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Abstract: Poor urban air quality due to high concentrations of particulate matter (PM) remains a major
public health problem worldwide. Therefore, research efforts are being made to forecast ambient PM
concentrations. In this study, artificial neural networks (ANNs) were employed to generate models
forecasting hourly PM10 concentrations 1–6 h ahead, involving 3 measurement locations in the Tricity
Agglomeration, Poland. In Poland, the majority of high PM concentration cases occurs in winter due
to coal combustion being the main energy carrier. For this reason, the present study covers only the
periods of the winter calendar (December, January, February) in the period 2002/2003–2016/2017.
Inputs to the models were the values of hourly PM10 concentrations and meteorological factors such
as air temperature, relative humidity, air pressure, and wind speed. The results of the neural network
models were satisfactory and the values of the coefficient of determination (R2) for the independent
test set for three sites ranged from 0.452 to 0.848. The values of the index of agreement (IA) were from
0.693 to 0.957, the fractional mean bias (FB) values were 0 or close to 0 and the root mean square error
(RMSE) values varied from 8.80 to 23.56. It is concluded that ANNs have been proven to be effective
in the prediction of air pollution levels based on the measured air monitoring data.
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1. Introduction

Particle pollution, also known as particulate matter (PM) or particulates, is a complex mixture of
different chemical components including water-soluble ions, trace metals, and organic compounds
that emerge from a wide range of natural and anthropogenic sources [1–4]. Generally, two fractions of
particulate matter are distinguished: PM10 which is less than 10 µm in particle diameter and PM2.5

which is less than 2.5 µm in diameter. The two fractions differ not only in diameter but also in the
time of their formation, their chemical composition, and their half-life time. The structure of the mass
size distribution patterns may provide valuable information about the possible PM emission sources.
The natural sources significantly affect PM2.5–10 levels, while anthropogenic sources mainly affect the
fine fraction [5,6]. In the case of PM originating from industrialized and highly urbanized regions
in which nonindustrial combustion (municipal and residential sectors) and traffic are also dominant
emission sources, large concentrations of toxic heavy metals are observed [7].

The negative effect of particulate matter pollution on human health, even at relatively low
mass concentrations, is widely documented in the literature on the subject [8–15]. According to
the latest data, atmospheric PM pollution constitutes the 6th leading risk factor (among 43 ranked),
which corresponds to over 3 million deaths worldwide every year [16]. However, contrary to common
knowledge and numerous legislative actions (for example, Directive 2008/50/EC in force in the EU)
aimed at improving the air quality, pollution from particulate matter still poses the greatest risk to
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human health. According to the latest report of the European Environmental Agency [17], in 2015,
a total of 19% of the EU-28 urban population was exposed to PM10 levels above the daily limit value
and approximately 53% was exposed to concentrations exceeding the stricter value for PM10 set by the
World Health Organisation (WHO). Moreover, only 2% of the global urban population resides in areas
where PM10 concentrations are lower than the values given by the WHO air quality guideline [18].
It is important to note that during smog episodes, the recorded concentrations largely exceed the norm.
For example, Kukkonen et al. [19] stated that the recorded maximum 24-h concentrations amounted
to 130 µg·m−3 in London (February 2003), approximately 250 µg·m−3 in Oslo (January 2003) and
Helsinki (April 2002), and around 400 µg·m−3 in Milan (December 1998). In turn, in the extremely
cold January of 2006, the average 24-h PM10 concentration recorded in Kraków exceeded the value of
500 µg·m−3 [20] by three times.

Hence, to take precautions before and during situations in which air quality levels are close
to or above the alarm thresholds, researchers have been developing intelligent air pollution
forecasting methodologies for public health concerns, mostly based on local modelling works through
monitoring data [21–23]. Researchers have used statistical modelling techniques and machine
learning methods to analyse, engage the proper variables within modelling framework, and, finally,
predict the concentrations of particulate matter. The most preferred approaches are multiple linear
regression, stepwise regression, artificial neural networks, principal component analysis, and clustering
methods [21–29]. It should be noted that a number of studies have compared the performance of
various modelling approaches to determine the best model for the prediction of PM10 in different
locations. Sayegh et al. [25] showed the possibilities of predicting urban PM10 concentrations in the
City of Makkah, Saudi Arabia using multiple linear regression, quantile regression model, generalized
additive model, and boosted regression trees. Taşpınar and Bozkurt, [26] presented an artificial
neural networking model and a multiple linear regression model to forecast the maximum daily PM10

concentrations one day ahead in Düzce, Turkey. In turn, Pires et al. [30] investigated the performance of
five linear models (multiple linear regression, principal component regression, independent component
regression, quantile regression, and partial least squares regression) to predict the daily mean PM10

concentrations in the Oporto Metropolitan Area.
Many researchers combine numerous statistical methods for the purpose of formulating the

most accurate prediction. Voukantsis et al. [31] formulated and employed a novel hybrid scheme
in the selection process of input variables for the forecasting models, involving a combination of
linear regression and artificial neural networks models for forecasting PM10 and PM2.5 concentrations
in Thessaloniki and Helsinki. Ul-Saufie et al. [24] presented the results of daily PM10 forecasting
hybrid models obtained from principal component analysis with multiple regression (PCA-MLR) and
principal component analysis with feed-forward artificial neural networks (PCA-ANN), comparatively.
Similarly, Azid et al. [32] presented the combination of principal component analysis and artificial
neural networks allowing for the prediction of the air pollutant index (API) in Malaysia.

Apart from emission, the predictors used in most prognostic models of air quality are weather
conditions. The dispersion of pollutants is mainly determined by thermal conditions, air movement
dynamics, and the type of circulation or thermal stratification within the atmospheric boundary
layer [20,33–40].

Poland wrestles with the problem of excessive particulate matter concentration which is
predominantly recorded in urban areas in winter. In Poland, just as in other countries in Central and
Eastern Europe, the dependency of the economy on coal is still high. The hard coal and lignite amount
to approximately 50, 80, and 77% in the structure of primary energy, electricity, and heat consumption,
respectively. It is well recognized that coal combustion is one of the main sources of primary PM
and precursor gases emissions [41]. The European Environmental Agency [17] estimated that only
in 2012, approximately 44,600 of premature deaths in Poland were attributed to being exposed to
PM10. Additionally, two previous winter seasons (D, J, F, 2016/2017 and 2017/2018) in Poland were
marked by numerous cases of excessive 24-h PM10 concentrations. In many southern regions of Poland,
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the Provincial Environmental Protection Inspectorate issued notifications informing on the excessive
concentrations both in terms of the need to inform the population (hourly values of 200 µg·m−3), as well
as the risk of exceeding the alert levels (hourly values of 300 µg·m−3). In Poland, the concentrations
thresholds of PM10 are governed by the Regulation of the Minister of the Environment on 24 August
2012 concerning levels of certain substances in the air. However, it must be emphasized that, in Poland,
the thresholds entailing the obligation to inform the population and indicate the risk of exceeding the
alert level are, on average, two times (at times even four times) higher than in other European countries.

Therefore, the present paper addresses the topical issue of air quality and aims at presenting the
possibility of artificial neural network application to forecast PM10 concentrations in the winter period,
1 to 6 h ahead of time, as conducted in the Tricity Agglomeration on the basis of measurements taken
at 3 locations.

2. Materials and Methods

2.1. Research Area

The Tricity Agglomeration is a polycentric metropolitan area located on the coast of Gdańsk Bay
in northern Poland. The agglomeration consists of three cities (Gdynia, Sopot, and Gdańsk) with a total
area of 414 km2. The main and the most populated city of the agglomeration is Gdańsk. Additionally,
Gdańsk and Gdynia are cities which belong to the European Transport Corridor connecting Scandinavia
to the rest of Europe. Sopot is a small city providing numerous tourist attractions and is well
known for its spas. Sopot is also the most densely populated area of the region. According to
data from 31 December 2017, the population of the agglomeration is 747,000 [42]. The basis for the
agglomeration’s development and, at the same time, the major source of pollution is the maritime
economy—predominantly the shipbuilding industry. Currently, in the agglomeration, there are two
ports with numerous container terminals, seven shipyards, and many companies providing services to
the aforementioned facilities. The manufacturing-repair character of the ports and shipyards affects
the natural environment of the area. Particularly in the area of the shipyards and ports, the air is
exposed to pollutants emission, predominantly dust, due to the day-to-day work performed in such
facilities (for example, sandblasting, paintwork, or coating) as well as due to transport and loading.
Apart from the shipyard industry, a significant share of the pollution is caused by the electrical
engineering and petroleum industries. Despite the above, Tricity is characterized by a relatively
good air quality regarding the main pollutants [43]. This is due to the favourable location of the
agglomeration, as well as due to the fact that in the area of the Tricity agglomeration, the percentage of
households connected to the municipal heating network is very high. Furthermore, the percentage
of households using gas heating, which greatly limits the pollution that originates from the private
use of fossil fuels for domestic heating, is also very high. Additionally, due to a good municipal
communication infrastructure, the traffic congestion in the Tricity is relatively small in comparison
with other agglomerations in Poland.

2.2. PM10 Data and Meteorological Observation

The study was based on the measurement results of the atmospheric air quality obtained from
three monitoring stations located within the area of the Tricity agglomeration and operated by the
Foundation Agency of Regional Air Quality Monitoring in Gdańsk (ARMAAG) (Figure 1). The basic
materials for the study were the hourly values of PM10 particulate matter concentration, air temperature
(AT), relative humidity (RH), atmospheric pressure (PRES), and wind speed (WS), all obtained for the
period of the winter calendar (December–February) in the years 2002/2003–2016/2017. The expanded
uncertainty of the PM10 measurements in the analysed period amounted to 25%, which is in line
with the guidelines of the Directive on Ambient Air Quality and Cleaner Air for Europe [44]. All the
stations are defined as urban background stations. Gdańsk Wrzeszcz (λE 21◦02′; φN 52◦09′) and
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Gdynia Pogórze (λE 21◦02′; φN 52◦09′) are located in the built-up and the station in Sopot (λE 21◦02′;
φN 52◦09′) is located in the area of urban allotment gardens.
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2.3. Statistical Methods

Artificial neural networks (ANNs) were applied in this research to predict PM10 levels.
Network ANNs are a family of computational machine learning algorithms inspired by the

way biological nervous systems process and learn from information [22]. ANNs are one of the
favoured techniques in predicting a complex system and can perform any complex function mapping
with arbitrarily desired accuracy [23,24]. The neural networks constitute a sophisticated modelling
technique which allows for the depiction of the most complex functions. In particular, ANNs are of
nonlinear character, which significantly extends the possibilities of application. The basic structure of
ANNs is composed of input and output neurons with weights of interconnection placed in different
layers and their internal transfer functions. In almost all cases where air pollution models have been
developed using ANNs for modelling and forecasting, ANNs have been found to provide more
accurate predictions than the traditional linear statistical approaches [22,45,46].

In the end, the models allowing for the prediction of PM10 were created with the following
time schedules:

PM10, h+1—the forecast of the PM10 hourly concentration for the next hour
PM10, h+2—the forecast of the PM10 hourly concentration for the next two hours
PM10, h+3—the forecast of the PM10 hourly concentration for the next three hours
PM10, h+4—the forecast of the PM10 hourly concentration for the next four hours
PM10, h+5—the forecast of the PM10 hourly concentration for the next five hours
PM10, h+6—the forecast of the PM10 hourly concentration for the next six hours
To assess the models’ performance between the observed and predicted concentrations of PM10,

statistical parameters were used. The following were calculated as performance indicators: index
of agreement (IA), fractional mean bias (FB), root mean square error (RMSE), and the coefficient of
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determination (R2). IA expresses the difference between the predicted and observed values. It is
limited to the range 0–1, with high values indicating a good agreement between observations and
predictions. FB measures the tendency of a model to over-predict (2 being extreme over-prediction)
or under-predict (−2 being extreme under-prediction); the target value for FB is 0. RMSE shows the
overall accuracy of the model; smaller values of RMSE denote better model performance. According to
Voukantsis [31], RMSE is among the most commonly used indicators when evaluating the performance
of ANNs. R2 is considered the basic measure of matching the model to the observed data points; the
value range is from 0–1. Its closeness to 1.0 indicates the greater explained variance [23,26,29,31,47].
The indicators used were calculated according to Equations (1)–(4):

IA = 1−
(

∑n
i=1(Pi −Oi)

2

∑n
i=1
(∣∣Pi − O

∣∣+∣∣Oi −O
∣∣)2

)
(1)

FB = 2

(
O − P

)(
O + P

) (2)

RMSE =

√
∑n

i=1(Pi −Oi)
2

n
(3)

R2 =

(
∑n

i=1
(

Pi − P
)
(Oi −O)

n · σp · σo

)2

(4)

where: n—total number of measurements at a particular station
Pi—predicted values
Oi—observed values
P—mean of the predicted values
O—mean of the observed values
σp—standard deviation of the predicted values
σo—standard deviation of the observed values
IA—index of agreement
FB—fractional mean bias
RMSE—root mean square error
R2—coefficient of determination
All the calculations and statistical analyses were conducted using the STATISTICA Neural

Networks software version 12 (Stat Soft, Inc., Tulsa, OK, USA).

3. Results and Discussion

3.1. General Description of PM10 and Meteorology Variables

The descriptive statistics of hourly variations of PM10 and meteorological elements used in this
study were summarized in Table 1. The temporal variations of the seasonal PM10 and air temperature
were illustrated in Figure 2.

The average hourly PM10 concentrations in the 15 analysed winter seasons (2002/2003–2016/2017)
(D, J, F) ranged from 26.9 ± 24.9 µg·m−3 in Gdynia, 25.1 ± 23.5 µg·m−3 in Sopot,
and 31.0 ± 32.8 µg·m−3 in Gdańsk. For 75% of the hours, the PM10 hourly concentrations were lower
than 38 µg·m−3 in Gdańsk, 35 µg·m−3 in Gdynia, and 32 µg·m−3 in Sopot (Table 1). The absolute
maximum hourly concentrations recorded in the analysed seasons were 15–20 times higher than the
average. In all of the stations, the maximum hourly concentrations exceeded 300 µg·m−3, and in
Gdańsk, amounted to approximately 600 µg·m−3 in the winter season of 2005/2006 (Table 1, Figure 2).
Such high concentrations were reported in January 2006, when extremely unfavourable meteorological
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conditions caused by the influence of a Siberian high-pressure system were found to be associated
with the occurrence of severe PM10 episodes all over Poland [20,48].
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Figure 2. The distribution of the hourly air temperature (a) and PM10 concentrations (b) in the
Agglomeration of Tricity during the winter seasons (D, J, F) from 2002/2003 to 2016/2017. Notes:
the boxes show the 25th, 50th, and 75th percentiles; the whiskers show the non-outlier range.

Even though the agglomeration of Tricity is one of the regions in Poland characterised by,
on average, the lowest particulate matter pollution, almost every winter, the recorded concentrations
exceed the EU 24 h limit value for PM10 [20,27,39,49]. High PM10 concentrations, as well as those
exceeding the standards set by the EU limit value, are recorded predominantly during the heating
seasons and mainly result from the emissions due to combustion for energy generation purposes [41],
the intensity of which is determined by the course of the air temperature. This is illustrated in
Figure 2 which shows the temporal variations of seasonal PM10 and the air temperature in particular
winter seasons, at the same time, indicating the interdependence of the two values. In the analysed
winter seasons, the highest negative correlation between the PM10 values and the air temperature was
determined in the season of 2011/2012 (Gdynia r = −0.516; Sopot r = −0.709; Gdańsk r = −0.602),
shown in Figure 3, followed by the winter season of 2005/2006 (Gdynia r = −400; Sopot r = −459;
Gdańsk r = −0.482). The causal link between the air temperature and the PM10 concentrations is
recognized and described in detail in the literature on the subject, and also for the conditions found
in the Tricity Agglomeration [27,37,49]. Generally, the most unfavourable conditions of air quality
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occur in winter during anticyclonic weather in which very low temperatures (≤0 ◦C), weak winds
or calms, clear sky conditions, and a stable equilibrium in the atmosphere leads to the formation
of temperature inversions [49]. The role of inversion in shaping PM10 concentrations in the winter
seasons (D, J, F) in the years of 2004/2005–2012/2013 in Tricity was presented by Czarnecka and
Nidzgorska-Lencewicz [39]. The results obtained by the authors show that the unfavourable conditions
for PM10 dispersion in the lower troposphere were mainly determined by the elevated inversion which
occurred with comparable (almost 90%) frequency both during the day as well as night. However,
a predominant role was played by the altitude of the base of the daytime elevated inversion.

Table 1. The basic statistics for PM10 and the meteorological elements for each station in the
Agglomeration of Tricity during the winter seasons of 2002/2003–2016/2017.

Variable Mean Min Max SD

Gdynia Pogórze

PM10 (µg·m−3) 26.81 1.00 324.35 24.59
AT (◦C) 1.04 −18.55 14.00 4.46
RH (%) 80.86 30.20 100.00 11.29

PRES (hPa) 1006.67 960.10 1047.95 13.68
WS (m·s−1) 1.92 0.02 8.55 1.25

Sopot

PM10 (µg·m−3) 25.13 1.00 375.7 23.39
AT (◦C) 1.26 −21.40 14.45 5.00
RH (%) 82.27 30.37 100.00 10.09

PRES (hPa) 1008.77 964.10 1045.60 12.30
WS (m·s−1) 1.92 0.03 8.00 1.14

Gdańsk Wrzeszcz

PM10 (µg·m−3) 31.10 1.00 599.75 32.85
AT (◦C) 0.48 −19.95 13.85 5.03
RH (%) 82.38 31.90 100.00 9.66

PRES (hPa) 1011.40 962.80 1043.25 12.32
WS (m·s−1) 2.16 0.03 8.95 1.24

AT—air temperature; RH—relative humidity; PRES—atmospheric pressure; WS—wind speed; SD—
standard deviation.
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A histogram presenting the frequency of the adopted ranges of hourly concentrations recorded in
the analysed winter seasons complements the characteristics of the PM values (Figure 4). Generally,
the similarity of the distribution of the adopted ranges of concentrations is notable. Regardless of
the particular station, the predominant concentrations are within the range of 0–20 µg·m−3, which,
in Gdynia, Sopot, and Gdańsk, occur with a frequency of 55–45%. The cases of hourly concentrations
over 100 µg·m−3 occurred in Sopot and Gdynia with a frequency of no more than 1.8% and, in Gdańsk,
approximately twice more often. The distribution of the hourly PM10 concentration presented above is
characteristic for the whole region of northern Poland, as was shown by Rawicki et al. [50].
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Figure 4. The frequency distribution of hourly concentrations of PM10 in the Agglomeration of Tricity
during the winter seasons (D, J, F) in 2002/2003–2016/2017.

3.2. Artificial Neural Networks

There are many types and variants of neural networks which differ in structure and way of
operation, but the most common types of ANNs used in forecasting studies are multilayer perceptron
neural networks (MLP-ANN) which are constructed with three layers: input, hidden, and output
layers. Keeping in mind the results obtained by other authors [22,23,26,31,32,46] who, using MLP
models, successfully predicted PM10 concentrations, in the current study, the ANN-MLP models
have been applied in order to forecast hourly concentrations of particulate matter in three stations
in Tricity. The input variable to the model consisted of hourly values of the PM10 concentrations,
air temperature, relative humidity, atmospheric pressure, and wind speed. In the selection of input
variables, the ANN-MLP models have been suggested by previous studies [20,27,31,37,38,40,45]
and our understanding of atmospheric processes. However, data availability limitations needed to
be taken into account. For the purpose of training the network, learning algorithms belonging
to quasi-Newton methods were used, that is, the error back propagation algorithm and the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. In terms of the analysed data, the optimum
activation function (identity, logistic, tangent-hyperbolic, or exponential) was obtained using the
Automated network search. This module is an extremely useful tool which facilitates the most tedious
and time-consuming stage of establishing neural networks: the testing and selecting of different models.
Each ANN was trained with 20 initialisations to ensure that they best fit the concentrations [51].

The analysis of ANNs undergoes three phases, the training, testing, and validation of the data,
to which 70%, 15%, and 15% of the data was assigned randomly [26,45]. The training subset is used
to estimate and learn the parameter’s patterns in the data point. Since ANNs are extremely versatile
estimators of data which, following the appropriate number of iterations, can be allocated to almost
every dataset, including insignificant noise (PM10 concentration time series data that are typically
noisy and contain outliers) and experimental errors, the process of network learning was controlled by
validating the subset which is used to evaluate the generalization ability of the supposedly trained
network. In other words, the model is trained only to the point when the decrease in the prediction
error for a given training set is accompanied by a decrease in the prediction error for the validating set.
The test subset (not included in the training of the model) is responsible for performing the final check
on the trained network.
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Finally, models allowing for the prediction of PM10 concentration from 1 to 6 h in advance were
created. The analysis was initiated by training the 20 models for each variant, out of which the
Automated network search selected 5 models with the best fitting PM10 concentrations. In this way,
a total of 90 models were selected (30 for each station) which were later assessed according to the
adopted performance criteria. The quality of the obtained models was assessed by analysing the
error rate expressed by the IA, FB, RMSE, and R2 values described in Section 2.3 and individually
calculated for the training, validating, and testing set. The results of the particular models constituted
the grounds for selecting one model for each time frame characterised by the best fitting parameters
in terms of the test data. Accordingly, Table 2 presents the best structures for the hourly models and
ANN topologies in the form of input-hidden-output neuron count. In this work, 3–11 neurons in
the hidden layer have been tried. On the whole, almost 2/3 of the obtained models generated the
best results with 9, 10, or 11 neurons in the hidden layer. The data presented in Table 2 show that the
tangent-hyperbolic function was the most common activation function in the hidden layer and that the
exponential function was the most common activation function for the output layer.

The obtained ANN models showed that the overall agreement in training denoted by IA between
the modelled and observed values varied in the range of 0.802–0.956, the RMSE values ranged from
9.32 to 22.82, and the R2 values ranged from 0.487 to 0.844. In comparison to the training subset,
the statistical parameters for the test and validation sets showed slightly lower values of IA (except for
the PM10_h+1 and PM10_h+2 models for Gdańsk), whereas the RMSE, depending on the analysed variant
and station, showed lower or higher values. In turn, as for R2, the values obtained in the test series
were higher compared to the training series for Sopot and Gdańsk, as is presented in Table 2. In all
three stations, the best agreement of IA was within the range of 0.944–0.956 with R2 in the range of
0.805–0.844, found for the PM10_h+1 model, that is, the shortest forecast of 1 h. The longer the time
covered by the prognosis, the smaller the ability of the model to generate a forecast. This is illustrated
by the scatter plots in Figure 5, showing the conformity of the models’ results in testing the subsets;
the actual versus predicted values of the hourly PM10 levels in Sopot for the PM10_h+1 and PM10_h+6
models. Regardless of the analysed time variant and station, the FB values obtained from the estimate
ANN models varied around 0. This means that the discussed models did not show a tendency to
over-predict and under-predict the hourly PM10 concentrations. Additionally, this shows that no
systematic errors are made even if random errors are present [51].

Out of the three analysed stations, by far the best results were obtained for Sopot. All the
ANN models were characterised by superior results of the tests in the test subset, the IA, and the
R2, respectively, in the ranges of 0.957–0.811 and 0.578–0.848 with the smallest RMSE error ranging
from 8.80 to 14.96. The poorest test results were obtained for the models generated for the Gdańsk
station, mainly due to the highest values of the RMSE. Undoubtedly, this is connected with not only
the, on average, highest PM10 concentrations recorded in this station, but also with their very high
variability. The SD values given in Table 1 show approximately 40% and 33% greater fluctuation
rates in the hourly PM10 concentrations, as compared with Sopot and Gdynia, respectively. Such a
high variability is also clearly illustrated in Figure 2, showing a generally greater range of outliers
and extremes values, particularly in the seasons 2002/2003, 2005/2006, and 2009/2010. Even though
ANNs are considered very good estimators and generally allow for more accurate predictions than
traditional linear statistical approaches, as has already been discussed, it is worthwhile to keep in mind
that the high variability in data may affect the obtained results. This was proven by Taşpınar [23] who,
differentiating the data series into the winter and summer data subsets, obtained better test parameters
for the ANN models.
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Table 2. The statistics for the best performing ANN models for the forecasting of hourly concentrations of PM10.

ANN
Models

Topology
Activation

Function for
Hidden Layer

Activation
Function for
Output Layer

IA FB RMSE R2 IA FB RMSE R2 IA FB RMSE R2

Train Validation Test

Gdynia Pogórze

PM10_h+1 5-8-1 Logistic Exponential 0.944 0.00 10.91 0.805 0.939 0.00 11.09 0.803 0.934 −0.02 10.80 0.783
PM10_h+2 5-7-1 Logistic Identity 0.901 0.00 13.81 0.686 0.889 0.01 13.72 0.706 0.888 0.00 12.91 0.673
PM10_h+3 5-11-1 Logistic Exponential 0.866 0.00 15.31 0.611 0.848 0.00 15.09 0.634 0.824 0.00 15.16 0.574
PM10_h+4 5-9-1 Logistic Tanh 0.837 0.00 16.52 0.552 0.786 0.00 15.94 0.553 0.806 0.00 16.33 0.540
PM10_h+5 5-10-1 Exponential Tanh 0.811 0.00 17.39 0.504 0.751 0.00 16.65 0.510 0.757 0.00 17.50 0.482
PM10_h+6 5-10-1 Tanh Exponential 0.802 0.00 17.45 0.487 0.724 0.00 17.76 0.499 0.693 0.02 18.15 0.452

Sopot

PM10_h+1 5-10-1 Tanh Identity 0.956 0.00 9.32 0.844 0.951 0.00 9.42 0.832 0.957 0.00 8.80 0.848
PM10_h+2 5-8-1 Tanh Tanh 0.924 0.00 11.78 0.749 0.909 0.00 11.94 0.721 0.921 0.00 11.26 0.758
PM10_h+3 5-10-1 Tanh Exponential 0.899 0.00 13.14 0.685 0.876 −0.01 12.98 0.655 0.881 0.02 13.12 0.690
PM10_h+4 5-7-1 Logistic Tanh 0.876 0.00 14.19 0.632 0.847 0.00 14.02 0.600 0.855 0.01 13.97 0.643
PM10_h+5 5-11-1 Logistic Exponential 0.860 0.00 14.75 0.597 0.811 +0.02 15.02 0.550 0.816 0.02 15.00 0.595
PM10_h+6 5-11-1 Tanh Exponential 0.846 0.00 14.97 0.565 0.816 0.04 15.36 0.532 0.811 0.02 14.90 0.578

Gdańsk Wrzeszcz

PM10_h+1 5-6-1 Tanh Exponential 0.950 0.00 13.41 0.825 0.953 0.00 13.90 0.842 0.954 0.00 13.37 0.846
PM10_h+2 5-6-1 Exponential Identity 0.902 0.00 17.85 0.694 0.906 0.00 17.97 0.732 0.906 0.00 17.33 0.730
PM10_h+3 5-6-1 Exponential Logistic 0.866 0.00 20.18 0.616 0.850 0.00 21.12 0.632 0.858 0.00 20.02 0.639
PM10_h+4 5-9-1 Exponential Logistic 0.833 0.00 22.02 0.551 0.820 0.00 21.93 0.562 0.828 0.00 21.04 0.572
PM10_h+5 5-10-1 Tanh Tanh 0.829 0.00 22.20 0.540 0.796 0.01 23.62 0.499 0.805 0.00 22.19 0.538
PM10_h+6 5-9-1 Tanh Exponential 0.812 0.00 22.82 0.507 0.761 0.02 23.93 0.483 0.765 0.01 23.56 0.504

ANN—artificial neural networks; IA—index of agreement; FB—fractional mean bias; RMSE—root mean square error; R2—coefficient of determination.
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Figure 5. The testing performance plots of artificial neural networks (ANN) models (PM10_h+1; 

PM10_h+3; PM10_h+6) in Sopot. 
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Generally, keeping in mind the results of the tests, as well as the relatively low number of
input variables, the obtained ANN models can be considered satisfactory. Using ANNs on the basis
of 8 variables (7 meteorological elements and PM10 concentration) Grivas and Chaloulakou [45]
developed models showing the predictive ability for 24-h-in-advance hourly PM10 concentrations at
four sampling locations of different types in Athens (Greece). The authors concluded that the obtained
results were rather satisfactory, with values of R2 for the independent test sets ranging between 0.50
and 0.67 for the four sites and values of the IA ranging between 0.80 and 0.89. Additionally, they
stated that the performance of the examined neural network models was superior in comparison
with the multiple linear regression models that were developed in parallel. Similarly, on the basis of
different combinations of 5 variables (4 meteorological elements, and PM10 concentration), Taşpınar [23]
obtained seasonal ANN models for the prediction of the daily average PM10 one day ahead in Düzce,
Turkey. The agreement in this winter model in training between the modelled and observed values
varied in the range of 0.78–0.83 and the R2 values ranged in the range of 0.693–0.722. Additionally,
the high values of the index of the agreement between the measured and modelled daily averaged PM10

concentrations, between 0.80 and 0.85, for the forecasting of the daily averaged PM10 in Thessaloniki
(Greece) and Helsinki (Finland) were presented by Voukantsis et al. [31]. However, it must be
emphasized that the input data set to the ANN models comprised the concentrations of the other
pollutants as well, apart from the meteorological elements. It is appropriate to list the results by
Hooyberghs et al. [52] on forecasting the daily average PM10 concentrations in Belgium one day ahead
with the use of ANN, where the authors used, in their first attempt (model), the boundary layer height
and concentrations of the PM10 concentration, gradually increasing the accuracy of the forecast by
taking into account the cloud cover, the day of the week, and the wind direction.

4. Conclusions

The main goal of this study was to predict PM10 levels 1 to 6 h ahead. It was shown that ANNs
have been proven to be effective prediction techniques for modelling the hourly distribution of PM10

at the Agglomeration of Tricity (Poland) during the winter seasons. The input data in the form of
basic meteorological elements and PM10 concentration with use of a multi-layer perceptron ANN
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(ANN-MLP) appeared to be promising in the testing subset for the three stations with R2 values in
the range of 0.452–0.848, IA in the range of 0.693–0.957, and RMSE values in the range of 8.80–23.56.
Moreover, the tested models did not show a tendency towards over-predicting or under-predicting the
hourly PM10 level. The capability of these techniques to predict PM10 concentrations was certainly the
highest for the time of 1 h in advance and the lengthening of the time of prognosis (to 6 h in advance)
resulted in a decrease in the capability to generate the forecast. The highest agreement in the training,
validating, and testing subset was found for models for Sopot—the station with the average lowest
concentrations and variability of PM10 level in the winter season.

The ability to accurately model and predict the ambient concentration of PM10 is essential for
effective air quality management and the development of policies relating to air quality. The obtained
models can be used in the emergency population warning systems, indicating situations which could
potentially cause direct threats to human health.

The ability to accurately model and predict the ambient concentration of PM10 is essential for
effective air quality management and policies development.

For future work, I will also enhance the effectiveness of the ANNs by integrating the mechanism
of hybrid approaches.
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