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Abstract: This study introduces an unequally weighted technique for Multi-model Ensemble (MME)
forecasting for western North Pacific Tropical Cyclone (TC) tracks. Weights are calculated by partial
least square regression, and members are selected by paired t-test. The performances for shorter
forecast time ranges, such as 24, 48 and 72 h, are examined in order to improve the MME model,
in which the weights for members are equally assigned. For longer forecast time ranges, such as 96
and 120 h, weights for MME members are thought to be less reliable, since the modeling is more likely
to be influenced by the climate variability in the data period. A combination of both techniques for
the shorter and the longer forecast time ranges is suggested as an alternative MME forecast procedure
in operational meteorological agencies.
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1. Introduction

Climatology records the strongest and the most active Tropical Cyclones (TCs) in the western
North Pacific (WNP), among other global ocean basins. TCs in this ocean basin are becoming even
stronger in response to global warming [1]. A tropical cyclone is a destructive weather system that
causes huge losses of both life and property. Nevertheless, the damage could be reduced by effective
preparedness, as long as TCs are predictable [2]. Timely and accurate forecast for TC tracking is most
necessary for the successful prevention of potential threats [3].

Multi-Model Ensemble (MME) of the forecast tracks from various prediction models have been
exploited as a useful forecast technique in many meteorological centers [4]. An MME process requires
a pool of participating members as prediction sources. One of the merits of the MME technique is
that more reliable track forecasts are available, based on the forecast spread of the ensemble members.
Previous studies have revealed that the prediction performance of the MME technique can be largely
influenced by various factors in consideration. Firstly, a Selective MME SMME, from a subset of the
best members outperforms the simple consensus of all possible members in the pool [5]. SMME,
in consideration of predefined error mechanisms, was utilized by the U.S. Joint Typhoon Warning
Center (JTWC) [6–8]. JTWC’s approach, however, was not very successful, since the selection of
the members could be easily influenced by forecaster’s subjectivity [9]. Subsequently, Qi et al. [10]
and Jun et al. [11] each independently developed and automated an objective approach to SMME,
which directly makes use of model errors when selecting members. Relative independence among the
members is another factor to consider [12], as is employed for the operational TC track forecast by the
U.S. National Hurricane Center and JTWC [13,14]. Assigning weight to each member forecast can also
be beneficial for MME performance. Unequal weights could be estimated by multiple linear regression
method, whose regression coefficients represent individual contributions to the MME performance.
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This attempt was made by Krishnamurti et al. [15] under the name of the ‘Superensemble’ technique.
Verification of MME forecasts in operation have mostly suggested smaller errors when unequal weights
are applied [16,17].

In the previous studies, SMME and weighted methods have been separately advanced. This study
takes both into account for more accurate forecasting. Thus, this study tries to improve both SMME
and weighted methods, and merges them into an alternative forecasting technique, Weighted
SMME (WSMME). Data and methodologies in association with WSMME are addressed in Section 2.
Here, statistical interval estimation using paired t-test is employed for selecting participating members.
Then, Partial Least Squares Regression (PLSR) is used to assign weight to each selected member,
avoiding the multicollinearity problem among members. Also, ‘noisy’ parts of predictors could be
eliminated by PLSR when unequal weights are produced [18]. In Section 3, the forecast skills of
WSMME for WNP TCs over 4 years (2012–2015) are compared with those of numerical models and
other MME approaches. In addition, Section 3 provides more detailed information of WSMME based
on a TC named ‘Tembin’ in 2012. Results are summarized and discussed in Section 4.

2. Data and Methods

2.1. Data

This study experiments with statistical modeling for WNP TCs whose lifetime-maximum intensity
exceeds 17 ms−1. Four different numerical models (Table 1) are used for developing an MME model
based on 127 TC cases during 2011–2015. Results are evaluated by best-track data from Japan
Meteorological Agency (JMA). When any forecast value of the numerical model is not available,
an ensemble version of the model is used to provide an averaged value of the member forecasts as
a substitute. Global Spectrum Model (GSM)’s forecast is not available after 84 h, so the ensemble
version is used after that time. In other models, there are few irregular missing values. When a
deterministic value is missing for a forecast, then its ensemble outputs are exploited. For Global
Data Assimilation Prediction System (GDAPS), the 2015 version of Met Office Global and Regional
Ensemble Prediction System (MOGREPS) is exploited, since GDAPS has the same origin as the Unified
Model, whose ensemble version is MOGREPS.

Table 1. The list of numerical models used in this study.

Name Produce
Center

Horizontal
Resolution (km)

Output
Time Step

Model Cycle
(Per Day) Version

Global Data Assimilation
Prediction System (GDAPS) KMA 25 3/6 hourly

(0–87/288 h) 4 Unified model
vn7.8–7.9

Global Forecast System (GFS) NCEP 28/70 3/12 hourly
(0–384 h) 4 GFS 9.0.1

Integrated Forecast System (IFS) ECMWF 16 6 hourly
(0–240 h) 2 Cycle

36r4–41r1

Global Spectrum Model (GSM) JMA 20 6 hourly
(0–84 h) 4 Changed in

2014

Korea Meteorological Administration (KMA), National Centers for Environmental Prediction (NCEP), European
Centre for Medium—Range Forecasts (ECMWF), Japan Meteorological Agency (JMA).

2.2. Methods

The experiment is designed for operational forecasts under real-time conditions. The most recently
produced model forecasts from the forecast initial time are used [19,20]. It takes 6 to 12 h or more to
arrange model track forecasts for an MME forecast. The position of minimum mean sea level pressure
in the forecast field is defined as the TC center. In the tracking algorithm, first guess position is given
by the previous forecasts with 6 or 12 h (when 6 h forecast is not available) lead time. Then, the TC
position is extracted from a quadratic surface around the center of the first guess.
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2.2.1. Selecting Stage

Ho : er = ea (1)

Ha : er < ea (2)

Statistical interval estimation can be applied to exclude members that are very likely to degrade
MME forecast skill. Here, paired t-test is used to provide a reliable estimation of the true performance
of models than point estimation [21]. This test investigates the statistically significant difference
between two models, usually correlated [22,23]. A null hypothesis such as (1) is rejected, and an
alternative hypothesis such as (2) is chosen at 95% confidence level (α (significance level) ≤ 0.05).
Then, a member is removed from the participant members when it is likely to increase WSMME error
at 95% probability level or above. MME members are selected through the process separately at each
forecast time range, i.e., 24, 48, 72, 96 and 120 h. The MME performance is attributed to the errors and
the relative independence among members [12]. This implies that a selected factor would not be the
error of members but the error of MME for better performances. ea denotes the error of MME forecasts
containing all members (a) such as GDAPS, GFS, GSM, and IFS. er represents the error of MME forecast
made by remaining members (r) after removing a subject members [13]. Input values are updated
continuously for evaluation. This selecting stage is practically similar to the cross-validation process in
regression analysis. The error of the track forecast indicates the distance between forecast and observed
positions. The position errors produced for each time step (00, 06, 12, 18 UTC) are averaged for each
forecast lead time (24, 48, 96, 120 h), and t statistic is tested. The position error distance is calculated on
a great circle. T-statistic provides statistical significance of the difference between MME members.

2.2.2. Weighting Stage

Unequal weights for latitude and longitude per forecast time range are calculated through the
PLSR technique. For instance, if 120 h track forecasts of unequal weighting MME are produced
at 6 h intervals, then the number of total unequal weights is 40. The PLSR regresses the response
variable (observed TC position; o) on the latent variables (T) containing variations of both o and
predictors (member track forecasts; F), not directly using F for the explanatory variable [24]. F, referred
to as forecast data matrix, consists of model member and each time step for column and row,
respectively. T is useful for preventing multicollinearity problems assigning unequal weights based
on the orthogonal relationship among the latent variables. The PLSR produces the latent variable
matrix (T), where the information on variation in both o and F is maintained (Figure 1). The number
of new variables is less than or equal to that of members, since ‘noisy’ variables might be removed
through the cross-validation procedure [18]. The number of variables is determined to have minimum
forecast error through a ‘leave-one-out’ cross-validation method. This uses all possible datasets of
training data.
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Figure 1. The schematic plot of Partial Least Squares Regression (PLSR). F is the matrix for forecast
data of selected members (predictors) and o is the vector of tropical cyclone position (a response).
PLSR deprives T, referred to as latent variables, of F maximizing correlation with o. The noisy matrix
is not used for calculating unequal weights.
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F and o are the training datasets consisting of increments of respective forecast longitudes and
latitudes. For example, 12◦ N at forecast initial time and 27◦ N at 120 h return 15◦ N as its latitudinal
increment [17]. The training dataset may be less effective for assigning skillful weights on WMME
members, if any participant model undergoes changes. By this reason, the data range for the training
datasets is limited to the last year, in order not to involve long-past characteristics of models [16].
The data set for evaluation and training may contain the forecasts made in current and the previous
years. This happens to TC cases over two calendar years. This implies that the model members
and weights could differ by forecast times. MME forecasts are produced for the years 2012–2015.
Thus, the forecasts from 2011 are used for evaluation and training, while those from 2015 are not.

3. Results

3.1. Forecast Skill of WSMME

3.1.1. Comparison with MME

Errors are calculated for the selecting stage and weighting stage. Comparisons are made among
the results from the different three approaches named as Equally Weighting Overall MME (EWOM),
Equally Weighting Selective MME (EWSM) and Unequally Weighting Selective MME (UWSM)
2012–2015 (Figure 2).

Atmosphere 2017, 8, 174  4 of 9 

 

F and o are the training datasets consisting of increments of respective forecast longitudes and 
latitudes. For example, 12° N at forecast initial time and 27° N at 120 h return 15° N as its latitudinal 
increment [17]. The training dataset may be less effective for assigning skillful weights on WMME 
members, if any participant model undergoes changes. By this reason, the data range for the training 
datasets is limited to the last year, in order not to involve long-past characteristics of models [16]. The 
data set for evaluation and training may contain the forecasts made in current and the previous years. 
This happens to TC cases over two calendar years. This implies that the model members and weights 
could differ by forecast times. MME forecasts are produced for the years 2012–2015. Thus, the 
forecasts from 2011 are used for evaluation and training, while those from 2015 are not. 

3. Results  

3.1. Forecast Skill of WSMME 

3.1.1. Comparison with MME 

Errors are calculated for the selecting stage and weighting stage. Comparisons are made among 
the results from the different three approaches named as Equally Weighting Overall MME (EWOM), 
Equally Weighting Selective MME (EWSM) and Unequally Weighting Selective MME (UWSM) 2012–
2015 (Figure 2). 

 
Figure 2. The schematic plot for three Multi-Model Ensemble (MME) tests and Weighted Selective 
MME (WSMME). WSMME forecasts are the solid lines of Equally Weighting Selective MME (EWSM) 
and Unequally Weighting Selective MME (UWSM). 

Skill score as (3) depicts the proportion of improvement over base forecast [9,14]. Table 2 shows 
that the track forecast errors from EWSM are significantly smaller than EWOM at 95% confidence 
level, as the improvement through selecting stage ranges from 2.2 to 5.4% at 24, 48, 72, 96 and 120 h. 
UWSM outperforms EWSM, which is confirmed by the improved skill ranging from 1.6 to 3.1% at 24, 
48 and 72 h at 95% confidence level. The WSMME forecast, which is a combination of UWSM until 
72 h and EWSM for the rest, is confirmed to have the most improved forecast skill over EWOM 
(Figure 2). ݈݈݅݇ݏ	݁ݎ݋ܿݏ	 ൌ ݎ݋ݎݎ݁ െ ݄݁ݐ ݎ݋ݎݎ݁ ݂݋ ݁ݏܾܽ ݄݁ݐݐݏܽܿ݁ݎ݋݂ ݎ݋ݎݎ݁ ݂݋ ݁ݏܾܽ ݐݏܽܿ݁ݎ݋݂ ൈ 100% (3) 

  

Figure 2. The schematic plot for three Multi-Model Ensemble (MME) tests and Weighted Selective
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and Unequally Weighting Selective MME (UWSM).

Skill score as (3) depicts the proportion of improvement over base forecast [9,14]. Table 2 shows
that the track forecast errors from EWSM are significantly smaller than EWOM at 95% confidence level,
as the improvement through selecting stage ranges from 2.2 to 5.4% at 24, 48, 72, 96 and 120 h. UWSM
outperforms EWSM, which is confirmed by the improved skill ranging from 1.6 to 3.1% at 24, 48 and
72 h at 95% confidence level. The WSMME forecast, which is a combination of UWSM until 72 h and
EWSM for the rest, is confirmed to have the most improved forecast skill over EWOM (Figure 2).

skill score =
error − the error o f base f orecast

the error o f base f orecast
× 100% (3)
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Table 2. Mean track forecast errors (km) of three different experiments for MME during 2012–2015.
The EWSM (UWSM)’s skill scores (%) is relative to EWOM (EWSM).

Forecast Time Range (h) Number of Cases
EWOM EWSM UWSM

km km % km %

24 1803 75.3 72.7 3.4 ** 70.5 3.1 **
48 1438 130.5 125.2 4.0 ** 122.1 2.5 **
72 1098 191.6 185.9 3.0 ** 183.0 1.6 **
96 808 279.0 263.9 5.4 ** 263.6 0.1
120 568 377.2 369.0 2.2 ** 400.8 −8.6

** Indicate EWSM (UWSM)’s errors are significantly smaller than EWOM (EWSM)’s at 99% confidence level.

3.1.2. Comparison with Numerical Models

Table 3 shows the comparison of the forecast skills between WSMME and each individual model.
WSMME exhibits significantly smaller error distances than any other model even at 99% confidence
level for 24, 48, 72, 96 and 120 h during 2012–2015. The improvement of WSMME skill is seen to be
5.7–40.9% over the numerical models. Boxplots help assess the difference of the model performances
in detail [25]. A boxplot contain 5 values and outliers. The 0.5 quantile (median) is located in the center
of the boxplot and the 0.25 and 0.75 quantiles (hinges) are also noted in the box. Whiskers from the box
extend to the minimum and maximum values that do not exceed a length of 1.5 times the box length
from each hinge. WSMME indicates a narrower range of error distribution than any other model at 24,
48, 72, 96 and 120 h (Figure 3). Also, the outliers of WSMME are mostly smaller than those of other
numerical models.

Table 3. Mean track forecast errors (km) of WSMME and each model during 2012–2015. WSMME’s
skill scores (%) is relative to each model.

Forecast Time
Range (h) Number of Cases

WSMME GDAPS GFS IFS GSM

km km % km % km % km %

24 1722 69.9 118.1 40.9 ** 82.7 15.5 ** 82.2 15.0 ** 106.5 34.4 **
48 1360 122.2 196.3 37.8 ** 139.3 12.3 ** 135.6 9.9 ** 185.8 34.2 **
72 1017 183.1 288.0 36.4 ** 209.9 12.8 ** 201.8 9.3 ** 278.1 34.2 **
96 734 259.6 381.1 31.9 ** 300.6 13.7 ** 291.0 10.8 ** 406.0 36.1 **

120 494 367.7 490.8 25.1 ** 447.3 17.8 ** 389.9 5.7** 523.7 29.8 **

** Indicates WSMME’s errors are significantly smaller than each other model’s at 99% confidence level.
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3.2. Case Study

For showing the details of WSMME application, the track forecast for typhoon Tembin, issued on
25 August 2012, at 00 UTC, is chosen as an example case (Figure 4). In the selecting stage, GDAPS,
having the largest error distance among the members for 24 and 48 h forecasts, is removed from
participating MME members, while GSM for 72 h and after is removed owing to the relatively slow
movement of the forecast TCs. UWSM has a notable westward bias at 120 h than EWSM. UWSM’
represents the 120 h forecast position by UWSM when the current case is excluded from the training
dataset during 2011–2012. The 120 h forecast position is seen to move eastward closer to the track
position of EWSM using equal weights as defined. The larger 120 h forecast errors of UWSM than
EWSM imply that UWSM is easily influenced by the training dataset at this longer forecast time range.
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Figure 5 shows the kernel density distributions of longitudinal increments at forecast ranges
between 24 and 120 h. Kernel density estimation is made by smoothing the frequency distribution of
standardized longitudinal increments [23]. Gaussian kernel is used for this. Bandwidth (h), controlling
smoothness of kernel density estimation, is calculated by Silverman’s rule of thumb [26] as Equation (4).
s is standard deviation and the Interquartile Range (IQR) is the difference between the upper and lower
quartiles of the values in data. Minimum value between 0.9 s and 2

3 IQR divided by n0.2 is h, where n
is the number of values. Small (large) h results in rough (monotonous) density distribution. All kernel
density estimations at 24 h show similar distributions (Figure 5a). On the other hand, the annual
variation of density distributions at 120 h is seen to be larger than at 24 h (Figure 5). This confirms that
the track pattern at a longer forecast time range significantly varies by year, which could be understood
as the influence of interannual climate variability.

h =
min

{
0.9s, 2

3 IQR
}

n0.2 (4)
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Figure 5. Kernel density estimation for standardized longitude increments at (a) 24 and (b) 120 h.

Conclusively, the UWSM outperforms EWSM at shorter forecast time ranges, but not at longer
forecast time ranges, possibly due to larger influence of climate variability as well as the history of
model’s own improvements. Both influential factors could make the training datasets less effective to
find realistic weights on participating MME members.

4. Summary and Discussion

In this study, WSMME is developed and evaluated in pursuit of more accurate TC track forecasting
in the WNP. It is found that an approach using unequal weights through the PLSR method significantly
improves MME skill for up to 72 h forecasts, but not thereafter. For this approach to improve its forecast
skill at 96 and 120 h, consistent climate environments might be needed. The less skillful MME at 96 and
120 h by an unequal weighting approach is thought of as the consequence of influences by interannual
climate variability. As pointed out by Krishnamurti et al. [27], the unequal weighting approach has a
limitation to new observations by inexperienced values contained in the training dataset. In future
studies, synoptic environment fluctuating by years could be considered for better MME forecast after
96 h.

WSMME forecast is a combination of UWSM until 72 h and EWSM after that. WSMME approach
significantly outperforms individual models at all forecast time ranges. This suggests that WSMME
could provide a good track reference for operational TC forecasters at least in the WNP. It is certain
that the MME technique based on a larger spread of the forecasts provides more reliable uncertainty
information. Forecast TC position is taken from the mean value of each probability distribution.
Here, the spread also represents the confidence of the track forecast. A forecast error is normally small
when the forecast spread is small [5,28]. MME spread can also be useful in estimating the regions of
TC passage. Subsequent studies may include probabilistic information in association with WSMME
forecast, which will greatly enhance the value of MME forecast.
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