materials 
2.2.1. Air Pollution Data 

Figure 1. (a) Geographical location and elevation profile of the study area, (b) Regional names in
South Korea (yellow space represents metropolitan city, white space represents province).

Characterized by numerous mountain ranges, South Korea features complex coastlines
along its eastern, southern, and western sides. The altitude varies, with the east exhibit-
ing higher elevations exceeding 1000 m, while the west remains predominantly below
200 m (Figure 1). Over the years, South Korea has witnessed an increase in air pollutants,
attributed to rapid development and industrialization since the 1960s. The Seoul metropoli-
tan area and some industrial cities, experiencing rapid economic growth, display significant
differences in population density, leading to varied causes for air pollutant distribution
across different regions.
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2.2. Dataset Materials
2.2.1. Air Pollution Data

This study utilized data spanning from 1 January to 31 December 2021. O3 and PM2.5
were designated as the focal air pollutants, and concentration data obtained from 619 air
pollution monitoring stations across 16 administrative districts in Korea were employed.
For O3, 8 h average data were utilized in adherence to the atmospheric environmental
standards of Korea, the United States, and Europe. The air pollutant data used in this study
for Korea are accessible as open data on Air Korea’s website (https://www.airkorea.or.
kr/web/, accessed on 1 March 2023, operating agency: Korea Environment Corporation,
Incheon, Republic of Korea). The PM2.5 and O3 data used in this study were measured by
the β-Ray Absorption Method and the U.V Photometric Method, respectively.

2.2.2. NDVI

NDVI is a method for assessing the vitality of vegetation by calculating the difference
between the red light absorbed by plants (400 to 700 nm) and the near-infrared ray reflected
by them (700 to 1100 nm). The NDVI value ranges from −1 to 1, with a value close to
1, indicating healthy and dense vegetation. The NDVI data in 2021 were derived from
MOD13Q1 (MODIS/Terra Vegetation Indices 16-Day L3 Global 250-m SIN Grid v006)
provided by NASA’s Terra satellite, launched in 1999. NDVI is accessible as open data on
EARTHDATA’s website (https://www.earthdata.nasa.gov/, accessed on 2 March 2023,
operating agency: NASA, Washington, DC, USA). NDVI is calculated using Equation (1),
where NIR represents the near-infrared ray, and Red represents the red light.

NDVI =
(NIR − Red)
(NIR + Red)

(1)

2.2.3. Meteorological Data

The meteorological data incorporated in this study encompass temperature, relative
humidity, precipitation, pressure, and wind speed. Daily average data from 95 Automated
Synoptic Observing System points in 2021 were processed into monthly averages, serving
as independent variables for PM2.5 prediction. These meteorological data are accessible as
open data on the Korea Meteorological Administration (KMA) portal (https://data.kma.
go.kr/, accessed on 2 March 2023, operating agency: KMA, Daejeon, Republic of Korea).

2.3. Methods

All data were transformed into monthly average data and spatially interpolated using
kriging with each measurement point and coordinate data. The analysis was conducted
with a 0.05◦ horizontal and vertical grid (approximately 5.5 × 7.9 km), centered around
Seoul for inland areas of Korea (excluding islands and coastlines). The GWR model was
constructed using the processed variables. Regression coefficients for the independent
variables of O3 and NDVI were examined through the GWR model to assess their spa-
tiotemporal correlations with PM2.5. To ensure uniformity, all variables, having different
units, were standardized for use in the GWR model.

2.3.1. Empirical Bayesian Kriging

Kriging, a spatial interpolation technique in geostatistics, predicts values at unmea-
sured locations based on measured data by assessing spatial dependence through a semivar-
iogram and calculating optimal weights [16]. In this study, the Empirical Bayesian kriging
(EBK) method was chosen among various kriging techniques. EBK employs the empirical
Bayesian method to analyze additional distributed structures and mitigate the impact of
abnormal variables and obtain improved results, even in limited cases [17]. Because of these
advantages, EBK was used. All EBK model results utilized in this study were generated
using ArcToolbox version ArcGIS Pro 2.8.

https://www.airkorea.or.kr/web/
https://www.airkorea.or.kr/web/
https://www.earthdata.nasa.gov/
https://data.kma.go.kr/
https://data.kma.go.kr/
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2.3.2. Pearson’s Correlation Coefficient Method

Pearson’s correlation analysis serves to identify the linear correlation between two
variables, measuring the strength and direction of this relationship. A value close to 1
indicates a strong positive correlation, while a value near −1 suggests a strong negative
correlation. A value near 0 signifies no correlation. In Equation (2), cov represents the
covariance between the two variables X and Y, and σX and σY denote the standard
deviations for each variable. PX,Y is the Pearson correlation coefficient value. The results
of Pearson’s correlation analysis in this study were obtained using IBM SPSS Statistics
version 26.

PX,Y =
cov(X, Y)
σX σY

(2)

2.3.3. Variance Inflation Factor

The variance inflation factor (VIF) is employed to assess multicollinearity among inde-
pendent variables. A rise in the VIF value indicates the presence of serious multicollinearity.
A VIF value exceeding 1 suggests the existence of multicollinearity, while a VIF higher than
10 is indicative of a significant risk of analytical errors due to severe multicollinearity [18].
In Equation (3), VIF_i represents the VIF value of the i-th independent variable, and Ri

2

denotes the R2 value obtained from the regression analysis results for the i-th variable with
other independent variables. The VIF results utilized in this study were computed using
IBM SPSS Statistics version 26.

VIFi = 1 /
(

1 − Ri
2
)

(3)

2.3.4. Global Moran’s Index

Global Moran’s index (Moran’s I) is a method for analyzing spatial autocorrelation, as-
sessing the spatial cohesion of data on a scale from −1 to 1 [19]. When Moran’s I approaches
1, neighboring regions exhibit similar values, while values close to −1 indicate opposing
values in neighboring regions. Moran’s I nearing 0 signifies no spatial autocorrelation.
In Equation (4), I is the Global Moran’s index value. xi and xj represent measurements
corresponding to i and j, respectively. S2 is the sample variance, Wij is the spatial weight
matrix, and x is the average of all measurements. n is the number of observation points.
The Moran’s I results utilized in this study were computed using ArcToolbox version
ArcGIS Pro 2.8.

I =
∑n

i=1 ∑n
j=1 Wij (xi − x)

(
xj − x

)
S2∑n

i=1 ∑n
j=1 Wij

(4)

2.3.5. GWR Model

GWR is a regression analysis model that assigns weights based on geographic loca-
tions. Unlike fixing one regression coefficient for all measurements, GWR utilizes different
regression coefficients by region. This model estimates optimal regression coefficients in
each region, considering regional characteristics. In this study, the minimum corrected
Akaike’s information criterion value was employed to derive the optimal GWR model. In
Equation (5), yi represents the dependent variable. xik is the k-th independent variable,
ui and ai are the coordinates of the is the measurement, βk is the regression coefficient of
the independent variable, and εi is the error term. The GWR model results used in this
study were computed using ArcToolbox version ArcGIS Pro 2.8.

yi = β0 (ui , αi) + ∑p
i=1 βk (ui , αi) xik + εi (5)

3. Results and Discussion
3.1. Analysis of Independent Variable Data

Figure 2 illustrates the daily and monthly averages of air pollutants and meteorological
data used in this study for 2021, aggregated from all measurement stations. For precipita-
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tion, the daily sum was considered instead of the daily average. Figure 3 is a histogram
that shows how the entire data are distributed. NDVI provided statistical results based
on monthly data, indicating a peak in August with an average of approximately 0.7910
and the lowest point in January, with an average of 0.3768. O3, temperature, humidity,
and precipitation showed an increasing trend in July and August and a decreasing trend
in January and December. In contrast, wind speed and atmospheric pressure increased
in January and December and decreased in July and August. This finding aligns with
previously reported meteorological patterns and air pollutant trends in South Korea [15,20].
Given the distinct four seasons in South Korea, the NDVI reached its peak value in August,
corresponding to the northern hemisphere’s summer. Additionally, elevated temperatures,
humidity, and precipitation were observed in July and August, coinciding with the warm
summer season and the rainy season in South Korea.
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The daily average concentration of O3 reached its highest value (approximately
0.077 ppm) on 6 June and its lowest (0.011 ppm) on 22 January, gradually increasing
from January and decreasing from June (Figure 2a). The monthly average concentration
of O3 peaked (approximately 0.053 ppm) on 6 June and hit its lowest point (0.025 ppm) in
December (Figure 2a). O3 concentration varied by month, being higher in relatively warm
southern regions and lower in mountainous areas with abundant forests. The annual aver-
age temperature was 13 ◦C, with the daily average temperature reaching its highest (28 ◦C)
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on 5 August and lowest (−11 ◦C) on 8 January (Figure 2b). The temperature gradually
increased from 1 January and then decreased from August (Figure 2b). The annual average
relative humidity was approximately 71%, with the lowest humidity (around 40%) on
23 February and the highest (96%) on 16 May (Figure 2c). It was humid across the country
from July to October and dry in January and December (Figure 2c). The daily average wind
speed reached its lowest (0.9 m/s) on 14 February and its highest (4.8 m/s) on 17 February.
Daily wind speed fluctuations were significant, with the maximum and minimum wind
speeds occurring within three days and the annual average value being 1.9 m/s (Figure 2d).
Daily wind speed changes decreased in July and August and increased in January and
December (Figure 2d). The annual average atmospheric pressure was 1004 hPa, with the
lowest atmospheric pressure (approximately 989 hPa) on 31 July and the highest (1021 hPa)
on 28 November (Figure 2e). Atmospheric pressure decreased from January to July and
increased from July to December (Figure 2e). Precipitation across the country in 2021 was
approximately 1244 mm, with the highest precipitation (around 62 mm) observed on 6 July
(Figure 2f). The monthly average precipitation was highest (approximately 9.2 mm) in
August (Figure 2f). In the climate reports spanning from 1912 to 2017, the average tempera-
ture in Korea was 13.2 degrees Celsius, and the annual precipitation averaged 1237.4 mm,
similar to the previously reported climate in 2021 [15].
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3.2. Spatiotemporal Distribution Characteristics of PM2.5

Figure 4 displays the monthly average PM2.5 concentration and Moran’s I in 2021. The
annual average PM2.5 concentration was approximately 18 µg/m3, exceeding the Korean
annual average atmospheric environmental criterion of 15 µg/m3. Additionally, the 24 h
average atmospheric environmental criterion (35 µg/m3 or less) was surpassed for 29 days
in 2021. The monthly average concentration was at its lowest (approximately 8.3 µg/m3)
in September and peaked (27 µg/m3) in March. PM2.5’s Moran’s I ranged from 0.76 to
0.93, significant at the 99% level, indicating spatial autocorrelation. This suggests that the
PM2.5 concentration is similar and interdependent between regions. Monthly Moran’s I
and average concentration exhibited similar changes, with significant differences caused
by small concentration variations as the PM2.5 concentration decreases. In South Korea,
PM2.5 concentrations are elevated between November and March, and the concentration is
high in the central region including Seoul [20]. The reason for this is that inflows, industrial
complexes, high transportability, traffic volume, and heating fuels are being discussed
from abroad, but it is difficult to know the exact reason. In addition, PM2.5 showed large
regional characteristics, and Moran’s I showed a high value because of the characteristics
of higher concentration in the central region compared to other regions.
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Figure 5 depicts the spatial interpolation of PM2.5 concentration in 2021 using kriging.
The concentration was relatively high in western regions, including Seoul, compared
to eastern and southern regions where it was relatively low. The increase in the PM2.5
concentration during winter is influenced by air pollutants from abroad, increased fossil
fuel consumption, and the descent of the atmospheric boundary layer [21,22].

3.3. Pearson’s Correlation Analysis

In Figure 6, the monthly Pearson’s correlation analysis results between PM2.5 and six
independent variables are presented. Pearson’s correlation coefficient ranges from −1 to 1.
The correlation coefficient between PM2.5 and O3 was highest (0.747) in July and lowest
(−0.777) in November. This correlation decreased from July to November and increased
from November to July. PM2.5 and NDVI exhibited a negative correlation, with the highest
value (−0.624) observed in November. The correlation between PM2.5 and temperature
mirrored O3, reaching its peak (0.523) in September.
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The correlation between PM2.5 and humidity showed high values in January (0.427),
May (0.423), and December (0.576). PM2.5 and precipitation displayed a consistent negative
correlation throughout the year, with the lowest coefficient in February (−0.555) and Octo-
ber (−0.506). PM2.5 and atmospheric pressure showed a positive correlation throughout
the year, with the highest coefficient (0.406) in September. The correlation coefficient of
PM2.5 and wind speed was lowest in January (−0.479) and December (−0.481), following a
similar trend to O3.

Considering the notable correlations of O3 in July (0.747), November (−0.777), and
December (−0.734), multicollinearity issues in the GWR model regression analysis are
a potential concern. In previous studies, the correlation coefficient between PM2.5 and
ozone was largely over 0.7, and NDVI also showed a high correlation [23,24]. While it
is acknowledged that this correlation may vary over time and space, an overall strong
correlation is anticipated. Among the independent variables, O3 exhibited the highest
correlation with PM2.5, followed by NDVI, temperature, atmospheric pressure, relative
humidity, precipitation, and wind speed.
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3.4. Multicollinearity Analysis

In Figure 7, the monthly VIF values for seven independent variables are presented.
VIF measures the correlations between independent variables, and a value exceeding
10 indicates serious multicollinearity [18].
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Among all independent variables, temperature exhibited the highest VIF, reaching
a maximum of approximately 8.8 in October. Atmospheric pressure showed the next
highest VIF, with a maximum value of 5.38 observed in August. The remaining inde-
pendent variables maintained values below three throughout the period, indicating low
multicollinearity. Although VIF was elevated for temperature and atmospheric pressure
compared to other variables, it remained below 10 for all independent variables.

3.5. GWR Model Analysis
3.5.1. Analysis of the Coefficient of Determination

In Figure 8, the results of the coefficient of determination (R²) and adjusted-R² (AdjR²)
for the GWR model are presented for the dependent variable (PM2.5) and seven independent
variables (O3, NDVI, temperature, relative humidity, wind speed, atmospheric pressure,
and precipitation), along with scatter plots for March and August. R² ranged from 0.9116
to 0.9736, and AdjR² ranged from 0.9739 to 0.9083 (Figure 8). Among the monthly results,
March exhibited the highest coefficient of determination, with R² and AdjR² values of 0.9748
and 0.9739, respectively. August showed the lowest coefficient of determination, with R²
and AdjR² values of 0.9116 and 0.9083, respectively (Figure 8). R² and AdjR² exceeded 0.95
from November to March, and they were relatively low from March to October (Figure 8).
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To assess the model’s accuracy, R² was compared with a previous study that evaluated
the suitability of the GWR model [23]. The purpose of comparing our study with previous
research is to assess the reliability of the coefficient of determination produced by the
GWR model we employed. The previous study introduced five GWR models: a simple
GWR model, GWRK combining GWR and kriging, GWR-EBK combining GWR and EBK,
GWR-TSF combining GWR and tensor spline function, and GWR-CRS combining GWR
and completely regularized spline function. R² ranged from 0.662 to 0.924 for GWR, 0.893
to 0.998 for GWRK, 0.844 to 0.957 for GWR-EBK, 0.863 to 0.998 for GWR-TSF, and 0.959 to
0.999 for GWR-CRS.

In this study, the GWR model’s R² was consistently high, even though it was higher
compared to GWR and GWR-EBK and lower compared to GWRK and GWR-TSF in the
previous study [23]. The GWR model in this study exhibited high performance, explaining
more than 90% of the total data, even without combining with other models and functions.

3.5.2. Spatiotemporal Heterogeneity Analysis

In Figure 9, the regression coefficient of O3 from the GWR model results is presented.
The analysis compares and examines the regression coefficients of PM2.5 and O3 for June
and December, representing months with the minimum and maximum monthly average O3
concentrations. Additionally, regions with maximum and minimum regression coefficient
values are selected for detailed analysis (Figure 9).

In June, the regression coefficient of PM2.5 and O3 was low (approximately −0.52 to
−0.36) in the eastern part of Gangwon province (Figure 9a) and high (0.89 to 1.04) in the
southeastern part of Jeollabuk province (Figure 9b). In the region shown in Figure 9a,
the O3 concentration changed from 0.042–0.046 to 0.046–0.057 ppm, and the PM2.5 con-
centration changed from 11–14 to 14–17 µg/m3. Notably, the O3 concentration increased
toward the left side of the region, while the PM2.5 concentration increased toward the
right side, resulting in a relatively low regression coefficient (Figure 9a). Conversely, in
the region displayed in Figure 9b, the O3 concentration decreased from 0.056–0.060 to
0.053–0.056 ppm, and the PM2.5 concentration also decreased from 20–26 to 14–20 µg/m3.
This region exhibited a relatively high regression coefficient because the concentrations of
both substances decreased in the same spatial context (Figure 9b).

In December, the regression coefficient of O3 was low (−1.33 to −1.11) in the northern
part of Chungcheongbuk province (Figure 9c) and high in the western part of Gyeongsang-
buk province (Figure 9d). In the region depicted in Figure 9c, the O3 concentration
increased from 0.018–0.023 to 0.023–0.028 ppm, while it decreased from 0.028–0.034 to
0.023–0.028 ppm simultaneously. Additionally, the PM2.5 concentration increased from
17–20 to 20–24 µg/m3 and decreased from 24–27 to 20–24 µg/m3. However, the O3 concen-
tration was high in the northeastern and southwestern parts and low in the northwestern
and southeastern parts, while the PM2.5 concentration exhibited the opposite pattern, re-
sulting in a low regression coefficient (Figure 9c). In the region illustrated in Figure 9d,
the O3 concentration increased from 0.018–0.023 to 0.023–0.028 ppm, and the PM2.5 con-
centration increased from 20–24 to 24–27 µg/m3, leading to a high regression coefficient.
Despite the opposite directions of increasing and decreasing for PM2.5 and O3, a high local
PM2.5 concentration in the region contributed to the observed high regression coefficient
(Figure 9d).

PM2.5 and O3 exhibit a complex correlation, and various studies have investigated their
mutual effects from diverse angles. The common cause of O3 and secondary organic aerosol
(SOA) generation lies in atmospheric oxidation reactions, with NOx and volatile organic
compounds (VOCs) typically increasing together, garnering attention as contributors to
both PM2.5 and O3 [25,26]. While previous research noted regional disparities in the
correlation between O3 and PM2.5, with a reported low correlation in the north and high in
the south [24], this study found a different pattern. In June, the regression coefficient was
higher in the west and lower in the east, contrary to the north–south distinction. Korea’s
topography, with higher elevations in the east and lower elevations in the west, leads to
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higher temperatures in the west. This topographical variation likely contributed to the
observed difference in the regression coefficient of PM2.5 and O3.
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In the west, characterized by a substantial influx of pollutants from external sources,
numerous power plants, and industrial facilities, the regression coefficient of PM2.5 and
O3 decreased from the range of −0.52 to 1.04 in June to the range of −1.33 to 0.86 in
December. During winter, the atmospheric boundary layer descends, resulting in increased



Atmosphere 2024, 15, 69 13 of 18

PM concentration due to low temperatures, while the O3 concentration decreases due to
scattered sunlight and photolysis inhibition [24,27]. This overall reduction in the regression
coefficient in December, attributed to low temperatures compared to June, is indicative
of the seasonal influence on the relationship between PM2.5 and O3 (Figure 9). The ob-
served regional differences and seasonality in the regression coefficient are likely linked to
temperature variations, solar radiation, and the distribution of air pollutants.

Figure 10 illustrates the monthly NDVI in 2021. August recorded the highest average
NDVI (0.79) in Korea compared to other months, while January exhibited the lowest value
(0.37) (Figure 10). NDVI was relatively higher in metropolitan cities than in provinces, with
lower values in the west and higher values in the east (Figure 10). In January, NDVI was
low (0.16 to 0.28) in the west but high (0.51 to 0.75) in certain eastern regions (Figure 10). In
Korea, NDVI serves not only as a vegetation index but also as an indicator of seasonality,
population distribution, and land use.
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Figure 11 displays the monthly regression coefficients of PM2.5 and NDVI from the
GWR model results. The circular graph represents the ratio between positive (red) and
negative (green) regression coefficients for each month. Overall, the regression coefficients
of PM2.5 and NDVI predominantly showed negative values. Specifically, at least 68% of the
regions in July and up to 88% of the regions in November exhibited negative regression
coefficients (Figure 11). This suggests that vegetation had a positive impact on PM2.5
reductions in Korea.
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For all periods, the regression coefficient of PM2.5 and NDVI was notably high in
the Chungcheongbuk province (Figure 11). The province, characterized as an industrial
region with 95 industrial complexes as of December 2021, experiences severe air pollution
due to the substantial influx of external pollutants [28]. The dense vegetation in the
eastern and southern parts of the province, owing to the presence of mountain ranges,
likely contributed to the elevated regression coefficient in this region, associated with
increased concentrations of both PM2.5 and NDVI. The PM2.5 concentration might also
escalate due to chemical reactions involving substances emitted from vegetation, such as
BVOCs. Vegetation’s relationship with PM2.5 is intricate, exhibiting a positive impact by
generating BVOCs and participating in the formation of SOA [29–31] and a negative impact
by adsorbing and removing PM [32,33]. NDVI, indirectly representing elevation in Korea,
is likely to increase PM2.5 concentration in the Chungcheongbuk province by interfering
with air flow. Mountain ranges can induce high PM concentrations by causing atmospheric
stagnation [34]. In this province, pollution accumulates in winter and spring due to wind
carrying high pollution from Seoul, with surrounding mountain ranges impeding the
diffusion of pollutants [28]. The relatively high regression coefficient of PM2.5 and NDVI in
the province is presumed to result from a combination of various factors.

Furthermore, a distinct difference in NDVI between the southern/eastern regions
and the remaining regions is observed in November, with negative regression coefficients
evident in a large area (88%) compared to other months (Figures 10 and 11). The regression
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coefficient of PM2.5 and NDVI is low when NDVI changes, tending to increase as NDVI
rises nationwide, reducing regional differences, as seen in July and August (Figures 10
and 11). For all periods, the regression coefficient is relatively low in Seoul and the Gyeonggi
province (Figure 11). In these regions, NDVI covers a wide range, from low values (0.03 to
0.16) to high values (0.76 to 0.88), with noticeable changes in NDVI (Figure 10). These
characteristics likely contribute to the observed low regression coefficients.

These findings affirm that alterations in vegetation exert varying effects on the PM2.5
concentration by region, generally indicating that vegetation has a positive impact on
PM2.5 reduction.

In summary of the GWR model results, variations in the regression coefficients of PM2.5
and O3 in June and December were observed across regions. In June, lower coefficients were
noted in the eastern part of the Gangwon province, contrasting with higher coefficients in
the southeastern part of the Jeollabuk province. Conversely, in December, lower coefficients
were found in the northern part of the Chungcheongbuk province, while higher coefficients
were present in the western part of the Gyeongsangbuk province. These regional differences
in regression coefficients are likely influenced by topographic features, weather patterns,
and the locations of sources of air pollution. In the analysis of the relationship between
PM2.5 and NDVI, a generally negative regression coefficient was observed, with November
displaying the largest area of negativity, indicating a positive impact of vegetation on
PM2.5 reduction. Across all periods, the regression coefficient of PM2.5 and NDVI was
notably high in the Chungcheongbuk province, suggesting intricate interactions involving
industrial complexes, mountain distribution, vegetation, and air pollution in this region.

Policies addressing air pollutants have led to regional imbalances and inefficiencies.
To enhance the effectiveness of pollution reduction measures, it is crucial to tailor policies
to the unique characteristics of each region. In this study, a GWR model was developed,
utilizing PM2.5 in Korea as the dependent variable and O3, NDVI, temperature, humidity,
wind speed, precipitation, and atmospheric pressure as independent variables. The focus
was particularly on analyzing the spatiotemporal correlations among PM2.5, O3, and NDVI.

The results of the analysis revealed that the monthly average concentration of O3 was
highest (approximately 0.053 ppm) in June and lowest (0.025 ppm) in December. NDVI
reached its highest monthly average value (approximately 0.79) in August and its lowest
(0.37) in January. Furthermore, the monthly average concentration of PM2.5 peaked in
March (27 µg/m3) and reached its lowest point in September (8.3 µg/m3), with elevated
levels observed in the Seoul metropolitan area. The annual average PM2.5 concentration
was approximately 18 µg/m3, surpassing the annual average atmospheric environmental
criterion (15 µg/m3) by approximately 3 µg/m3. PM2.5’s Moran’s I ranged from 0.76 to
0.93, indicating a similarity and interdependence in PM2.5 concentrations across regions.

In Pearson’s correlation analysis, O3 exhibited the highest correlation with PM2.5,
followed by NDVI, temperature, atmospheric pressure, relative humidity, precipitation, and
wind speed. Multicollinearity was assessed using VIF values, with no variable exceeding
the critical value of 10, signifying a lack of serious multicollinearity. The GWR model
demonstrated varying R2 values, with the highest (0.9748) observed in March and the lowest
(0.9116) in August. Comparatively, the model exhibited strong performance compared to a
previous study [23].

In the GWR model, the regression coefficient of PM2.5 and O3 tended to be higher in
the west and lower in the east, with December showing lower coefficients compared to
June. These disparities are likely attributed to regional differences in precursor sources
(e.g., SOx, NOx, and VOCs), temperature, and variations in solar radiation. The regression
coefficient of PM2.5 and NDVI consistently showed negative values, ranging from 68% to
88% across regions. Notably, coefficients were lower in Seoul and the Gyeonggi province
but higher in the Chungcheongbuk province. This suggests that the PM2.5 reduction effect
of vegetation is more pronounced in urban areas like Seoul and the Gyeonggi province
compared to suburban regions. In the Chungcheongbuk province, characterized by sur-
rounded mountain ranges and dense vegetation, the air flow stagnation likely contributed
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to the high regression coefficient of PM2.5 and NDVI. Excluding specific terrains, such
as the Chungcheongbuk province, vegetation generally exhibited a positive impact on
PM2.5 reduction.

It is important to acknowledge the limitations in this study, such as errors in NDVI
and insufficient measurement points. NDVI errors may arise due to cloud interference,
particularly during the rainy season in summer. The choice of the inverse distance weighted
(IDW) method for spatial interpolation, while potentially better for representing local
features than kriging, has its drawbacks. Kriging was chosen in this study to address areas
with limited measurement points, reducing errors in such regions. However, the local
features captured by IDW were sacrificed. In regions with ample measurement points,
employing IDW may reveal regional characteristics more accurately during spatial analysis.

4. Conclusions

GWR proves to be a valuable tool for discerning spatiotemporal correlations between
PM2.5 and various factors, showcasing its reliability. These attributes can extend beyond
PM2.5 analysis, aiding in the examination of other air pollutants and facilitating the identifi-
cation of regional correlations. In the GWR regression coefficient findings, the correlation
between PM2.5 and O3 was more pronounced in summer than in winter. This under-
scores the necessity for summer-specific management strategies, with a particular focus
on addressing VOCs and NOx, common contributors to both PM2.5 and O3. Notably, the
substantial impact of NDVI on PM2.5 reduction in metropolitan areas suggests the potential
for efficient PM reduction through prioritized initiatives, such as urban forest installations.

In mountainous regions, measures should be implemented to counter the phenomenon
where mountain ranges intensify PM concentrations by impeding airflow. Proactive plan-
ning during urban development or strategies to enhance air flow in cities can serve as
viable solutions to prevent the atmospheric stagnation induced by mountainous terrain.

Given the regional variations in air pollutants, influenced by factors, such as terrain,
climate, artificial structures, and generation mechanisms, identifying the specific causes of
increased pollutant concentrations in each region is crucial for public health. The study
results contribute significantly to understanding regional air pollution patterns, enabling
the formulation of tailored policies for effective pollution management. Emphasizing the
impact of vegetation in these policies is crucial. Continuous air pollution monitoring and
the development of improved prediction models are recommended for effective pollution
management. The findings of this research extend beyond Korea, offering valuable insights
for air pollution management in diverse geographical areas and contributing to the formu-
lation of global policies aimed at environmental preservation and health improvement.
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