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Abstract: The physical parameterizations have important influence on model performance in precipi-
tation simulation and prediction; however, previous investigations are seldom conducted at very high
resolution over Hebei Province, which is often influenced by extreme events such as droughts and
floods. In this paper, the influence of parameterization schemes and analysis nudging on precipitation
simulation is investigated using the WRF (weather research and forecasting) model with many sensi-
tivity experiments at the cumulus “gray-zone” resolution (5 km). The model performance of different
sensitivity simulations is determined by a comparison with the local high-quality observational
data. The results indicate that the WRF model generally reproduces the distribution of precipitation
well, and the model tends to underestimate precipitation compared with the station observations.
The sensitivity simulation with the Tiedtke cumulus parameterization scheme combined with the
Thompson microphysics scheme shows the best model performance, with the highest temporal
correlation coefficient (0.45) and lowest root mean square error (0.34 mm/day). At the same time,
analysis nudging, which incorporates observational information into simulation, can improve the
model performance in precipitation simulation. Further analysis indicates that the negative bias
in precipitation may be associated with the negative bias in relative humidity, which in turn is
associated with the positive bias in temperature and wind speed. This study highlights the role of
parameterization schemes and analysis nudging in precipitation simulation and provides a valuable
reference for further investigations on precipitation forecasting applications.

Keywords: precipitation simulation; Heibei Province; model parameterization; analysis nudging

1. Introduction

The atmosphere is a complex system characterized by nonlinear interactions across
wide scales [1,2], including planetary waves, synoptic systems, secondary circulations,
mesoscale systems, turbulent eddies, cloud microphysics, and molecular diffusion. The
mathematical representation of these atmospheric phenomena in numerical models is often
streamlined, depending on the model’s intended purpose, resolution, and emphasis [3]. The
dynamical core of the weather prediction model effectively solves the governing equations
within a discretized grid, neglecting terms of relative insignificance. Unresolved physical
elements, such as radiation, deep and shallow cumulus convection, cloud microphysics,
precipitation, and turbulence, are always represented by parameterization in models [4–9].
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In meteorological models, the horizontal grid spacing ranging approximately from
3 to 10 km is often called the convective gray-zone resolution (hereinafter referred to as
gray-zone resolution). In this resolution, the model can identify organized mesoscale
convective systems, while it cannot resolve individual convective cells; thus, this grid
spacing lacks the precision to represent distinct convective features, yet it is too detailed
for convective parameterizations [10–14]. Previous studies indicate that simulations at
gray-zone resolution reproduce fewer convective clouds; they succeed in reproducing
the statistical characteristics of convection [15–17]. Thus, simulations at the gray-zone
resolution are a valuable and cost-effective methodology for investigating the impact of
convection in regional climate models [11,12,18–21].

Among the complex atmospheric processes influencing precipitation simulation, con-
vective cumulus parameterization schemes play a crucial role [22,23], which serve the
purpose of representing sub-grid scale convective processes that elude explicit resolution.
These schemes are designed to encapsulate the vertical transport phenomena, including
the heat, moisture, and momentum associated with convective clouds, thereby influencing
the precipitation simulation.

A lot of previous studies investigated the sensitivity of precipitation to the choice of
cumulus parameterization schemes; for example, in simulating heavy rainfall events for
the Indian monsoon region using the WRF model, the Betts Miller Janjic (BMJ) cumulus
scheme outperformed other schemes [24], while the Kain–Fritsch (KF) cumulus scheme
indicated the best performance in simulating precipitation for three flood events in Alberta,
Canada [25]. The study over the Basque Country of Spain indicated that the KF scheme
yielded superior results in simulating extreme precipitation events compared to other
available cumulus schemes [26]. Other studies indicated that the model sensitivity to the
cumulus schemes is more pronounced compared with that to the initial conditions [27], and
it was particularly notable in the higher resolution simulations [28]. At the same time, the
microphysics schemes, which deal with cloud microphysical processes, such as moisture
evaporation and condensation, can change thermodynamic and dynamic interactions in
the atmosphere and influence the precipitation simulation.

Hebei Province in China has distinctive climatic features, characterized by the mon-
soonal influences, mountainous topography, and urbanization, and the precise forecasting
of precipitation poses a great challenge [29–31]. Previous studies have explored the im-
pact of cumulus schemes on precipitation simulations at a resolution of approximately
20~30 km. It is imperative to ascertain the most effective physical parameterization schemes
tailored to high-resolution precipitation variations to enhance forecast performance for
precipitation at regional or local scales, and these studies can identify the optimal combi-
nations of physical parameterization schemes for precipitation forecasting. In this study,
as an initial investigation on the influence of physical parameterizations on the model
performance on precipitation simulations, several sensitivity experiments with different
model configurations, such as the cumulus scheme, the microphysical scheme, and analysis
nudging, were conducted using the WRF model at a cumulus gray-zone resolution of
5 km, which will help determine the best model configuration for precipitation simulations,
subsequently improving the precipitation forecasting over this region.

2. Materials and Methods

In this study, the Advanced Research WRF (WRF-ARW) version 4.5.1 was employed.
The WRF model is a simulation system that was designed for both atmospheric research
and operational forecasting applications [32].

The simulation domain of the WRF model is illustrated in Figure 1, locating in North
China with a horizontal grid spacing of 5 km. Vertically, the WRF model is structured with
the model top set at 50 hPa and 51 levels, utilizing a terrain-following, hydrostatic-pressure
vertical coordinate. The initial and boundary conditions are from ERA5 reanalysis dataset,
which is a newly developed reanalysis product by the European Centre for Medium-range
Weather Forecasts and offers a comprehensive record of the global atmosphere, land surface,
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and ocean waves [33]. This dataset is widely used as forcing dataset for regional climate
simulation over China [18,21,34].
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Figure 1. Model domain with topography (unit: meters), blue solid circles represent the observational
stations (142 stations in total), and the location of simulation domain is illustrated at top right of
the figure.

Table 1 lists the physical parameterization schemes used in the sensitivity simulations,
with a total of seven sensitivity experiments conducted. Among them, two microphysics
schemes, including the WRF single-moment 6-class (WSM6) scheme [35] and the Thompson
scheme [36], and two cumulus convective schemes, including the Kain–Fritsch scheme [37]
and Tiedtke scheme [38], were used. The first four sensitivity experiments (Run1–Run4)
were configured with different combinations of cumulus and microphysical schemes.
Given the horizontal grid spacing of 5 km falls in the cumulus “gray-zone” resolution,
two experiments (Run5 and Run6) were configured with the cumulus convective schemes
turning off. Furthermore, a sensitivity experiment with analysis nudging (Run7) was
configured to investigate its effects on model simulation. Analysis nudging is a grid-based
four-dimensional data assimilation technique nudging the model toward data analysis.
The model is run with extra nudging terms for horizontal winds, temperature, and water
vapor. These terms nudge point by point to a three-dimension space- and time-interpolated
analysis field [32,39]. Analysis nudging improves the model ability by incorporating
observational information into simulation; thus, it should be clarified that the inclusion
of analysis nudging in WRF experiments could serve the more accurate estimation of the
fallen area mean precipitations but not precipitation forecasts. Except the physical schemes
listed in Table 1, the model configuration of the sensitivity experiments was identical,
including the Yonsei University (YSU) scheme [40], the Rapid Radiative Transfer Model
longwave radiation scheme [41], the Dudhia shortwave radiation scheme [42], and the
community Noah land surface model with multi-parameterization options [43,44].
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Table 1. Model physics parameterization schemes for each sensitivity experiment.

Name Cumulus Scheme Microphysical Scheme Analysis Nudging

Run1 KF WSM6 \
Run2 KF Thompson \
Run3 Tiedtke WSM6 \
Run4 Tiedtke Thompson \
Run5 \ WSM6 \
Run6 \ Thompson \
Run7 KF WSM6 Yes

As an initial attempt to explore the differences of model performance in reproducing
the precipitation over Hebei Province, which will be helpful in understanding the influence
of parameterization schemes on precipitation simulation and selecting the best model
configuration for further precipitation forecast application, we chose a whole summer
month of July 2017 as the case study period. It is true that for obtaining generally valid
conclusions for a given area such as Hebei Province, much longer simulation period
instead of one month or one year should be performed; however, the high resolution
and consequent small time step require large amount of computational resources for a
single sensitivity simulation. Due to the limitation of computational resources, one month
simulation period was acceptable in this study, and the results were meaningful to the
following application studies. All sensitivity simulations were carried out from 30 June
to 31 July 2017, incorporating a 2-day reinitialization period to prevent model drift. Each
reinitialization involved a 72 h simulation, along with the first 24 h simulations designated
as the spin-up period.

The performances of different sensitivity simulations were determined by comparison
of the simulated meteorological variables with the dense station observations over Hebei
Province. The observational variables included precipitation, temperature at 2 m, relative
humidity at 2 m, and wind speed at 10 m. For the model simulation, the results of the
model grids that were geographically closest to the station observations were selected.
It is true that in model and observation comparison, the discrepancies arising from non-
overlapping is evident, and although some uncertainties may have been introduced during
the comparison in this study, these uncertainties were consistent in all the sensitivity
experiments; thus, they could be ignored in the comparison and will not change the results
of this study. Thus, the flowchart of the methodology in this study can be summarized in
Figure 2.
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Three commonly used metrics in previous model evaluation studies, including the
Pearson correlation coefficient (CORR), BIAS, and root mean square error (RMSE), were
used to evaluate the performances of the model simulations. These statistical scores mea-
sure the agreement between simulation and observations and are important in evaluating
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the performance. Applying these commonly used metrics can also provide references
for other evaluation studies using the WRF model. CORR, BIAS, and RMSE measure the
performance in different perspectives. CORR indicates the strength as well as the direction
of linear relationship between the station observation and model simulation, while BIAS
measures the deviation between observation and simulation. RMSE, on the other hand,
measures the square root of average of variances between observation and simulations.
There are also other metrics, such as R square and relative bias, that can be used; however,
they serve the same purpose. Thus, in this study, only these metrics were applied to provide
the measurement of performance of the sensitivity simulations.

The definitions of these metrics are as follows:

CORR =
∑N

i=1
(

Mi − M
)(

Oi − O
)√

∑N
i=1

(
Mi − M

)2·∑N
i=1

(
Oi − O

)2
(1)

BIAS =
1
N ∑N

i=1(Mi − Oi) (2)

RMSE =

√
1
N ∑N

i=1(Mi − Oi)
2 (3)

Here, M is the value of the model output, O is the value of the observation, and N is
the number of observations.

3. Results

Figure 3 illustrates the spatial distribution of the mean precipitation for the sensitivity
experiments alongside the corresponding observations. The WRF simulations generally cap-
ture the spatial features of precipitation over Hebei Province, including more precipitation
over the western and central regions characterized by complicated topography (Figure 1).
However, nearly all sensitivity experiments underestimate precipitation compared to
station observations, especially over the southwestern regions. Notably, simulations em-
ploying the Kain–Fritsch scheme (Run1 and Run2) generate higher precipitation across the
simulation domain compared to those using the Tiedtke cumulus scheme (Run3 and Run4).
Interestingly, the simulations with cumulus schemes turning off (Run5 and Run6), the
same as the Kain–Fritsch scheme, yield more precipitation compared to the Tiedtke scheme,
resulting in reduced underestimation and an improved agreement with observations.

Regarding microphysics schemes, the Thompson scheme (Run2, Run4, and Run6)
tends to produce more precipitation over Hebei Province compared to the WSM6 scheme
(Run1, Run3, and Run5). Analysis nudging, in particular, improves the model simulation
significantly, as Run7 reproduces the features of observational precipitation well, in both
spatial distribution and amount. For most of the stations, the simulated precipitation of
Run7 and observed quantities are fairly comparable, which is likely due to the contin-
uous nudging towards the observed atmospheric conditions that helps to maintain the
consistency with real-world observations throughout the simulation period.

Figure 4 represents the time series of average precipitation for both observation and
model simulations. For the observation, the average precipitation was calculated by the
mean of precipitation for all 142 stations, while for the simulation, we first selected the
simulation results of the grid points that are geographically closest to the weather stations,
then calculated the precipitation average. This kind of comparison between the observation
and simulation may have some error; however, they are consistent for all the stations and
the sensitivity experiments and thus will not change the results of this study. Overall,
WRF can reproduce the time series of precipitation, capturing the majority of precipitation
events occurring over Hebei Province. For instance, the precipitation events on 6 July and
26 July are well reproduced by most of the sensitivity runs. At the same time, most of
the WRF simulations overestimate the precipitation events on 14 July and 24 July while
underestimating those on 8 and 10 July.
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In contrast, analysis nudging shows an overall improvement compared to other
experiments, particularly evident in the events on 10 July, 14 July, and 21–22 July. In
consequence, the BIAS scores of the parameterization scheme runs (Run1 to Run6) range
from −0.05 to −0.03 mm/day, whereas for the analysis nudging experiment (Run7), the
BIAS approaches zero (Figure 4c). Furthermore, among the parameterization scheme
experiments, the simulation employing the Tiedtke and Thompson scheme (Run4) achieves
the highest CORR (0.45) and lowest RMSE (0.34 mm/day), which can be considered as
the best choice for precipitation simulation over Hebei Province. Moreover, the analysis
nudging shows even higher scores of CORR (0.47) and RMSE (0.33 mm/day), highlighting
the benefits of applying analysis nudging techniques in WRF prediction.
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The spatial distribution of observational and simulated surface relative humidity is
illustrated in Figure 5, given its significant influence on precipitation. All WRF simulations
reasonably reproduce the decreasing trend from southeast to northwest across Hebei
Province, which is consistent with the observations. At the same time, all the sensitivity
simulations tend to underestimate the relative humidity compared to the observation; it is
particularly clear in the western and central regions of Hebei Province, which is consistent
with the bias of precipitation (Figure 3). The spatial distribution of relative humidity
simulated by different parameterization schemes are very similar; thus, the model biases
are also quite similar. Notably, the simulation with analysis nudging (Run7) shows distinct
improvement compared to other simulations, as it produces much higher relative humidity
over the simulation domain, which reduces the model bias and shows better agreement
with the observations, especially over the central regions of Hebei Province.

Figure 6 shows the time series of relative humidity from observations and sensitivity
simulations. The diurnal cycle of relative humidity can be well reproduced by all the
simulations, while almost all parameterization scheme experiments tend to underestimate
relative humidity during the daytime hours. Conversely, simulations generally show
good agreement with observations during nighttime periods. The differences between
the physical scheme experiments are quite minimal, reflected in the statistical metrics of
CORR, BIAS, and RMSE. According to the statistical scores, the simulation employing the
Kain–Fritsch and WSM6 schemes ranks first among the experiment, with the highest CORR
(0.91) alongside the lowest BIAS (−9.96%) and RMSE (12.77%).

However, analysis nudging significantly improve the model simulations, being evident
not only in the time series but also in the statistical metrics. The experiment with analysis
nudging (Run7) reproduces the time series of relative humidity for both daytime and
nighttime periods well, yielding the best scores in CORR (0.96), BIAS (−0.81%), and RMSE
(5.10%). This significant improvement may be attributed to the direct nudging of relative
humidity during the model simulation; conversely, precipitation is not assimilated during
the model simulation.
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Figure 7 shows the spatial distribution of the average surface temperature from station
observations and model simulations; the WRF model with different physical parameteriza-
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tion schemes generally reproduces the spatial features of temperature, while significant
overestimations are observed in the model simulations. The simulations with different
physical parameterization schemes are very similar, indicating that cumulus and micro-
physical schemes have a small effect on the temperature simulation. However, analysis
nudging improves the simulation by reducing the overestimation of temperature, and the
simulation of Run7 shows better agreement with the station observations.
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the diurnal cycle of temperature well, it shows significant overestimation during the
daytime hours, which is consistent with the overestimation in Figure 7. Conversely, WRF
reproduces the temperature at nighttime periods well, with good agreement with the
observations. Notably, simulation with analysis nudging shows much better performance
in reproducing the time series of temperature, with better agreement with observation
throughout both nighttime and daytime periods. Consequently, the statistical score of the
BIAS of the analysis nudging experiment (Run7) is 0.35 ◦C, which is significantly lower
than the other sensitivity experiments (2.21~2.70 ◦C). Regarding the parameterization
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scheme experiments, the simulation with Kain–Fritsch and WSM6 (Run1) shows the best
performance according to CORR (0.93) and RMSE (2.85 ◦C) scores; however, the simulation
with the WSM6 scheme and cumulus scheme turning off (Run5) ranks first according to
BIAS (2.21 ◦C) scores. Analysis nudging (Run7) can further improve the model ability in
reproducing temperature, with the best scores of CORR (0.97) and RMSE (1.03 ◦C) among
all the sensitivity experiments.
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Precipitation can also be influenced by wind speed. Thus, the simulations of wind
speed are also investigated. Figure 9 shows the spatial distribution of wind speed from the
observation and model simulations, while WRF captures the spatial features of wind speed
over Hebei Province. Overestimations are evident in the model simulations, particularly in
the central regions of Hebei Province. For instance, many stations in the central regions
record wind speeds of approximately 0.5 m/s, whereas the simulations indicate speeds
around 2.5 m/s. The simulation with analysis nudging (Run7) shows better agreement with
the observations, with much lower wind speed compared to other sensitivity experiments.
Consequently, analysis nudging can further improve the model’s ability in reproducing
wind speed.

Figure 10 shows the time series of observed wind speed as well as the corresponding
statistical scores. The simulations generally reproduce the variation of wind speed. How-
ever, most simulations show large overestimation during all the simulation period, both
at daytime and nighttime periods. Nevertheless, analysis nudging improves the model
simulation significantly, with much lower wind speed compared to the other sensitivity
experiments. For instance, the simulated wind speed of Run7 fits the observation very well
during the periods of 1–10 July and 15–20 July. The time series of wind speed simulated by
the parameterization schemes are quite similar, indicating similar model biases, ranging
from 0.83 m/s to 0.96 m/s. The simulation with Kain–Fritsch and WSM6 (Run1) shows
the best performance in terms of BIAS (0.83 m/s) and RMSE (1.07 m/s) scores, while the
simulations with the Tiedtke scheme and Thompson scheme (Run4) and the Thompson
scheme with the cumulus scheme turning off (Run6) show the best model performance
according to CORR (0.73) scores. The simulation with analysis nudging (Run7) further
improves the model performance, with much higher CORR (0.88) alongside lower BIAS
(0.23 m/s) and RMSE (0.44 m/s) scores.
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4. Discussion

As demonstrated in previous investigations over other regions, the performance of
WRF in simulating precipitation is influenced by many factors, such as temperature, humid-
ity, and wind, and the relationship among these variables is highly complicated. According
to the Clausius–Clapeyron equation, precipitable water content will increase by 7% per
degree of warming; however, many studies found that short-term duration precipitation
does not increase proportionally [45,46]. In this study, for the parameterization scheme
experiments, most sensitivity simulations underestimate precipitation over Hebei Province
(Figure 3), which agrees with the negative bias of relative humidity (Figure 5), and thus, the
bias in relative humidity may contribute to that of precipitation; however, it is also possible
that the negative bias in relative humidity is caused by the underestimation of precipitation.
Concurrently, the negative biases of relative humidity might also be influenced by tempera-
ture and wind speed, as the WRF model generally overestimates temperature (Figure 7)
and wind speed (Figure 9), and the elevated temperatures and intensified wind speeds tend
to increase the evaporation, leading to drier air and subsequently lower relative humidity.

It is evident that parameterization schemes significantly influence the model’s perfor-
mance in reproducing precipitation over Hebei Province, as well as temperature, relative
humidity, and wind speed. Nonetheless, it is challenging to find the best parameterization
scheme reproducing every precipitation event over Hebei Province well, as each scheme
may be successful in reproducing one specific event while it fails in another. It is also
challenging to find the best parameterization scheme for all the variables; for instance,
the simulation with the Tiedtke and Thompson schemes shows the best performance in
reproducing the average precipitation over Hebei Province, with the highest CORR and
lowest RMSE, while the simulation with Kain–Fritsch and WSM6 ranks first among the
experiments for the simulation of relative humidity. Thus, the determination of best param-
eterization schemes should rely on a systematic comparison of available combinations of
parameterization schemes for a given location.

Moreover, other model configurations, such as analysis nudging, have a strong influ-
ence on model performance. In our study, the simulation with analysis nudging shows
further improvement compared to the parameterization scheme experiments, indicating its
advantage in precipitation simulations. Nevertheless, analysis nudging should be applied
with caution, as it alters the dynamical balance by imposing external constraints on the
evolution towards observational data. This can potentially impact the model’s ability to
simulate certain meteorological phenomena accurately, such as convective processes or
boundary layer dynamics, particularly in high-resolution simulations.

It is worth noting that due to the availability of computational resources, the horizontal
resolution is configured as 5 km, and the simulation periods of the sensitivity experiments
cover only one month, which indicates the main limitation of this study. It is promising
that the WRF model can generally reproduce the distribution of precipitation over Hebei
Province well, which is consistent with previous studies over Asia or China [47,48]. How-
ever, the correlations between observed and simulated precipitation are approximately
0.3, which is relatively low compared with previous coarser resolution simulations; thus,
further tuning on the physical parameterizations is needed in future work. Despite these
limitations, this study is important to Hebei Province, as it provides valuable references for
selecting the best model configurations for precipitation forecasting applications, and the
availability of better high-resolution numerical simulations has potential for local hydro-
logical simulation, which always requires high-resolution and reliable precipitation data.

5. Conclusions

In this study, we investigate the influence of parameterization schemes and analysis
nudging on precipitation simulation over Hebei Province using multiple month-long high-
resolution WRF sensitivity simulations. The horizontal resolution of WRF is configured
at 5 km, falling in the cumulus “gray-zone” category, which is seldom investigated in
prior research. The performances of different parameterization schemes in reproducing
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precipitation are analyzed using dense station observations recorded by the local Mete-
orology Administration as a reference. Additionally, further analysis was conducted on
temperature, relative humidity, and wind speed to gain a comprehensive understanding of
the model’s ability and potential influencing processes associated with precipitation biases.

The sensitivity experiments indicate that the spatial and temporal distributions of
precipitation in Hebei Province are well reproduced by the WRF model; however, the
model tends to underestimate the precipitation compared with the observational data. The
simulation with the Tiedtke cumulus parameterization scheme and Thompson microphysi-
cal parameterization scheme shows the best performance, with a CORR of 0.45 and RMSE
of 0.34 mm/day; at the same time, the analysis nudging experiment, which assimilates
the observational data, achieved a CORR of 0.47 and RMSE of 0.33 mm/day. Thus, the
incorporation of observational data can improve the model performance, and it should
be emphasized that the Tiedtke cumulus parameterization scheme combined with the
Thompson microphysical parameterization scheme reach practically the same accuracy
without analysis nudging as the sensitivity experiment with analysis nudging.

Further analysis indicates that the model bias in precipitation may be associated with
biases in relative humidity, temperature, and wind speed, as the WRF model tends to
underestimate the relative humidity, which will limit the precipitable water, thus consistent
with the negative bias in precipitation. At the same time, WRF tends to overestimate
temperature and wind speed, and the elevated temperatures and intensified wind speeds
will increase the evaporation, resulting in the negative bias in relative humidity. However,
further investigation into the detailed processes among these variables should be conducted
in future research, which will be informative for the WRF model development.

It is noteworthy that no single scheme demonstrates optimal performance across all
meteorological variables, and parameterization schemes possess individual advantages.
Therefore, it is crucial to carefully select the most appropriate parameterization schemes
for the WRF model in precipitation modeling and operational meteorological forecasting.
The simulation with analysis nudging shows additional improvement compared to the
parameterization scheme experiments, indicating its advantage in operational hydrological
forecasting. However, caution should be paid in the application of analysis nudging, as it
can break the dynamical balance by imposing external constraints on the evolution towards
observational data.
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