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Abstract: Accurate sea surface temperature (SST) prediction is vital for disaster prevention, ocean
circulation, and climate change. Traditional SST prediction methods, predominantly reliant on
time-intensive numerical models, face challenges in terms of speed and efficiency. In this study,
we developed a novel deep learning approach using a 3D U-Net structure with multi-source data
to forecast SST in the South China Sea (SCS). SST, sea surface height anomaly (SSHA), and sea
surface wind (SSW) were used as input variables. Compared with the convolutional long short-term
memory (ConvLSTM) model, the 3D U-Net model achieved more accurate predictions at all lead
times (from 1 to 30 days) and performed better in different seasons. Spatially, the 3D U-Net model’s
SST predictions exhibited low errors (RMSE < 0.5 ◦C) and high correlation (R > 0.9) across most of
the SCS. The spatially averaged time series of SST, both predicted by the 3D U-Net and observed
in 2021, showed remarkable consistency. A noteworthy application of the 3D U-Net model in this
research was the successful detection of marine heat wave (MHW) events in the SCS in 2021. The
model accurately captured the occurrence frequency, total duration, average duration, and average
cumulative intensity of MHW events, aligning closely with the observed data. Sensitive experiments
showed that SSHA and SSW have significant impacts on the prediction of the 3D U-Net model, which
can improve the accuracy and play different roles in different forecast periods. The combination
of the 3D U-Net model with multi-source sea surface variables, not only rapidly predicted SST in
the SCS but also presented a novel method for forecasting MHW events, highlighting its significant
potential and advantages.

Keywords: sea surface temperature; deep learning; 3D U-Net model; marine heat waves; South
China Sea; multi-source data

1. Introduction

As an important parameter for oceanic systems, the sea surface temperature (SST)
is crucial for exchanging energy, momentum, and moisture between the ocean and the
atmosphere [1–3]. Changes in SST can affect air–sea interaction, circulation patterns, and
precipitation, subsequently influencing a range of weather, oceanic, and climate phenom-
ena [4,5], such as El Niño–Southern Oscillation [6], Indian Ocean Dipole (IOD) [7,8], and
coral bleaching [9]. Furthermore, variations in SST are also important for the formation,
evolution, and trajectory of tropical cyclones [10–12]. Consequently, accurate prediction of
SST is essential for detecting oceanic extreme events and enhancing our understanding of
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ocean and climate change. However, accurate prediction of SST remains challenging, espe-
cially in regions with high variability, due to complex dynamic and thermal processes at
the air–sea interface, including ocean waves [13], turbulence [14], and radiation fluxes [15].

The South China Sea (SCS), a semi-enclosed marginal sea located in the southeastern
part of the Asian continent, plays an important role in global climate patterns due to its
location within the Indo-Pacific warm water pool, known for its higher SST [16]. Through
various straits, it connects to the Pacific Ocean, the Indian Ocean, and other seas. Due to
the unique geographical position of the SCS, combined with the influence of monsoons,
a complex circulation system has resulted [17], as illustrated in Figure 1. The variability
of SST in the SCS, typically following a southwest–northeast gradient with temperatures
rising from north to south, is significantly impacted by this system [18]. The distinct
geographical characteristics and complex circulation patterns of the SCS make its SST
variations particularly important. For example, a rise in SST can intensify monsoon activity,
altering regional precipitation patterns [19]. Additionally, higher SST in the SCS can lead to
coral bleaching, impacting the rich biodiversity within and around these waters [9]. Conse-
quently, accurately predicting these SST changes is crucial for understanding regional ocean
circulation and the broader effects of climate change. However, this prediction is highly
challenging, owing to the significant variations in heat flux, radiation, and wind stress.
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Currently, SST prediction methods are mainly divided into physics-based and data-
driven methods. Physics-based models, while offering detailed representations of ocean
dynamics, are computationally demanding because they need to account for complex
dynamic and physical processes in the ocean [20–22]. In contrast, data-driven statistical
methods and machine learning models are gradually being applied to predicting SST by
accumulating oceanic data and technological advancements. These methods, including
Markov models [23,24], canonical correlation analysis [25], linear regression [26], and sup-
port vector machine (SVM) [27], use historical data to discern patterns and relationships.
While these approaches are computationally more efficient, they generally lack the complex-
ity of their numerical counterparts, focusing primarily on pattern recognition and statistical



Atmosphere 2024, 15, 86 3 of 20

inference. This simplicity limits their effectiveness in capturing the nonlinear dynamics of
ocean processes, often resulting in lower predictive accuracy than numerical models.

Due to the powerful nonlinear feature extraction capabilities, deep learning models
developed through advancements in artificial intelligence technology have been increas-
ingly applied in predicting SST. Various models such as back propagation neural net-
works (BPNN) [28], wavelet neural networks (WNN) [29], convolutional neural networks
(CNN) [30], and long short-term memory (LSTM) [31,32] have demonstrated efficacy in
predicting SST and its related phenomena. For example, Xiao et al. [33] used an AdaBoost
model combined with LSTM to predict SST anomalies (SSTA), outperforming conventional
models like support vector regression (SVR) and BPNN in the East China Sea. Furthermore,
Yang et al. [34] integrated LSTM with convolutional layers for improved SST prediction
accuracy, outperforming traditional SVR and fully connected LSTM methods. Similarly,
the U-Net–LSTM model by Taylor and Feng [35] combined 2D convolution with LSTM
for monthly mean SST prediction, effectively aiding forecasting phenomena like El Niño.
Despite these advancements, most studies, including those in the SCS by Song et al. [36]
and Hao et al. [37], have primarily utilized single-variable predictions, overlooking the
interplay between different oceanic variables. This approach often limits the physical sig-
nificance and overall accuracy of the models. Previous studies indicate that multivariable
inputs often lead to better forecasting outcomes. Shao et al. [38] established an advanced
model with physical information, which combined the multivariate empirical orthogonal
functions (MEOF) and Conv1D–LSTM, using sea surface height anomaly (SSHA) and
SST for short-term prediction, and considered the correlation between different variables.
This model exhibited strong performance in both normal and extreme weather conditions.
Recently, Miao et al. [39] also reached similar conclusions. Based on a multivariate CNN
model, they used SSTA, wind speeds, and surface current velocity as input variables to
predict SSTA, achieving more accurate forecasts.

In summary, while deep learning has significantly enhanced SST prediction capabili-
ties, research specifically focused on the SCS remains limited. Existing models often focus
on single-point predictions or individual variables, overlooking the complex interplay
among different variables, which can diminish their physical relevance and accuracy. Their
forecasting accuracy also requires further improvement. To solve these limitations, a novel
deep learning model based on the 3D U-Net architecture is introduced in this study. This
model has been designed to effectively capture the intricate correlations between multiple
sea surface variables and extract spatiotemporal features. Its application marks a significant
advancement in SST prediction for the SCS, potentially enhancing the model’s accuracy and
physical relevance. The remaining parts of this study are organized as follows: Section 2
details the various sea surface data of the SCS used in the study and the SST prediction
models established. The presentation and evaluation of the results are in Section 3. Section 4
is the summary and discussion of the study.

2. Data and Methods
2.1. Data

This study focuses on the SCS region, specifically between 105◦ E and 122.5◦ E lon-
gitude and 0◦ to 23◦ N latitude, as shown in Figure 1. The Sulu and Celebes Seas are not
included to avoid their impact on the prediction and result analysis. Considering previous
research conclusions and the quality and accessibility of data from satellite remote sensing,
we chose SST, sea surface wind (SSW), and SSHA as our input parameters in this study.
These were selected for their demonstrated relevance in predicting SST patterns, as well as
for the reliability of the data associated with them.

The SST data used in this study were obtained from the National Oceanic and Atmo-
spheric Administration (NOAA) Daily Optimum Interpolation SST (OISST) version 2.1
dataset [40], with a resolution of 0.25◦. The dataset is a composite of multiple SST data
sources, filling gaps with optimum interpolation techniques. This dataset encompassed a
period from September 1, 1981, to the present.
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The SSW data were obtained from the Cross-Calibrated Multi-Platform (CCMP)
dataset v2.0 [41], with a resolution of 0.25◦. The dataset was composed of eastward
SSW (ESSW) and northward SSW (NSSW) from 10 July 1987 to the present, with a temporal
resolution of one-fourth of a day.

Lastly, the SSHA data were obtained from the Collecte Localisation Satellites (CLS,
France), produced by the Copernicus Marine and Environmental Monitoring Service
(CMEMS). This dataset integrates data from multiple satellite altimeters covering the global
ocean. It provided daily SSHA from 1 January 1993 to 4 August 2022 at a spatial resolution
of 0.25◦.

Given the accessibility of the sea surface data, the selected duration for this study was
extended from 1 January 1993 to 31 December 2021. For model training, data spanning
from 1 January 1993 to 31 December 2020 were used, with a random selection of 80% for the
training set and the remaining 20% for validation. Subsequently, the model’s performance
in predicting SST was evaluated using a separate test set, which comprised data from
1 January 2021 to 31 December 2021. For the convenience of calculation and model training,
we averaged the SSW data, originally recorded at six-hour intervals, to a daily time scale.
Finally, all input variables for the model were daily data with a spatial resolution of 0.25◦.
The data summary and regional information are shown in Table 1. All data were normalized
before being used in model training, and any land portions within the study area were
filled with zeros. The normalization formula is as follows:

x′ =
x − mean

std
=

x − ∑n
i=1 xi

n√
∑n

i=1(xi−x)2

n

(1)

Table 1. The data summary and regional information used in this study.

Index Details

Study Area 105◦ E–122.5◦ E, 0◦–23◦ N South China Sea

Data

SST 1993–2021 NOAA
0.25◦ × 0.25◦

Daily
SSHA 1993–2021 CMEMS

SSW (ESSW, NSSW) 1993–2021 CCMP

Training set 1993–2020

Testing set 2021

2.2. Methods

This study proposes a 3D U-Net model using multi-source sea surface variables for pre-
dicting the daily SST in the SCS. While the U-Net method has been widely used in various
forecasting tasks [42–44], the basic U-Net structure, as created by Ronneberger et al. [45],
was primarily developed for processing two-dimensional data, such as images, and is
mainly used to extract spatial information features. Its structure was not designed with an
ability to extract feature information between multiple variables in prediction tasks.

Therefore, to better accommodate multiple marine surface variables when predicting
the SST of the SCS, we modified the 2D operations in the U-Net model to their correspond-
ing 3D operations and thus constructed the 3D U-Net model [46]. This modification enabled
the model to process feature information not just in spatial dimensions but also along the
temporal domain. Specifically, this structure enabled the feature maps in the convolutional
layer to connect with multiple time sequences from the previous layer, thereby acquiring
their feature information. Formally, the value at location (x, y, z) on the jth feature map in
the ith layer is represented as [47]:

vxyz
ij = tan h

(
bij + ∑m ∑Pi−1

p=0 ∑Qi−1
q=0 ∑Ri−1

r=0 wpqr
ijmv(x+p)(y+q)(z+r)

(i−1)m

)
(2)
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where tanh (·) refers to the hyperbolic tangent function. The term bij represents the bias
associated with the given feature map. Ri represents the value of the convolutional kernel
in temporal dimension, while Pi and Qi correspond to the kernel’s height and width,
respectively. The wpqr

ijm denotes the weight value at position (p, q, r) for the convolutional
kernel, and m is the index of the feature map.

By applying convolution calculations in multiple dimensions, the 3D U-Net model
can discern intricate correlations and extract critical feature information across multiple
variables. This multi-dimensional convolution approach is particularly effective when pre-
dicting SST, as it allows for the simultaneous consideration of various variables, including
SST, SSW, and SSHA. Maintaining the temporal continuity of these variables is a significant
advantage of this method, which is essential for enhancing the accuracy of prediction.

After conducting multiple experiments and analyzing the constraints of the model
structure, we determined that utilizing a historical data window of 64 days would opti-
mally predict SST for a future period of 30 days. The flowchart of the 3D U-Net model
employed in this study is shown in Figure 2a. We adopted the 3D U-Net model and the
joint strategy, using the historical 64-day SST, SSHA, ESSW, and NSSW, to forecast SST over
the subsequent 30 days.
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The encoder of the 3D U-Net model utilizes convolution and pooling operations in
both spatial and temporal dimensions to capture variations in sea surface variables across
different regions and times, enabling it to effectively learn relevant features. Subsequently,
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the decoder segment uses the features identified by the encoder to perform deconvolution
and upsampling processes to map these features back to their original spatial and temporal
scales, generating the prediction of future SST values, thereby accomplishing the task of
forecasting SST in the SCS.

This is the first time the multivariable 3D U-Net model has been used for SST predic-
tion in the SCS, representing a significant step forward in methodological approach. To
thoroughly evaluate the performance of the 3D U-Net model, the ConvLSTM model, a
widely recognized deep learning model shown in Figure 2b, was selected for comparison.
The ConvLSTM model was proposed by Shi et al. [48] to address the shortcomings of the
LSTM model in extracting two-dimensional spatial information. By adding convolution
operations to the LSTM model, the ConvLSTM can learn and extract features in both
temporal and spatial dimensions simultaneously. The model integrates current input and
past states for predictions, governed by the input gate it, forget gate ft, and output gate ot.
This controls the memory cell Ct and its final state Ht, enabling efficient spatiotemporal
feature extraction. The primary equations of this process are as follows:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f

)
Ct = ft ◦ Ct−1 + it ◦ tan h(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)
ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo)
Ht = ot ◦ tan h(Ct)

(3)

where σ represents the sigmoid activation function, which can map values to a range
between 0 and 1, ∗ denotes the convolutional operation introduced into the model, ◦
represents the Hadamard product, while tanh (·) denotes the hyperbolic tangent function.
A comparison between our 3D U-Net model and the ConvLSTM model is particularly in-
sightful. While the ConvLSTM model brings its strengths in handling spatiotemporal data,
our 3D U-Net model introduces an innovative approach to multivariable integration for
SST prediction. This comparative analysis aims to showcase the potential advantages and
limitations of each model, providing a comprehensive understanding of their applicability
in SST prediction within the unique context of the SCS.

Parameterization plays a key role in training deep learning models, often serving as a
crucial determinant of their performance. Recognizing this, our study involves conducting
extensive experiments to meticulously tune and optimize these parameters. This process,
involving comparative analysis of various configurations, led us to identify the most
effective parameter sets for our models. The details of these critical parameters, which
significantly contributed to enhancing the models’ predictive accuracy, are comprehensively
presented in Table 2.

Table 2. Parameters of the 3D U-Net and ConvLSTM models.

Models Parameters

ConvLSTM
num_layers = 3, hidden_dim = [64, 64,
30], kernel_size = (3, 3), bias = True,
return_all_layers = False, padding = 1

batch size: 12, activation function: elu,
validation frequency: per epoch;
loss function: mse, optimizer: radam,
learning rate: 0.01, epoch: 1000,
earlystopping;3D U-Net

num_layers = 3, size = [64, 128, 256],
groupnorm = 4, conv_kernel_size = 3,
pool_kernel_size = 2, conv_padding = 1

To assess the performance of 3D U-Net for SST prediction, we selected four statistical
indicators, including root mean square error (RMSE), Pearson correlation coefficient (R),
mean absolute error (MAE) and mean absolute percentage error (MAPE). Each of these
indicators offers a unique perspective on the model’s accuracy and reliability. The formulas
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for these statistical metrics are presented below, providing a mathematical basis for our
evaluation methodology:

RMSE =

√
∑n

i=1(yi−ŷi)
n

R =
∑n

i=1(yi−y)(ŷi−ŷ)√
∑n

i=1(yi−y)2
√

∑n
i=1(ŷi−ŷ)

2

MAE = ∑n
i=1|yi−ŷi |

n

MAPE = 100%
n

n
∑

i=1

∣∣∣ yi−ŷi
yi

∣∣∣
(4)

where yi is the observed SST, ŷi represents the SST predicted by the 3D U-Net model, and y
and ŷ, respectively, represent the mean of observed and predicted values.

3. Results
3.1. Comparison of the 3D U-Net Model with the ConvLSTM Model

To evaluate the 3D U-Net model’s performance in predicting SST in the SCS, we first
compared it with the ConvLSTM model in terms of R and RMSE using data from 2021.
Figure 3 shows the comparison of R and RMSE for SST predictions in the SCS using the 3D
U-Net and ConvLSTM models for 1 to 30 day lead times throughout the year 2021.
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Figure 3. Performance comparison of the 3D U-Net and ConvLSTM models in predicting SST at
different lead times in the SCS in 2021. Orange represents the 3D U-Net model, while blue represents
the ConvLSTM model. The lines indicate R, and the bars indicate RMSE, calculated from all data
used at different lead times in the test set.

Both the 3D U-Net and ConvLSTM models exhibited robust predictive performance
over a 30-day forecast horizon in SST prediction, with high correlation (minimum value
of R greater than 0.9) and low error (maximum value of RMSE less than 0.9 ◦C) (Figure 3).
The results from both models, as the lead time increased from 1 to 30 days, consistently
showed a decreasing trend in R and a corresponding increase in RMSE. This trend indicated
a diminishing correlation between observed and predicted SST values and an incremental
rise in forecast error as the prediction lead time lengthened. However, in a relative com-
parison across all prediction lead times, the 3D U-Net model consistently outperformed
the ConvLSTM model, maintaining higher R values and lower RMSE. This outstanding
performance of the 3D U-Net model, regarding forecast reliability, underscores its superior
forecasting skill compared with the ConvLSTM model.

For a more detailed and objective evaluation of the two models, we also calculated
various statistical indicators for SST predictions at different lead times, with the results
presented in Table 3. At the 1-day lead time, the 3D U-Net model demonstrated superiority
with an MAE of 0.23, compared with the ConvLSTM model’s MAE of 0.27. This trend
of the 3D U-Net model outperforming the ConvLSTM model continued across RMSE



Atmosphere 2024, 15, 86 8 of 20

and MAPE metrics. Although both models exhibited high R values, the 3D U-Net model
(0.99) was slightly higher than the ConvLSTM model (0.98). Notably, as the forecast lead
time extended to 7, 14, and 30 days, the model error increased, but the 3D U-Net model
consistently maintained better performance across all metrics. Notably, on the 30th day,
when the model performance dropped the most, the MAE, RMSE, MAPE, and R of the 3D
U-Net model were 0.51, 0.69, 1.83%, and 0.93, respectively, which were still better than the
ConvLSTM results of 0.57, 0.77, 2.01% and 0.92. Obviously, the 3D U-Net model achieved
better forecasting performance at different lead times.

Table 3. Comparative statistical results of SST predictions by the ConvLSTM and 3D U-Net models at
different lead times.

Models Metrics
Prediction Lead (Day)

1 7 14 30

ConvLSTM

MAE 0.27 0.43 0.51 0.57

RMSE 0.38 0.60 0.69 0.77

MAPE 0.95% 1.54% 1.81% 2.01%

R 0.98 0.96 0.94 0.92

3D U-Net

MAE 0.23 0.39 0.46 0.51
RMSE 0.31 0.52 0.61 0.69

MAPE 0.83% 1.39% 1.64% 1.83%

R 0.99 0.97 0.95 0.93

At the same time, we also compared the performance of the 3D U-Net and ConvL-
STM models across different seasons, selecting February, May, August, and November to
represent winter, spring, summer, and autumn, respectively. Forecasting errors (observed
minus predicted values) were calculated for each season, and Gaussian kernel density
estimation [49,50] was employed to analyze the distribution of these errors, as shown
in Figure 4. The analysis revealed that the 3D U-Net model consistently achieved lower
forecasting errors than the ConvLSTM model across all seasons, with errors being denser
and closer to zero. Notably, while the kernel density curves for February and May (winter
and spring) were somewhat sparser, indicating minor overestimation and underestimation,
respectively, the 3D U-Net model’s curves remained comparatively denser and closer to
zero. This pattern persisted even in the denser curves of August and November (summer
and autumn). Overall, the 3D U-Net model demonstrated superior seasonal prediction
performance compared with the ConvLSTM model.

3.2. Evaluation of the 3D U-Net Model

The above discussions show the 3D U-Net model’s better performance in SST predic-
tion compared with the ConvLSTM model. This section delves further into evaluating the
performance of the 3D U-Net model in the SCS from different perspectives. To thoroughly
evaluate the accuracy of and correlation between the predictions of 3D U-Net and the
observed values, we calculated the RMSE and R between the forecast results and observed
values for each month in 2021 (the 30-day forecast results for each were based on data from
the preceding 64 days). Throughout the year, the 3D U-Net model consistently showed
lower RMSE (mainly within the range of 0–0.5 ◦C), and most R values exceeded 0.7, as de-
picted in Figure 5. Although error distribution varied monthly, larger errors predominantly
occurred later in the forecast period, suggesting a gradual decline in model performance
over time (Figure 5a). Figure 5b shows that, according to the distribution of R values,
there was a positive correlation between the SST predicted by the 3D U-Net model and the
observed values on most days in all months. However, from May to August, particularly
in May, June, and August, the model experienced intermittent dips in correlation (R < 0.8).
Notably, from September onwards, the correlation strength recovered significantly (R > 0.9),
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a pattern possibly linked to the SCS’s complex summer monsoon climate and circulation
systems. Overall, the 3D U-Net model demonstrated relatively good performance across
different months.
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Figure 6 presents the spatial distribution of RMSE and R between estimated and
observed SST in the SCS for the year 2021. The generally low RMSE between SST predictions
from the 3D U-Net model and observation in most areas of the SCS indicated a high degree
of accuracy and correlation. Areas with relatively higher RMSE were identified primarily
along the northern coast of the SCS, where the RMSE was in excess of 0.5 ◦C. In contrast,
areas with relatively lower correlation coefficients, primarily situated in the southeastern
parts of the SCS and showing R values below 0.9, are shown in Figure 6b. These findings
further illustrate the 3D U-Net model’s reliability in accurately predicting SST in the SCS.
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SCS using the 3D U-Net model.

To thoroughly conduct a comprehensive assessment of the 3D U-Net model’s perfor-
mance across different regions of the SCS, we selected four different areas, each with a range
of 4◦ × 4◦, labeled as boxes A, B, C, and D, as shown in Figure 7a. Box A (116.5◦ E–117.5◦ E,
19.5◦ N–20.5◦ N) encompassed an area near the southern continental shelf of China, while
Box B (117.5◦ E–118.5◦ E, 16.5◦ N–17.5◦ N) aligned with the West Luzon eddy region. Box
C (114.5◦ E–115.5◦ E, 11.5◦ N–12.5◦ N) encompassed an area near the central–southern
SCS, with Box D (111◦ E–112◦ E, 15.5◦ N–16.5◦ N) near the eastern Vietnam eddy. The
scatterplots in Figure 7b–e compare the SST predictions from the 3D U-Net model against
observed SST across all data grids in the test set within these regions. The results indicated
a robust positive linear correlation between predicted SST by the 3D U-Net model and
observation in those typical areas, with most scatter points clustering near the line of
equality, indicative of lower RMSE values and higher R values. The RMSE (R) values for
these four regions were 0.54 ◦C (0.93), 0.48 ◦C (0.93), 0.36 ◦C (0.89), and 0.31 ◦C (0.96),
respectively, underscoring the reliability and effectiveness of the 3D U-Net model in diverse
areas of the SCS. In addition to RMSE and R, we further evaluated the performance of the
3D U-Net model at different lead times in the four regions using additional indicators, such
as MAE and MAPE (Table 4). Through different indicators, the 3D U-Net demonstrated
strong performance in all regions and lead times, marked by low error rates and strong cor-
relations. Notably, while there was a slight decline in performance as lead times increased,
the 3D U-Net model’s accuracy remained within a satisfactory range. This demonstrated
the model’s robustness and reliability in diverse areas of the SCS.
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Figure 7. The four selected areas (Boxes A–D) used in this study, with Box A located at 116.5◦ E to
117.5◦ E, 19.5◦ N to 20.5◦ N; Box B at 117.5◦ E to 118.5◦ E, 16.5◦ N to 17.5◦ N; Box C at 114.5◦ E to
115.5◦ E, 11.5◦ N to 12.5◦ N; and Box D at 111◦ E to 112◦ E, 15.5◦ N to 16.5◦ N. Scatterplots compare
SST predicted by the 3D U-Net model with observations across these regions (Boxes A–D) in 2021
(right panel).

Table 4. The statistical results of predictions from the 3D U-Net model at different lead times in four
selected regions.

Area Metrics
Prediction Lead (Day)

1 7 14 30

Box A

MAE 0.25 0.51 0.61 0.72

RMSE 0.33 0.65 0.78 0.91

MAPE 0.91% 1.82% 2.20% 2.59%

R 0.99 0.96 0.94 0.91

Box B

MAE 0.28 0.50 0.60 0.59

RMSE 0.36 0.63 0.75 0.74

MAPE 0.98% 1.75% 2.08% 2.06%

R 0.99 0.95 0.93 0.93

Box C

MAE 0.19 0.36 0.44 0.47

RMSE 0.25 0.46 0.54 0.60

MAPE 0.67% 1.25% 1.55% 1.66%

R 0.19 0.36 0.44 0.47

Box D

MAE 0.21 0.35 0.42 0.47

RMSE 0.27 0.45 0.53 0.58

MAPE 0.75% 1.26% 1.51% 1.69%

R 0.99 0.97 0.95 0.94

Subsequently, we used the 3D U-Net model to predict SST in the SCS for 2021, with
a cycle of 30 days. A time series analysis was performed for each of the four selected
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areas. Figure 8a–d illustrate the model’s SST time series predictions alongside observed
data, representing the respective spatial average outcomes for Boxes A, B, C, and D. The
comparison revealed that, aside from minor underestimations, the SST predicted by the
3D U-Net model was quite consistent with observed values. The RMSE (R) between the
predicted and observed values was 0.44 (0.98), 0.42 (0.98), 0.29 (0.97), and 0.30 (0.99) for
Boxes A, B, C, and D, respectively. These results highlight the 3D U-Net model’s robust
and consistent predictive performance, even over extended lead times.
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3.3. Comparison of Marine Heat Wave (MHW) Events

To further assess the capabilities of the 3D U-Net model, we evaluated its ability to
forecast MHW events in the SCS for 2021 using the threshold method. We defined a relative
threshold for MHW events as instances where the daily SST at a specific location surpassed
the 90th percentile threshold, determined by seasonal variations across a climatological period
of over 30 years. For this purpose, OISST data from 1982 to 2020 were utilized to compute
the climatological baseline. An event was classified as an MHW if it persisted for at least five
consecutive days, as per Hobday et al. [51]. Additionally, if the interval between consecutive
events was less than two days, they were considered as a single event. The climate thresholds
were calculated centered around an eleven-day window for each calendar day and smoothed
out using a moving average method over thirty-one days. After identifying MHW events, four
indicators were used to describe and compare MHW characteristics (as shown in Figure 9),
including HWN, HWT, HWDU, and HWI, whose definitions can be found in Table 5 [52,53],
where the cumulative intensity ∑Di

j (Tij − T̃ij) in a MHW event is the sum of the temperature
anomaly intensity (temperature higher than the historical baseline) during the total duration
(HWT) of each MHW, its unit is the “degree days”, and Tij and T̃ij are the values of SST and
corresponding climatology during the MHW event.

As shown in Figure 9, the SST predicted by the 3D U-Net model and the observed SST
showed good consistency in the numerical and spatial distribution of various statistical
indicators of MHW events detected in the SCS. Prolonged MHW events were observed,
particularly in the northern SCS (112◦ E–118◦ E, 20◦ N–22◦ N), with total durations exceed-
ing 160 days (Figure 9a,b). Figure 9c,d show the average duration of these MHW events,
which was similar to that of the total duration. In the areas with longer total duration, the
average duration could reach 35 to 46 days. Conversely, the occurrence of MHW events
was more dispersed across the area, with a notably higher frequency in the northern SCS
compared with the south (Figure 9e,f). Figure 9g,h show that the spatial distributions of
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the average cumulative intensity of predicted and observed MHW events were relatively
similar, and both showed apparent differences between south and north regions with high
values mainly located in the northern part of the SCS, with the average cumulative intensity
of each MHW event exceeding 45 degree-days. These comparisons demonstrate that the 3D
U-Net model precisely forecasted and detected the various features of the MHW event that
occurred in the SCS in 2021 and could help prevent disasters and climate changes caused
by MHW events by predicting them in advance.
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Figure 9. Spatial distribution of MHW characteristics in the SCS in 2021: (a,b) the total duration of
MHW events (HWT), (c,d) the average duration of MHW events (HWDU), (e,f) the number of MHW
events (HWN), and (g,h) the average cumulative intensity of MHW events (HWI). The observations
are presented in the left panels, and the model predictions in the right panels. The white box in panel
(a) indicates the representative area selected in this study.
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Table 5. The definitions of the four MHW indices used in this study.

Index Definition Formulas Unit

HWN The number of
MHW events HWN = N Times

HWT The total duration of
MHW events HWT = ∑N

i=1 Di Days

HWDU The average duration
of MHW events HWDU = ∑N

i=1(Di)/N Days/time

HWI
The average

cumulative intensity
of MHW events

HWI = ∑N
i ∑Di

j

(
Tij − T̃ij

)
/N Degree-days/time

In 2021, the northern SCS experienced a high frequency and duration of MHW events,
as shown in Figure 9. Consequently, we focused on a representative area (112◦ E–118◦ E,
20◦ N–22◦ N), marked by the white box in Figure 9a, to analyze the temporal dynam-
ics of local MHW events (Figure 10). Since January 2021, this region has experienced
multiple MHW events throughout all four seasons. Notably, two relatively intense and
prolonged MHW events were observed from May to June and September to October. The
3D U-Net model successfully captured these occurrences, demonstrating its proficiency in
predicting MHWs.
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the climatology (black), the 90th percentile seasonal threshold (green), the observed SST (blue), and
the predicted SST (yellow), with the red area representing MHW events.

To more clearly demonstrate the performance of the 3D U-Net model during MHW
events, we selected the longest-lasting MHW event in 2021 and provided a spatial distribu-
tion of some model prediction results during this period (Figure 11). Despite some minor
discrepancies between the observed and predicted SST, the 3D U-Net model effectively
captured SST distribution characteristics. Figure 12 presents the histograms of the SST
difference during this period, offering a more detailed view of the discrepancy distribution.
These histograms, primarily centered close to 0 ◦C, indicate that most prediction errors
fell within the ±0.5 ◦C range. Collectively, Figures 11 and 12 substantiate the 3D U-Net
model’s robust predictive performance during MHW events in the SCS.
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Figure 11. The SST prediction results by the 3D U-Net model (from 22 November 2021, to 21 December
2021, with a two-day interval displayed in the results) during MHW events in 2021. (a,d) show
the observed SST. (b,e) show the predicted SST. (c,f) show the differences between observed and
predicted values.
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To examine the relative contribution of different sea surface variables to SST prediction
and MHW event detection in the SCS, a sensitivity experiment was performed using the 3D
U-Net model. Figure 13 illustrates four different cases used in this sensitivity experiment.
In the first group (Case 1), SSHA and SSW were introduced as input parameters based on
SST. For the second group, SST and SSW were selected as predictors for SST (Case 2). In
the third group (Case 3), SST and SSHA were used, while the fourth group (Case 4) relied
solely on SST. The results revealed that the inclusion of SSHA and SSW alongside SST
(Case 1) yielded the highest R values at various lead times, suggesting the best predictive
performance (Figure 13). Conversely, the model relying solely on SST (Case 4) exhibited
the lowest performance. This result indicated that SSHA and SSW are regulatory in SST
forecasting and MHW event detection. The comparison of Case 2 with Case 3 revealed
that SSW had a more significant impact on the model during the early stages of prediction,
whereas the influence of SSHA became more pronounced as the lead time increased. These
cases suggest that integrating SSHA and SSW could enhance the 3D U-Net model’s accuracy
in the SCS.
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4. Summary and Discussion

As an important parameter for oceanic and climatic systems, accurate prediction of
SST is crucial. To achieve the prediction of SST using multi-source data, we developed a 3D
U-Net model to predict SST in the SCS. Through comparative analysis with the ConvLSTM
model across different lead times and seasons using various statistical indicators, the 3D
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U-Net model consistently demonstrated superior accuracy. RMSE values increased from
0.31 ◦C to 0.69 ◦C, while R values decreased from 0.99 to 0.93, outperforming ConvLSTM in
all lead times ranging from 1 to 30 days. The Gaussian kernel density curves of prediction
error for the 3D U-Net model in different seasons were more densely distributed near 0 than
for the ConvLSTM model. Spatially, the 3D U-Net model predicted SST with lower error
(RMSE < 0.5 ◦C) and higher correlation (R > 0.9) across most of the SCS. In different regions
of the SCS, the scatterplots of predicted SST and observed SST showed that most scatter
points clustered near the line of equality, indicative of lower RMSE values and higher R
values. The RMSE (R) between the spatially averaged time series obtained from 3D U-Net
predictions and observations were, respectively, 0.44 (0.98), 0.42 (0.98), 0.29 (0.97), and 0.30
(0.99) in the typical areas in 2021. These also suggest that 3D U-Net model predictions were
consistent with the observed results in different areas of the SCS.

The 3D U-Net model’s proficiency was further evaluated by its performance during
MHW events in 2021. The results detected by the 3D U-Net model predictions and those
observed directly both noted the long-lasting MHW events occurring in the northern SCS
in 2021. The total duration exceeded 160 days, with an average duration ranging from 35 to
46 days, and the average intensity of each MHW event exceeding 45 degree-days. Despite
some differences, the 3D U-Net model demonstrated satisfactory prediction performance
and ability to detect MHW events, which can be used to assist in taking proactive mea-
sures to protect marine ecosystems, prevent disasters, and better adapt to and mitigate
the impacts of climate change. Finally, sensitivity experiments and statistical analyses
highlighted the significant impact of different sea surface variables on SST prediction and
MHW events detection. The results showed that SSHA and SSW have a significant effect
on model prediction, which can improve accuracy and forecasting skills. Moreover, in the
early stage of forecasting, SSW plays a crucial role in predicting SST, and as the lead time
increases, the role of SSHA in predicting SST gradually increases, reflecting the complex
interactions between variables.

In conclusion, the 3D U-Net model using multi-source sea surface variables proposed
in this study performed well in predicting 30-day SST in the SCS, introducing an innovative
approach for MHW event detection. The uniqueness of the 3D U-Net model is that its
model structure is simple, but it can directly use multi-source sea surface variables to extract
characteristic information of each variable, and more fully considers the interaction between
variables. However, as a data-driven model, it faces limitations such as underestimation
or overestimation, and the MHW is also affected by the influence of ocean dynamics and
thermodynamics. Therefore, in future research, we plan to integrate more ocean dynamic
mechanisms into the model to improve SST and MHW prediction accuracy and forecasting
skills. Furthermore, this model can be applied to forecasting additional essential ocean
parameters such as SSW, sea surface height, and thermohaline structure, providing new
ideas for future research work, so that it can play a more comprehensive role in marine
disaster prevention, marine ranching, and environmental protection.
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