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Abstract: Consideration of the relationship between residential floor level and 

concentration of traffic-related airborne pollutants may predict individual residential 

exposure among inner city dwellers more accurately. Our objective was to characterize the 

vertical gradient of residential levels of polycyclic aromatic hydrocarbons (PAH; 

dichotomized into 8PAHsemivolatile (MW 178–206), and 8PAHnonvolatile (MW 228–278), 

black carbon (BC), PM2.5 (particulate matter) by floor level (FL), season and building type. 

We hypothesize that PAH, BC and PM2.5 concentrations may decrease with higher FL and 
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the vertical gradients of these compounds would be affected by heating season and 

building type. PAH, BC and PM2.5 were measured over a two-week period outdoor and 

indoor of the residences of a cohort of 5–6 year old children (n = 339) living in New York 

City’s Northern Manhattan and the Bronx. Airborne-pollutant levels were analyzed by 

three categorized FL groups (0–2nd, 3rd–5th, and 6th–32nd FL) and two building types 

(low-rise versus high-rise apartment building). Indoor 8PAHnonvolatile and BC levels 

declined with increasing FL. During the nonheating season, the median outdoor 

8PAHnonvolatile, but not 8PAHsemivolatile, level at 6th–2nd FL was 1.5–2 times lower than 

levels measured at lower FL. Similarly, outdoor and indoor BC concentrations at 6th–32nd 

FL were significantly lower than those at lower FL only during the nonheating season  

(p < 0.05). In addition, living in a low-rise building was associated significantly with 

higher levels of 8PAHnonvolatile and BC. These results suggest that young inner city 

children may be exposed to varying levels of air pollutants depending on their FL, season, 

and building type. 

Keywords: vertical gradient; floor level (FL); building type; heating season; traffic-related 

air pollution; polycyclic aromatic hydrocarbons (PAHs); outdoor and indoor 

 

1. Introduction  

Proximity to major roadways has been associated with an increased risk of wheeze illness, asthma 

and atopy [1-5]. Previously, most measures of proximity to major roadways have focused on the 

spatial heterogeneity associated with the horizontal gradients of ambient pollutants such as black 

carbon (BC), particulate matter <2.5 m (PM2.5), ultrafine particles (UFP), and carbon monoxide (CO) 

near highways. As examples, Zhu et al. found that BC and UFP concentrations decreased 

exponentially within 150 m downwind from a major highway in Los Angeles, California [6,7]. 

Reoponen et al. also observed a distinct concentration gradient of UFP, but not PM2.5, within 1,600 m 

of a highway in Cincinnati, Ohio [8]. In contrast, studies that characterize the vertical gradient of 

airborne-pollutants, particularly in residential urban settings, remain scarce.  

Most traffic-related air pollution studies showing associations with health effects have mainly 

relied on estimated exposure levels based on residential proximity to major roadways or traffic [1,2,9,10]. 

Other studies have used fixed ambient monitoring data to estimate residential indoor, outdoor, or 

personal exposure levels using geographic information systems (GIS) based methods [11-13]. 

However, nearly all researches have considered proximity as a perpendicular distance from major 

roadways or fixed sites, but not a vertical distance (e.g., floor level). Consideration of residential floor 

level as another proximity to traffic-related air pollution in the models may improve the prediction of 

individual residential exposures among inner city dwellers. 

New York City (NYC) has the highest population density among US cities, with over 27,000 

people per square mile [14]. Residences include both low-rise (less than 6 floors) and high-rise 

apartment buildings. Sources of air pollution include traffic, commercial sources, and heating units 

such as boilers or furnaces in buildings [14]. City dwellers may be exposed to different levels of air 
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pollution depending on the strength of local traffic emissions, meteorological parameters, street 

configuration, as well as floor level (FL) of their apartment [15].  

The few studies conducted on vertical gradients of traffic-related airborne pollutants have been 

conducted in urban Asia. Wu et al. found a significant decrease in ambient PM concentrations as 

height near major roadways increased from 2 to 79 m [16]. Li et al. also reported a decrease in the 

concentrations of outdoor PM2.5 and polycyclic aromatic hydrocarbons (PAHs) as the height of 

residential building, next to a busy road, increased [17]. These findings were supported further by 

Tao et al. who showed that measured ambient PAH concentrations decreased with heights in winter 

due to vehicle emissions at ground level and the observed restrained atmospheric conditions [18]. 

However, most of these studies were limited by either involving only short-term ambient sampling 

(e.g., over a few days, in one season), or a specific building type (high-rise building near a major 

roadway). The effect of season on the vertical gradient of traffic-related pollutants still needs to be 

elucidated in residential outdoor and indoor environments.  

We hypothesize that PAH, BC and PM2.5 concentrations may decrease with higher FL and the 

vertical gradients of these compounds would be affected by heating season and building type. Our first 

objective was to characterize the vertical gradient of residential indoor and outdoor levels of PAHs 

(gas + particulate phase; dichotomized into 8PAHsemivolatile [MW 178–206], and 8PAHnonvolatile  

[MW 228–278]), BC, and PM2.5 in a birth cohort study conducted by Columbia Center for Children’s 

Environmental Health (CCCEH). Our second objective was to determine the effects of season and 

building type on vertical gradients of measured air pollutants. We anticipate that these results may be 

important for assessing more accurately residential exposure and health risks in urban environments 

like NYC.  

2. Methods 

Study design. Children were primarily of African-American and Dominican ethnicity and lived in 

Northern Manhattan and the Bronx, geographical areas where exposure to traffic-related air pollution 

has been implicated in asthma and other diseases [19-21]. Three hundred thirty nine children were 

enrolled from the parent CCCEH cohort study and who were 5-6 years old during the periods between 

October 2005 and July 2010, as described previously [22]. The study was approved by the Columbia 

University Institutional Review Board and informed consent obtained.  

Residential monitoring. Briefly, for BC and PM2.5 measurements, two-week integrated indoor 

monitoring was conducted at each of the first 262 homes between October 2005 and July 2010 for two 

time points each six months apart as described in detail [22,23]. Indoor air monitors were placed in a 

room where the child spent most of his or her time (mostly child’s bedroom). For an additional n = 77, 

only one two-week measure was obtained. At one third of randomly selected homes, simultaneous 

outdoor sampling was conducted. While BC and PM2.5 were collected at both time points, a panel of 

16 PAH was measured at one time point only.  

BC and PM2.5 were collected on Teflon filter samples with a flow rate of 1.5 L/min for two weeks, 

leading to an average sampling volume of 30.1 m
3
. BC was estimated primarily by using a  

multi-wavelength integrating sphere method to achieve maximum specificity over a large range of 

ambient pollutants levels [24]. Filters were pre- and post-weighed on a microbalance after being 
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equilibrated under a temperature and humidity controlled environment for at least 24 hours for 

measurement of PM2.5 [22,23]. 

Particulate phases and gas phases PAH were collected on a quartz microfiber filter and 

polyurethane foam (PUF) cartridge back-up, respectively with the same sampling flow rate as BC and 

PM2.5 collection. The sixteen PAH monitored were: benz[a]anthracene (BaA), chrysene/iso-chrysene 

(Chry), benzo[b]fluoranthene (BbFA), benzo[k]fluoranthene (BkFA), benzo[a]pyrene (BaP), 

indeno[1,2,3-c,d]pyrene (IP), dibenz[a,h]anthracene (DahA), benzo[g,h,i]perylene (BghiP),  

pyrene (Pye), phenanthrene (Phe), 1-methylphenanthrene (1Meph), 2-methylphenanthrene (2Meph),  

3-methylphenanthrene (3Meph), 9-methylphenanthrene (9Meph), 1,7-dimethylphenanthrene 

(1,7DMeph), and 3,6-dimethylphenanthrene (3,6DMeph). A single soxhlet extraction of both the 

filters and PUFs together was analyzed at Southwest Research Institute (San Antonio, TX) [20,25]. 

Questionnaires. Questionnaires that addressed residential environmental conditions including FL 

of home, total number of stories in building of residence and exposure to environmental tobacco 

smoke (ETS), which was defined by the report of any smoker in the home, were administered when the 

child was 5–6 years old. The FL of home and total number of stories in building were reassessed by 

field staff during set up of the residential air monitor.  

Statistical analysis. Due to the non-normal distributions of BC, PM2.5 and individual PAH, 

nonparametric analyses were conducted. PAH levels were summed according to their relative volatility 

and gas/particle partitioning i.e., 8PAHsemivolatile (sum of 8 low molecular-weight-PAH  206) and 

8PAHnonvolatile (sum of 8 high molecular-weight-PAH  228). Heating season was defined as any 

sampling initiated from October 1 through April 31 after calculating the number of heating degree 

days (HDD) per month as described previously [22]. 

Participants who moved to outside the catchment area were excluded from analysis (n = 21). 

Traffic-related airborne-pollutant levels were analyzed by FL, classified into three groups: 0–2nd,  

3rd–5th, and 6th–32nd FL. Data between 6th and 32nd FL were grouped together due to the small 

number of samples collected at higher floor levels. In addition, building type was classified into two 

groups: low-rise (if total FL is less than 6 stories) versus high-rise apartment buildings (if total FL is 

equal to or higher than 6 stories). Differences in PAH, BC, and PM2.5 concentrations measured at 

different FL or building type were compared using the Kruskal-Wallis test. Analyses were conducted 

using SPSS software (SPSS; Chicago, IL, version 18). 

3. Results  

3.1. Floor Level (FL) Distribution by Study Participants 

Forty-eight percent of participants lived between 3rd and 5th floors of buildings (indicated by blue) 

and nineteen percent of participants resided on the 6th–32nd FL (Figure 1). The majority of 

participants (73.8%) lived in low-rise buildings when compared to high-rise buildings.  
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Figure 1. Floor level (FL) distribution by CCCEH participants. 

Northern 

Manhattan

South 

Bronx

Bronx

 

Northern Manhattan and the Bronx areas are illustrated by the solid black line. Circles represent 

residences of each participant and the color indicates different FL: Red (0–2nd FL), blue (3rd–5th 

FL), and green (6th–32nd FL). Map was generated by using R software. 

3.2. Vertical Gradients of Airborne-Pollutants, Effects of Season 

Outdoors, the highest median levels were observed at 3rd–5th FL for all measured air pollutants, 

although the trend was not statistically significant (Table 1). Indoor 8PAHsemivolatile was significantly 

lower at 0–2nd FL than at higher FL (Table 1, p = 0.038). In contrast, a nonsignificant but decreasing 

trend in indoor 8PAHnonvolatile concentrations was observed with increasing FL (Table 1, p > 0.05). 

When homes exposed to ETS were excluded from analysis, negative associations between indoor 

8PAHnonvolatile concentrations and FL became significant (Table 2, p = 0.033). Similarly, indoor BC 

levels were associated negatively with FL, both with and without ETS exposure (Table 1, p < 0.05; 

Table 2, p < 0.05). The indoor PM2.5 concentration was not affected by FL.  

During the nonheating season, the median outdoor 8PAHnonvolatile level at 6th–32nd FL was  

1.5–2 times lower than those measured at the lower FL although the trend was not statistically 

significant (Figure 2, p > 0.05). In comparison, the median level of outdoor 8PAHsemivolatile did not 

differ by FL regardless of season. Higher median levels of indoor 8PAHnonvolatile and 8PAHsemivolatile 

were observed at 3rd–5th FL compared to either lower or upper FL only during the nonheating season. 

Both outdoors and indoors during the nonheating season, BC concentrations at 6th–32nd FL were 

significantly lower than those at lower FL (Figure 2, p < 0.05, Kruskal-Wallis test). Heating season did 

not alter the measured vertical gradient pattern of PM2.5 concentrations outdoors or indoors (Figure 2). 
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Table 1. Residential outdoor and indoor levels of air pollutants measured by FL. 

 Outdoor  Indoor 

 
0–2nd  

FL 

3rd–5th  

FL 

6th–32nd 

FL 
 

0–2nd  

FL 

3rd–5th  

FL 

6th–32nd  

FL 

N 32 47 19  99 143 57 

8PAHnonvolatile 
1.58 

(1.96 ± 1.35) 

1.74 

(2.45 ± 2.21) 

1.48 

(1.84 ± 1.45) 
 

1.46 

(2.03 ± 2.21) 

1.32 

(2.30 ± 6.34) 

1.11 

(1.67 ± 1.99) 

8PAHsemivolatile 
13.5 

(19.3 ± 19.4) 

16.4 

(19.1 ± 10.4) 

13.4 

(18.7 ± 14.3) 
 

36.8* 

(43.3 ± 24.1) 

44.6 

(65.7 ± 65.4) 

41.0 

(45.5 ± 25.7) 

BC 
1.54 

(1.67 ± 0.52) 

1.65 

(1.66 ± 0.44) 

1.36 

(1.51 ± 0.48) 
 

1.59* 

(1.85 ± 1.08) 

1.52 

(1.66 ± 0.72) 

1.35 

(1.47 ± 0.51) 

PM2.5 
10.6 

(10.7 ± 4.06) 

11.6 

(12.0 ± 3.21) 

10.2 

(10.7 ± 3.10) 
 

13.1 

(17.4 ± 14.7) 

13.4 

(16.6 ± 13.1) 

12.8 

(17.4 ± 13.8) 

Kruskal-Wallis test performed among different FL; * p-value < 0.05; Unit expressed in ng/m3 for PAH, 

µg/m3 for BC and PM2.5; 8PAHnonvolatile: BaA, Chry, BbFA, BkFA, BaP, IP, DahA, and BghiP; 

8PAHsemivolatile: Phe, 1Meph, 2Meph, 3Meph, 9Meph, 1,7DMeph, 3,6DMeph, and Pye; Median with 

(arithmetic mean ± standard deviation) presented. 

Table 2. Indoor levels of air pollutants by FL among homes without ETS exposure. 

 Indoor levels without ETS exposure  

 0–2nd FL 3rd–5th FL 6th–32nd FL p–value 

N 79 118 42  

8PAHnonvolatile 
1.53* 

(2.08 ± 2.34) 

1.31 

(2.39 ± 6.96) 

0.96 

(1.35 ± 1.06) 

0.033 

8PAHsemivolatile 
35.7 

(40.4 ± 18.7) 

44.6 

(64.3 ± 63.3) 

42.5 

(48.1 ± 28.3) 

0.059 

BC 
1.50** 

(1.75 ± 0.97) 

1.50 

(1.67 ± 0.77) 

1.23 

(1.35 ± 0.40) 

0.006 

PM2.5 
12.6 

(16.4 ± 15.1) 

13.0 

(15.6 ± 11.8) 

11.8 

(16.1 ± 13.0) 

0.467 

Kruskal-Wallis test performed among different FL; * p-value < 0.05; ** p-value <0.01; Unit expressed in 

ng/m3 for PAH, µg/m3 for BC and PM2.5; 8PAHnonvolatile: BaA, Chry, BbFA, BkFA, BaP, IP, DahA, and 

BghiP; 8PAHsemivolatile: Phe, 1Meph, 2Meph, 3Meph, 9Meph, 1,7DMeph, 3,6DMeph, and Pye; Median with 

(arithmetic mean ± standard deviation) presented. 
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Figure 2. Seasonal variations in vertical distributions of air pollutants measured in 

(a) outdoor, (b) indoor environment.  
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Note: Kruskal-Wallis test was performed to compare the measured air pollutant levels by FL, stratified by 

heating season and nonheating season. Significance at * p < 0.05. The white and black lines show individual 

observations, while the black and white areas show the distributions of observations at each FL for heating 

season and nonheating season, respectively. The dotted line indicates the overall geometric mean and the 

thicker solid line shows the geometric mean concentration of each FL level for each season.  

8PAHnonvolatile includes benz(a)anthracene (BaA), chrysene/iso-chrysene (Chry), benzo(b)fluoranthrene (BbFA), 

benzo(k)fluoranthrene (BkFA), benzo(a)pyrene (BaP), indeno(c,d)pyrene (IP), dibenz(a,h)anthracene (DahA), and 

benzo(ghi)perylene (BghiP). 8PAHsemivolatile includes pyrene (Pye), phenanthrene (Phe), 1-methylphenanthrene 

(1Meph), 2-methylphenanthrene (2Meph), 3-methylphenanthrene (3Meph), 9-methylphenanthrene (9Meph), 

1,7-dimethylphenanthrene (1,7DMeph), and 3,6-dimethylphenanthrene (3,6DMeph). 

3.3. Effects of Building Type  

Both outdoors and indoors, 8PAHnonvolatile and BC concentrations measured at high-rise apartment 

buildings were significantly lower than those measured at low-rise building across all FL (Figure 3;  

p < 0.05 for 8PAHnonvolatile and p < 0.001 for BC; Kruskal-Wallis test). In general, the levels of indoor 

air pollutants measured at the same FL were lower in high-rise buildings compared to low-rise 

buildings especially when homes with ETS exposure were excluded. For example, the median 

concentrations of 8PAHnonvolatile measured in low-rise buildings were 10–30% higher than those in 

high-rise buildings at 0–2nd and 3rd–5th FL, respectively (Table 3). In comparison, there were no 

significant differences in 8PAHsemivolatile and PM2.5 concentrations by building type. However, the 
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median indoor PM2.5 concentration measured at low-rise buildings was 40% higher compared to those 

measured at high-rise building when considering levels collected at the lowest floors (0–2nd FL) (Table 3). 

Figure 3. Effect of building type on measured levels of outdoor and indoor air pollutants. 
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Note: The white and black lines show individual observations, while the white and black areas show the 

distribution. The dotted line indicates the overall geometric mean and the thicker solid line shows the 

geometric mean concentration of low-rise and high-rise buildings for each outdoor and indoor environment. 

Significance at * p < 0.05 and ** p < 0.01, Kruskal-Wallis test. 8PAHnonvolatile includes benz(a)anthracene 

(BaA), chrysene/iso-chrysene (Chry), benzo(b)fluoranthrene (BbFA), benzo(k)fluoranthrene (BkFA), 

benzo(a)pyrene (BaP), indeno(c,d)pyrene (IP), dibenz(a,h)anthracene (DahA), and benzo(ghi)perylene (BghiP). 

8PAHsemivolatile includes pyrene (Pye), phenanthrene (Phe), 1-methylphenanthrene (1Meph),  

2-methylphenanthrene (2Meph), 3-methylphenanthrene (3Meph), 9-methylphenanthrene (9Meph),  

1,7-dimethylphenanthrene (1,7DMeph), and 3,6-dimethylphenanthrene (3,6DMeph). 
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Table 3. Indoor air pollutant levels by building type. 

 0–2nd FL  3rd-5th FL 

 Low-rise High-rise LR/HR a  Low-rise High-rise LR/HR a 

N 66 13   90 18  

8PAHnonvolatile 1.57 

(2.07 ± 2.18) 

1.47 

(2.29 ± 3.12) 

1.1  1.32 

(2.64 ± 7.93) 

1.02 

(1.16 ± 0.79) 

1.3 

8PAHsemivolatile 34.9 

(42.7 ± 26.5) 

30.9 

(41.5 ± 27.4) 

1.1  45.3 

(67.9 ± 68.1) 

45.7 

(50.0 ± 34.4) 

0.99 

BC 1.56 

(1.83 ± 1.05) 

1.29 

(1.43 ± 0.49) 

1.2  1.50 

(1.71 ± 0.83) 

1.41 

(1.36 ± 0.43) 

1.1 

PM2.5 13.4 

(17.8 ± 16.3) 

9.55 

(12.6 ± 7.13) 

1.4  12.9 

(15.2 ± 9.98) 

12.9 

(13.1 ± 5.21) 

1.0 

LR/HR a is the ratio of the median levels of pollutant measured in low-rise buildings to high-rise buildings; 

Unit expressed in ng/m3 for PAH, µg/m3 for BC and PM2.5; Median with (arithmetic mean ± standard 

deviation) presented; Only those without reported ETS were included in these analyses. 

4. Discussion 

PAHs are ubiquitous in indoor and outdoor air. While the major sources of nonvolatile PAHs and 

BC are traffic emissions and residential heating in NYC and other US cities, semivolatile PAHs have 

prominent indoor sources such as space heating (e.g., kerosene heaters), cooking, or burning incense or 

candles [22,26]. Our objective was to characterize vertical gradients of these traffic-related air 

pollutant exposures in outdoor and indoor environments and determine the effects of season and 

building type. We found that residential levels of indoor 8PAHnonvolatile and BC concentrations, but 

not PM2.5, were substantially lower at higher FLs compared to 0–2nd FL. Further, children living in  

low-rise buildings are exposed to higher levels of 8PAHnonvolatile and BC than those at  

high-rise buildings.  

Vertical gradients of ambient air pollution may vary depending on differences in emission sources 

and vertical mixing conditions, meteorological conditions and street configuration [15]. Farrar et al. [27] 

proposed three major scenarios in which vertical gradient patterns of pollutants may differ: 

(1) minimal ground-level sources with dominant advection; (2) strong ground-level sources under a 

stable atmosphere; and (3) higher emissions from upper boundary (e.g., chimney). Several studies have 

reported a clear decreasing trend of PAHs and PM2.5 with heights in urban areas (scenario 2) due to 

dominant motor vehicle emissions at ground level and weak vertical mixing conditions [17,18,28]. 

Although these studies demonstrated well the typical vertical gradient pattern of aerosols in urban 

atmosphere, vertical distribution pattern of air pollutants under complex conditions such as in the 

presence of multiple emission sources has not been understood clearly. 

The vertical gradient of outdoor 8PAHnonvolatile and BC may be attributed to either ground-level 

traffic sources under a stable atmosphere or emissions on building roofs due to residential heating. 

When the primary sources dominate at ground level, the higher concentration is expected to be 

observed at lower FL; whereas when the upper boundary emissions dominate, the higher concentration 

would occur with higher FL. We observed the highest concentration at 3rd–5th FL in outdoor 

environment for all measured air pollutants, although variation by pollutant and season was observed. 
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Our data suggest that both upward transportation of ground-level emissions (e.g., tailpipe exhaust of 

motor vehicles, cooking emissions from commercial restaurants) and downward dispersion from 

chimneys (mostly located at 5th–6th FL) may reach their peak level at 3rd–5th FL.  

A pattern of decreasing 8PAHnonvolatile and BC levels with increased FL became significant only in 

ETS-free indoor environments, indicating that the presence of ETS in the homes could mask the indoor 

vertical gradients of 8PAHnonvolatile and BC. This finding also suggests that indoor sources such as 

smoking may be important confounders when determining indoor vertical gradients of 8PAHnonvolatile 

and BC. This finding is consistent with other studies showing that nonvolatile PAHs, in particular 

chrysene, are the primary contributors to ETS exposure [29,30]. 

Our failure to observe vertical differences in outdoor PM2.5 suggests that ground-level sources of 

PM2.5 may be overwhelmed by regional sources influences. As reported in Qin et al. [31], ambient 

PM2.5 concentrations measured in NYC and northeastern U.S. cities were observed to be relatively 

uniform due to large contributions from long-range transported aerosols and regional sources like coal-

fired power plants. Also, indoor PM2.5 levels have been associated with indoor activities such as 

cooking, smoking, burning incense/candle and residential heating [32-34]. Therefore, the contribution 

of regional sources and indoor activities may outweigh emissions from ground-level sources, possibly 

resulting in an even distribution of PM2.5 with FL in this study. 

Our analyses by season showed that during the heating season, outdoor 8PAHnonvolatile and BC 

levels did not vary across FL. During the nonheating season, their levels were lowest at 6th–32nd FL. 

This observation suggests that ground level sources drive gradients during the nonheating season, 

whereas during the heating season, 8PAHnonvolatile and BC emitted from boiler chimneys on rooftops 

masks the vertical gradient pattern of ground-level generated pollutants. Wu et al. [35] found the 

highest particulate PAH concentrations at a height of 40 m, where chimneys are located, compared to 

20 m or 60 m near a crossroad, implying that emissions from coal combustion boiler chimneys in 

surrounding neighborhoods contribute to PAHs in the atmosphere. During the nonheating season, 

outdoor 8PAHnonvolatile concentrations may decrease further with increasing FL because ambient 

ozone levels increase with height and facilitate the degradation of PAH, as described previously in the 

same cohort [22] and others [36-38].  

Building type also was identified as an important parameter influencing air pollution exposures 

across FL. Higher levels of outdoor and indoor 8PAHnonvolatile and BC were detected in low-rise 

buildings compared to high-rise buildings. This difference can be explained partially by geography. 

Most low-rise buildings are located adjacent to roadways and nearby commercial businesses  

(e.g., mixed-buildings with restaurants, store fronts, etc.) [39]. Therefore, people living in low-rise 

buildings may be exposed to higher levels of air pollution emitted not only from traffic emissions, but 

also business-related emissions. In contrast, the majority of high-rise buildings included in this study 

are set farther back from the roadways, isolated from commercial spaces, possibly surrounded by some 

open green space, or even further separated from nearby neighborhoods in project housing complexes. 

These conditions may facilitate vertical mixing, dilution and dispersion of air pollution. Trees and 

other forms of vegetation may act as efficient sinks for particles, metals, and other gaseous compounds, 

inhibiting the spread of air pollution [40-42]. 

We acknowledge that, because this birth cohort study was not designed specifically to investigate 

vertical gradient patterns of air pollutants, we were unable to control for the effects of location, time, 
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and meteorological conditions on air pollutant measures. Most residential samples are not concurrent 

and are from various locations throughout upper Manhattan and the Bronx. These factors could affect 

the measured outdoor vertical gradients. However, this study does provide a large dataset of direct 

residential outdoor and indoor measures, and these results advance our understanding of the effects of 

vertical gradient on residential exposure levels for urban children.  

5. Conclusions  

Inner city children living in apartment buildings may be exposed to different levels of air pollutants, 

depending on FL, season and building type. Consideration of vertical heterogeneity associated with 

exposure to air pollution may lead to a more accurate assessment of exposure in cohort research. These 

results may have substantial implications for diseases known to be influenced or triggered by exposure 

to air pollution, such as asthma. 
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