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Abstract: Crop simulation models, which are mainly being utilized as tools to assess the consequences
of a changing climate and different management strategies on crop production at the field scale,
are increasingly being used in a distributed model at the regional scale. Spatial data analysis and
modelling in combination with geographic information systems (GIS) integrates information from soil,
climate, and topography data into a larger area, providing a basis for spatial and temporal analysis.
In the current study, the crop growth model Decision Support System for Agrotechnology Transfer
(DSSAT) was used to evaluate five gridded precipitation input data at three locations in Austria.
The precipitation data sets consist of the INtegrated Calibration and Application Tool (INCA) from the
Meteorological Service Austria, two satellite precipitation data sources—Multisatellite Precipitation
Analysis (TMPA) and Climate Prediction Center MORPHing (CMORPH)—and two rainfall estimates
based on satellite soil moisture data. The latter were obtained through the application of the SM2RAIN
algorithm (SM2RASC) and a regression analysis (RAASC) applied to the Metop-A/B Advanced
SCATtermonter (ASCAT) soil moisture product during a 9-year period from 2007–2015. For the
evaluation, the effect on winter wheat and spring barley yield, caused by different precipitation
inputs, at a spatial resolution of around 25 km was used. The highest variance was obtained for the
driest area with light-textured soils; TMPA and two soil moisture-based products show very good
results in the more humid areas. The poorest performances at all three locations and for both crops
were found with the CMORPH input data.

Keywords: DSSAT; INCA; ASCAT soil moisture; SM2RAIN; satellite precipitation data

1. Introduction

The behavior of crops under environmental conditions and cultivation practices can be analyzed
with the useful tool and technique of crop growth models. Depending on their purpose, the models
differ in their approaches and complexity, with consequences for the required type and amount of
input data. Consisting of one or more mathematical equations, descriptive or empirical models define
the behavior of a system or part of a system in a simple manner [1], such as agrometeorological indices.
These can be an efficient tool to relate various crop responses to environmental observations if the
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extent of the measurements or of data availability is limited. Explanatory (or process-oriented) crop
models comprise quantitative descriptions of the mechanisms and processes that cause the behavior
of a system [1]. These are based on bio-physical plant processes, simulating the diurnal effects of
changes in the environment on plant growth as well as development. The core processes of such crop
models are all methods which aim to assess potential changes in plant production, e.g., phenology,
photosynthesis, dry matter production. Environments with limited water and nutrition are included
by using soil water balance modules including transpiration and nutrient (e.g., nitrogen, phosphor,
and potassium) transformations in the soil as well as remobilization within the plants [2].

The main aim of a crop simulation model is to assess the consequences of climatic conditions and
individual management behavior on plant production at the field scale. In a further step the results
can be implemented in a distributed model at the regional scale. Limitations usually occur on the
availability and quality of used data. Weak quality input data is often the main source of uncertainty in
simulated outputs; e.g., caused by spatial representative problems or measurement errors. In addition,
challenges arise at the regional scale in which model input parameters must be collected at dispersed
point features such as weather stations [3] and produce outputs for local spots (for example, soil pits).
Spatial data analysis and modelling in combination with geographical information systems (GIS)
can help to integrate information from crop model outputs into a larger area [4,5]. For example, soil,
climate, and topographical data provide the interface of these two technologies and are at the same
time the basis for spatial and temporal analysis. An increasingly promising approach for monitoring
crop growth or grain yield over large regions more accurately is the additional use of remote sensing
data for spatial crop growth model applications. The linkage between crop simulation models with
remote sensing and modelling techniques has been already applied in various examples, such as
regional crop forecasting [6–8], agro-ecological zoning [9–11], crop suitability assessments [12–14],
yield gap analysis [15,16], and in precision agriculture applications [17,18].

Data assimilation methods that incorporate remote sensing data into existing crop growth
modelling frameworks might help to reduce uncertainty of the model simulations and to increase
the evidence of the predicted models [19,20]. In such frameworks, one needs to distinguish between
(i) driving variables (which constrain the system); (ii) state variables (which characterize the system
behavior); (iii) model parameters (which establish the relation between driving and state variables);
and (iv) output variables (observable functions of the state variables) [4]. Several methods have
been developed and used to combine remote sensing data into agroecosystem models, mainly [4,20]:
(i) the direct use of remote sensing inputs as a forcing variable, where at least one state variable
must be replaced by measured data. A key challenge is the precondition of model calibration [4,21];
(ii) crop simulation models must re-initialize or re-calibrate using simulated and observed state
variables [19–21]. This approach has gained attention in the scientific community by using optimize
algorithms. Nevertheless, this method increases the amount of computation resources [20,22–26];
(iii) the continuous updating of a state variable of the model (for example, leaf area index) is only
possible if data observation is ongoing. This method shows a higher flexibility in comparison to the
others. However, this methodological approach requires a higher accuracy of data quality from remote
sensing [27–30].

A key advantage of using remotely sensed information is to provide quantitative information
on actual state of crop conditions over a large scale [2]; whereabouts crop models can assess the
temporal dynamics of the plants. Even in the early use of crop model applications, Wiegand et al. [31]
and Richardson et al. [32] recommended the use of remotely sensed information to enhance crop
model outputs. Satellite rainfall as a model input was studied by Reynolds et al. [33], who used
rainfall estimation images for regional yield prediction with a resolution of 7.6 km obtained from the
geostationary Meteosar-5 satellite for Africa; Ovando et al. [34] evaluated soybean yield estimations
using satellite precipitation input data in a crop growth model.

This paper analyses how different types of spatial precipitation data, taken as the input, influence a
crop model application. Finding site-representative precipitation estimates is of importance, as rainfall
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patterns during the growing season play a key role in crop growth and development conditions.
Similar importance is reported for other applications, such as the assessment of drought events,
adaptive behavior and response to a warmer climate, weather forecasting, agriculture, and disease
prevention [35,36]. In the current study, the dynamic crop growth and yield model Decision Support
System for Agrotechnology Transfer (DSSAT v.4.0.2.0) [37] for wheat and barley was applied at three
case study sites in Austria, characterized by different climate and soil conditions. Precipitation input
data were used on the one hand as a reference from weather station-based measurements (point
location) and on the other hand were compared to different types of spatial precipitation data: the
data from the INtegrated Calibration and Application Tool (INCA) from the Meteorological Service
Austria (1 km grid spatial resolution as well as a 25 km raster mean value), two satellite precipitation
data sources—Multisatellite Precipitation Analysis (TMPA) and Climate Prediction Center MORPHing
(CMORPH) with a 0.25 × 0.25◦ spatial resolution—a new soil moisture (SM)-derived rainfall dataset
obtained through the application of the SM2RAIN algorithm [38,39] to the Metop-A/B Advanced
SCATtermonter (ASCAT) soil moisture product (25 km spatial resolution) and a simple regression
analysis of satellite SM data from Metop ASCAT (25 km spatial resolution). First, the performance of
the different precipitation data was assessed for the three reference locations (weather station sites
at each case study area). The second purpose of this study was to evaluate the consequences of the
different types of precipitation data as crop model inputs, considering simulated spring barley and
winter wheat yield at different soil types in the three study areas. The main aim was to test and
compare whether the satellite-based precipitation data are suitable sources as input data for crop
models and to identify their limitations in comparison to INCA. INCA data sets, with their high spatial
resolution of 1 km, are already used as crop model inputs in Austria (for example, for the operational
drought monitoring system in Austria and in research studies); however, INCA data are relatively
expensive, so a survey of acceptable alternatives is of interest for several applications. Further, it is also
of interest to determine under which circumstances and to which degree errors in precipitation data
are propagated into final crop model results (simulated crop yield). Precipitation is the main uncertain
limiting crop growth parameter over the area of interest; thus, information regarding under which
conditions this important weather input parameter could be replaced by alternative spatial sources
is essential.

2. Materials and Methods

2.1. Study Areas

Three sites in different climatic regions in Austria were chosen for this study (Figure 1).
Groß-Enzersdorf (48◦12′ N, 16◦33′ E, 156 m a.s.l.) in Lower Austria is located in eastern Austria
and is influenced by a semi-arid, continental climate whereabouts summers are hot and intermittently
dry; winters are most of the time cold with strong frosts and rarely snow cover. The annual mean
temperature in Groß-Enzersdorf from 1981–2010 was 10.3 ◦C and the mean annual precipitation sum
was 516 mm.

Hartberg (47◦17′, 15◦58′ E, 359 m a.s.l.) in Styria is located in the south-eastern part of Austria
and is characterized by both Mediterranean and continental climates with warm summers and mild
winters. The mean average temperature was 9.4 ◦C and the annual precipitation sum was 716 mm
(1981–2010).

Kremsmünster (48◦3′ N, 14◦8′ E, 384 m a.s.l.) in Upper Austria was chosen as the third site and
is characterized by a central-European transition climate influenced by the Atlantic climate. It is a
humid area with a moderate climate. The mean average temperature was 9.1 ◦C and the mean annual
precipitation sum was 1003 mm (1981–2010).
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Figure 1. The four applied soil classes for agricultural land use for Austria and the three study sites.

These three locations, characterized by different climates, and four soil classes (Table 1, Figure 1)
used in the study represent the main arable cropping areas in Austria, which occupies about 25% of
the total area of Austria, quite well. We note that a high resolution and qualitative soil map is available
only for the agricultural areas of Austria. Grasslands were not covered by this study.

Table 1. Four soil classes according to the available water capacity for Austria.

Soil Classes LL DUL SAT Area Percentage in Austria (%) Available Water Capacity Soil Type

soil class 1 0 0.1 0.1 14.1 very low loamy sand
soil class 2 0.1 0.2 0.3 33.7 low sandy loam
soil class 3 0.2 0.4 0.5 47.5 moderate sandy loam
soil class 4 0.2 0.4 0.5 4.7 high loamy silt

LL = lower limit of plant extractable soil water; DUL = drained upper limit; SAT = saturated soil water content.

2.2. Crop Growth Model

The DSSAT 4.0.2.0 crop model is a mechanistic or process-based, management-oriented
model [37,40] and the input requirements comprehend daily weather data, soil conditions, plant
characteristics, and crop management [41].

The minimum daily weather inputs for DSSAT are global solar radiation, maximum, and
minimum air temperature, and precipitation [42]. These data were available from the Austrian
Met Service (ZAMG) for the three weather stations Groß-Enzersdorf, Hartberg, and Kremsmünster.

Soil inputs include the soil water contents (volumetric fraction) for the lower limit of plant water
availability (LL), and for the drain upper limit (DUL), where capillary forces are higher than gravity
ones, and for field saturation (SAT) [42]. In the model, the FAO-56 Penman–Monteith equation [43]
was used to calculate the evapotranspiration. Four different soil classes (termed here in as soil 1,
soil 2, soil 3, and soil 4, respectively) were calculated from the total available water capacity (Table 1,
Figure 1).

As there was no observed crop yield for all three sites available, two well calibrated crops for
eastern Austria, the winter wheat cultivar “Capo” [44] and spring barley cultivar “Magda” [45], were
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used in this study. The simulation was set for rain-fed farming, including N fertilization (spring
barley: 2 × 40 kg N/ha, 1 × 25 kg P/ha and 1 × 170 kg K/ha; winter wheat 2 × 52 kg N/ha,
1 × 26 kg P/ha and 1 × 100 K/ha), fix sowing date, harvest at maturity, and ploughed soil condition,
without considering a potential yield loss provoked by pest or diseases. The sowing dates were mean
values from different experimental sites of the Austrian Agency for Health and Food Safety (AGES)
and were set as fixed for spring barley on March 19 in Groß-Enzersdorf and on March 24 in Hartberg
as well as in Kremsmünster. For winter wheat, the dates were set on October 1 at all three locations.

2.3. Precipitation Datasets

Different spatial precipitation crop model input data were used during the 9-year period from
2007 to 2015 (Table 2): precipitation data were obtained from a nowcasting model (INCA), satellite
precipitation data and rainfall estimations from SM data. All datasets were completed in the
investigated period.
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Table 2. Spatial precipitation input datasets in this study.

Name Abbreviation Short Description Spatial
Resolution Input Data Temporal

Resolution Reference Available

(1) forecasting system
Integrated Nowcasting
through
Comprehensive
Analysis

INCA observation-based analysis and
forecasting system

1 km horizontal
resolution and
200 m vertical
resolution

Surface sensor observations,
weather radar, satellite data,
topographic data and
forecast models

hourly Haiden et al.
[46]

Commercially available:
www.zamg.ac.at

(2) satellite precipitation data

Multi-satellite
Precipitation Analysis TRMMRT

Tropical rainfall Measuring
Mission (~40S–40N and
~50S–50N)

0.25◦ × 0.25◦ satellite microwave and IR;
gauge (for calibration)

Sub-daily,
daily, monthly

Huffmann et al.
[47]

Freely available:
https://pmm.nasa.gov/TRMM

Climate Prediction
Center MORPHing CMORPH High resolution precipitation

(60S–60N) 0.25◦ × 0.25◦ satellite microwave Sub-daily,
daily

Joyce, R. J. et al.
[48]

Freely available:
http://www.cpc.ncep.noaa.gov/
products/janowiak/cmorph_
description.html

(3) Estimated rainfall based on satellite soil moisture dataset

SM2RASC

analytical relationship by
inverting a soil–water balance
equation from soil moisture time
series

25 km (sampled
at 12.5 km)

ASCAT—Metop’s Advanced
Scatterometer daily Brocca et al.

[38,39]
Available upon request, SM-Data:
http://hsaf.meteoam.it/

RAASC

exponential regression analyses
of soil moisture values and
precipitation

25 km (sampled
at 12.5 km)

ASCAT—Metop’s Advanced
Scatterometer daily Constructed in this study SM-Data:

http://hsaf.meteoam.it/

www.zamg.ac.at
https://pmm.nasa.gov/TRMM
http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
http://www.cpc.ncep.noaa.gov/products/janowiak/cmorph_description.html
http://hsaf.meteoam.it/
http://hsaf.meteoam.it/
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2.3.1. Integrated Now-Casting through Comprehensive Analysis (INCA)

INCA, a system of the Austrian Meteorological Agency (ZAMG), produces analyses and forecasts
of weather parameters in a very high spatial and temporal resolution [46]. The goal of the INCA
system is to provide a high-resolution weather forecast information at 1 × 1 km resolution from 6 h
until 14 days. Furthermore, INCA should be more suitable for mountain landscapes, where especially
attention is given to the behavior of orographic effects. The database includes topography information,
more than 200 ground meteorological stations, weather radar, satellite data, and forecast models.
Analyses and nowcasts are updated and produced at 1 h intervals on a horizontal resolution of 1 km
and a vertical resolution of 200 m [49]. As model inputs, the INCA data at a 1 km resolution (INCA1km)
were used. Additionally, the average of all 1 km INCA pixels within one ASCAT resolution cell was
calculated to obtain a regional value commensurate with the ASCAT-based precipitation estimates.
To simulate the ASCAT resolution cell, a Hamming window with a radius of about 23.7 km was
used (INCA23km).

2.3.2. Satellite Precipitation Data

In the current study, two high-resolution satellite precipitation data sets were additionally used:
the Tropical Rainfall Measurement Mission (TRMM), Multi-satellite Precipitation Analysis (TMPA) [47],
and the NOAA CPC MORPHing Technique (CMORPH) [48].

The National Aeronautics and Space Administration (NASA) in cooperation with the Japan
Aerospace Exploration Agency (JAXA) developed TMPA [50], a system where the estimates are
reached by calibrating and merging passive microwave data and ~10 µm band infra-red (IR)
data from multiple satellite sensors [51]. Six passive microwave radiometers (PMW) named
the TRMM Microwave Imager (TMI), Special Sensor Microwave/Imager (SSM/I), Advanced
Microwave Scanning Radiometer-EOS (AMSR-E), Advanced Microwave Sounding Unit-B (AMSU-B),
Special Sensor Microwave Imager/Sounder (SSMIS), and Microwave Humidity Sounder (MHS) are
utilized for rainfall estimates [50]. The IR data are accessible from the international constellation
of Geosynchronous Earth Orbit (GEO) satellites [51] and contain rainfall estimates at a high
spatial-temporal resolution. The product is available for the ±50◦ latitude band over a grid with a
0.25◦ spacing every 3 h [47]. In the current study, the TMPA 3B42 in real-time (RT) product, version 7,
is used. Detailed information about the TMPA product can be found in Huffman et al. [47]. TMPA is
hereafter referred to as TRMMRT.

CMORPH technology is developed from the NOAA/Climate Prediction Center (NOAA/CPC)
and their data are available at a 0.25◦ × 0.25◦ horizontal resolution from December 2002 to the present
on a 3-hourl basis [51] for the ±60◦ latitude band. Rainfall estimates are obtained from the same PMW
radiometers (AMSU-B, SSM/I, TMI, and AMSR-E) used for retrieving TRMM rainfall estimates [48].
The dataset obtained through CMORPH v1 is hereafter referred to as CMORPH.

Both TRMMRT and CMORPH products did not use ground rainfall observations to correct
satellite precipitation estimates. Diurnal accumulated precipitation was calculated by adding up
rainfall estimates within one day.

2.3.3. Estimated Rainfall Based on Satellite SM Dataset

The Advanced SCATterometer (ASCAT) is a real-aperture radar instrument operating in the
C-band (5.255 GHz) using vertical transmit and vertical receive (VV) polarization. ASCAT is part
of the payload of a series of three Metop satellites. At the moment, Metop-A and Metop-B share
the same sun-synchronous polar orbit. They were launched in October 2006 and September 2012,
respectively. The last Metop satellite, Metop-C, is foreseen to be launched in October 2018, also
carrying an identical ASCAT instrument [52,53]. ASCAT provides a surface soil moisture (SM) product
characterized by a ~25 km (sampled at 12.5 km) and daily spatial-temporal resolution [54]. The SM
product corresponds to a depth of 2–3 cm and ranges between 0% (dry) and 100% (wet) presenting the
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relative soil saturation [55]. A Soil Water Index (SWI) can be used to get root-zone SM information,
which is a more robust product applicable for deeper soil layers and presents lower measurement
noise [54].

Two approaches to estimate daily precipitation by using these satellite SM observations were
used in this study, as follows:

1. An analytical relationship derived by inverting a soil–water balance equation for estimating
rainfall accumulations from SM time series named SM2RAIN [38,39]. This method estimates
rainfall by exploiting the knowledge about the changes in time of the amount of water stored in
the soil [56]. A detailed description of the method can be found in Brocca et al. [38]. The method
has been applied to several SM products and validated at different spatial/temporal scales. In
the current study, the dataset obtained through the application of SM2RAIN to the ASCAT SM
product was named as SM2RASC [56].

2. A direct statistical relationship between measured precipitation and the SM of the ASCAT. To
estimate the daily accumulated precipitation (rainfall), the difference in ASCAT soil moisture
between two consecutive days was calculated. As soon as more than one daily ASCAT SM value
was available, the daily mean was used for the calculation. The daily SM differences were applied
in five intervals from −100 until 100 mm, where the mean measured precipitation was added.
An exponential regression analysis of these SM values (dependent variable) with the average
precipitation (independent variable) in each class and each location was carried out (Figure 2).
Subsequently daily precipitations were calculated with the three equations and further named as
RAASC. The analyses were done for the months March until October for the period 2007–2015.
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Figure 2. Scatterplot of daily difference of the Advanced SCATterometer (ASCAT) signal (in 5 step
classes in mm) and the average precipitation [mm] as well as their exponential regression equation and
r2—March–October 2007–2015.

2.4. Methods Used for the Evaluation of Model Performance

Initially, a comparison of the precipitation datasets was carried out in order to evaluate the
differences of the INCA1km in reference to the measured station data (point location). The analysis
was done by calculating the least-squares coefficient of determination (r2), the root mean square error
(RMSE), and the mean absolute error (MAE) between the daily and monthly precipitation sums.

To obtain a regional value, INCA1km was aggregated to one ASCAT resolution cell (INCA23km).
Then, an evaluation of the two SM-based products and the two satellite precipitation data with
INCA23km (benchmark) at the 25 km scale was carried out.

In a last step, the crop model simulations were carried out over a 9-year period covering 2007–2015
for five different daily precipitation model inputs; as references, daily precipitation data from INCA23km
were used. Furthermore, SM2RASC, RAASC, TRMMRT, and CMORPH were used as forcing variables,
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respectively (Figure 3). These rain data were utilized only for the months March until October, as
satellite soil moisture retrievals are influenced by the presence of snow and frozen surfaces [57].
From November until February, INCA23km rainfall data was used. To assess and compare model
performance, a set of statistical parameters was calculated: the mean absolute error (MAE), the root
mean square error (RMSE), the percent bias (PBias), the index of agreement (d), and the least-squares
coefficient of determination (r2).
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Figure 3. Simple flowchart of the methods used for the evaluation of model performances. SM: soil
moisture; INCA: Integrated Now-casting through Comprehensive Analysis; TRMMRT: Multi-satellite
Precipitation Analysis; CMORPH: Climate Prediction Center MORPHing.

3. Results

3.1. Rainfall Datasets Comparison

The daily and monthly precipitation differences between point-measured (ZAMG) and areal
estimates from INCA1km for the months March until July and years 2007–2015 are shown in Table 3.
For the evaluation, only five months per year were considered, as they include the main growing
period of the two simulated crops, spring barley and winter wheat. Trends during the growing season
period (March until July) were estimated on a monthly scale to get the temporal variability of the
product performance by calculating r2, RMSE, and MAE. INCA1km performs very well with an r2

greater than 0.69 (diurnal) and 0.89 (by the month), respectively, as well as a daily RMSE < 4 mm and
monthly RMSE < 18 mm. The daily MAE is between 0.7 and 1.4 mm, the monthly one between 8.5
and 17.7 mm. It should be kept in mind that INCA1km also integrates the ground measurements to
estimate the gridded precipitation values.

To evaluate values in the same spatial resolution, and due to the good accordance of INCA1km
and ZAMG precipitation values, INCA data were next aggregated to the 25 km scale. The aggregated
INCA23km presents in all three locations a higher precipitation sum (monthly and daily) and
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is particularly pronounced in the first three months of the study in all three locations (except
Groß-Enzersdorf in April and Kremsmünster in March) (Table 4).

Table 3. Statistical parameters of rainfall differences between point-measured (ZAMG) (as reference)
and INCA1km for the months March until July 2007–2015.

Groß-Enzersdorf Hartberg Kremsmünser

Daily based

r2 0.8 0.69 0.82
RMSE 2.38 mm 3.71 mm 2.95 mm
MAE 0.7 mm 1.37 mm 1.26 mm

Monthly based

r2 0.96 0.89 0.96
RMSE 8.49 mm 17.69 mm 12.31 mm
MAE 4.13 mm 12.12 mm 6.64 mm

In a next step, the two SM-based products SM2RASC, and RAASC, as well as the two satellite
precipitation datasets TRMMRT and CMORPH, were compared with INCA23km (benchmark) in terms
of rainfall estimation (daily: Table 5, monthly: Figure 4).

The lowest r2 can be seen in the RAASC daily and monthly precipitation data. RAASC is
characterized by high values during low precipitation periods and by lower values in very humid
months (Figure 4). The other three approaches show—for the most part—a good coefficient of
determination (up to 0.52 daily and 0.68 monthly) with INCA23km. One exception is SM2RASC in
Kremsmünster, where it shows high deviations and presents weak monthly performance results (r2

= 0.18 and RMSE = 60 mm). The two SM-based products present a low root-mean-square error in
Groß-Enzersdorf; in the other two locations RMSE differences between SM-based products and satellite
precipitation data are smaller (Table 5, Figure 4).
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The number of rain days alone was not considered in this study as a main crucial factor for crop
water balance in Austria, as factors such as actual evapotranspiration affecting soil water balance are
omitted. More important is the soil available water capacity for the plants and its dynamics on a daily
basis, which is used in this study as the best estimator of crop water stress available; e.g., [43].
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Table 4. Monthly precipitation sums and mean differences of rainfall (monthly and daily) between INCA1km and INCA23km for the months March until July 2007–2015.

Groß-Enzersdorf Hartberg Kremsmünster

Prec. (mm)
INCA1km

Prec. (mm)
INCA23km

Mean diff.
mo. (%)

Mean diff. d.
(%)

Prec. (mm)
INCA1km

Prec. (mm)
INCA23km

Mean diff.
mo. (%)

Mean diff. d.
(%)

Prec. (mm)
INCA1km

Prec. (mm)
INCA23km

Mean diff.
mo. (%)

Mean diff. d.
(%)

March 304 446 46 0.5 322 393 22 0.3 615 680 11 0.2
April 300 332 11 0.1 323 398 23 0.3 376 489 30 0.4
May 600 767 28 0.6 892 1113 25 0.8 1075 1318 23 0.9
June 678 804 18 0.5 1005 1139 13 0.5 1284 1382 8 0.4
July 693 770 11 0.3 1025 1175 15 0.5 1058 1246 18 0.7

Prec. = precipitation, diff. = difference, mo. = monthly, d. = daily.

Table 5. Statistical parameters of daily rainfall differences between INCA23km (benchmark) and SM2RASC, RAASC, TRMMRT as well as CMORPH for the months
March until July 2007–2015.

Groß-Enzersdorf Hartberg Kremsmünster

SM2RASC RAASC TRMMRT CMORPH SM2RASC RAASC TRMMRT CMORPH SM2RASC RAASC TRMMRT CMORPH

MAE 1.67 2.31 1.86 1.75 2.8 2.97 2.37 2.11 3.04 3.69 2.88 2.75
RMSE 3.72 4.03 4.71 4.75 5.02 5.66 5.68 5.33 5.37 5.78 5.94 5.73

r2 0.45 0.32 0.41 0.42 0.3 0.19 0.47 0.52 0.34 0.23 0.36 0.37
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3.2. Crop Model Performance

The influence of four different forcing variables (2 SM-based products SM2RASC and RAASC,
2 satellite precipitation data TRMMRT, and CMORPH) were used as an input on the DSSAT model in
order to evaluate their impact on spring barley and winter wheat yield estimations in comparison to
the benchmark (INCA23km).

3.2.1. Spring Barley

The growing season for spring barley reaches from March until July. The sowing date was set as
fixed (see Section 2.2) and the 9-year mean flowering was simulated between 5 and 9 June and mean
maturity from 30 June (Groß-Enzersdorf) until 5 July (Kremsmünster). The mean spring barely yield
over all soil classes (soils 1–4) was simulated in Groß-Enzersdorf with around 4700 kg/ha, in Hartberg
around 5100 kg/ha, and in Kremsmünster 4400 kg/ha (Table 6).

A detailed comparison of the spring barley yield, estimated with INCA23km input (benchmark),
showed that none of the other grid precipitation inputs perfectly reproduced the simulated yields in
all years (Figure 5, Table 6). The analyses were carried out for all soil types together (soils 1–4) as well
as separately (soil 1, soil 2, soil 3, and soil 4).

In the semi-arid area of Groß-Enzersdorf, the different types of precipitation inputs caused
the highest deviations, where mainly light-textured soils (soil classes 1 and 2 with mostly
RMSE > 600 kg/ha) are more sensitive than moderately fine-textured soils (soil classes 3 and 4)
(Figure 4, Table 3). SM2RASC generally presented the highest MAE (soil 1–4 = 512 kg/ha) and RMSE
values (soil 1–4 = 633 kg/ha), whereas CMORPH showed the lowest one (soil 1–4 = 431 kg/ha). It is
also noticeable that SM2RASC and CMORPH underestimated the barley yield (negative PBias), where
RAASC and TRMMRT input data demonstrated a positive PBias (Table 3).
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Table 6. Mean yield (kg/ha) with INCA23km input data and comparative statistics (MAE, RMSE, PBias, d and r2) of model performance in simulated crop yield using
SM2RASC, RAASC, TRMMRT, and CMORPH precipitation inputs against INCA23km inputs for the three study areas—spring barley.

Groß-Enzersdorf Hartberg Kremsmünster

Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4 Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4 Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4

Mean yield (kg/ha) with INCA23km input data

4727 3118 4444 5644 5701 5111 4056 5078 5779 5532 4451 3654 4451 4890 4810

SM2RASC—INCA23km

MAE 512 719 532 488 307 215 352 270 127 111 144 237 58 139 142
RMSE 633 803 618 655 384 369 582 396 168 149 220 319 64 214 203

PBias % −9.10 −23 −10.8 −7.8 −1.6 −3.2 −7.6 −4.6 −1.2 −0.7 −0.9 3.5 −0.5 −2.8 −2.9
d 0.94 0.75 0.69 0.69 0.67 0.95 0.49 0.71 0.98 0.97 0.95 0.72 0.98 0.86 0.87
r2 0.89 0.76 0.49 0.35 0.18 0.87 0.26 0.43 0.93 0.89 0.87 0.31 0.95 0.69 0.73

RAASC—INCA23km

MAE 374 449 525 318 202 235 509 148 149 136 219 304 102 222 246
RMSE 544 679 691 427 250 343 615 198 157 173 275 355 126 276 290

PBias % 7 12.2 11.5 4.9 2.5 −1.7 −11.4 −0.8 0.7 2 −3.2 −0.3 −2.1 −4.5 −5.1
d 0.94 0.67 0.47 0.76 0.87 0.96 0.39 0.94 0.98 0.96 0.93 0.45 0.93 0.78 0.77
r2 0.86 0.41 0.04 0.52 0.68 0.92 0.12 0.83 0.93 0.91 0.84 0.07 0.88 0.68 0.7

TRMMRT—INCA23km

MAE 385 556 466 310 209 135 101 161 170 111 254 401 220 206 189
RMSE 506 691 593 351 267 174 131 206 201 147 340 515 334 215 197

PBias % 6.3 10.8 7.9 5.2 3.6 −1.8 −1.2 −2.1 −1.8 −1.8 0.3 −3.6 −2.1 2.5 3.4
d 0.95 0.81 0.68 0.86 0.86 0.99 0.94 0.94 0.97 0.97 0.93 0.5 0.67 0.89 0.91
r2 0.88 0.51 0.33 0.83 0.76 0.96 0.8 0.84 0.91 0.94 0.79 0.14 0.18 0.78 0.93

CMORPH—INCA23km

MAE 350 537 259 296 309 166 272 160 146 85 405 581 497 286 255
RMSE 431 599 327 361 386 277 428 275 193 109 602 904 670 333 265

PBias % −2.7 −14.8 −2.2 −0.8 1.8 −0.9 −4.3 −1.6 0.9 0.5 −3.1 −11.9 −9.6 1 5.3
d 0.97 0.83 0.88 0.85 0.68 0.97 0.55 0.9 0.97 0.98 0.82 0.25 0.34 0.75 0.82
r2 0.92 0.73 0.68 0.53 0.17 0.91 0.15 0.71 0.9 0.95 0.62 0.04 0.01 0.37 0.93
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Lower yield differences were found in the more humid areas of Hartberg and Kremsmünster with
all precipitation inputs—especially for soils 3 and 4 (Figure 4). It can be notice, that the RMSE values
in these two locations are about less than half that in Groß-Enzersdorf. Above all, TRMMRT presents
very low MAE and RMSE values in Hartberg (MAE: soil 1–4 = 135 kg/ha; RMSE: soil 1–4 = 174 kg/ha)
and the highest r2 (soil 1–4 = 99%) as well as d (soil 1–4 = 96%). CMORPH, on the other hand, shows
difficulties to simulate yield in Kremsmünster, which is characterized by the highest RMSE (soil 1–4 =
602 kg/ha) and the weakest coefficient of determination (soil 1–4 = 82%) as well as index of agreement
(soil 1–4 = 62%) (Table 3). The light-textured soils result in all simulations in a negative PBias; soils 3
and 4 do not show such a clear trend.

3.2.2. Winter Wheat

The winter wheat phenological season spans from October until July, including a dormant period
during winter. The sowing date was set as fixed on October 1 and the 9-year mean flowering date was
simulated between 27 and 30 May, with mean maturity between 28 June and 3 July. The mean yield for
all soil types together (soils 1–4) was simulated between 5500 kg/ha in Kremsmünster and 5900 kg/ha
in Hartberg (Table 7).

The variation of winter wheat yields, as a result of different precipitation input data, illustrated a
similar behavior to the spring barley simulations.

Groß-Enzersdorf presented the highest winter wheat yield deviations (Figure 5)—especially
for soil classes 1 and 2, with RMSE values up to 1800 kg/ha. The outlier in soil 1 was caused in
year 2011, where INCA23km input data simulated yield failure. SM2RASC, TRMMRT, and CMORPH
mainly underestimated yield, whereas RAASC presented a positive PBias (Figure 5, Table 4). All in all,
RAASC showed the strongest performances, with the lowest RMSE (soil 1–4 = 818 kg/ha) and a high d
(soil 1–4 = 0.94) as well as r2 (soil 1–4 = 0.84).

In the two locations Hartberg and Kremsmünster, lower deviations can be seen (Figure 6). Notable
are the TRMMRT input data, which simulated winter wheat yield in Hartberg (RMSE soil 1–4 =
194 kg/ha; d > 95%) and SM2RASC in Kremsmünster (RMSE soil 1–4 = 223 kg/ha, d > 95%) very well
(Table 4). CMORPH input data caused the highest deviations and the poorest performances. All four
rainfall input data showed a yield underestimation (negative PBias) (Table 4).
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Table 7. Mean yield (kg/ha) with INCA23km input data and comparative statistics (RMSE, PBias, d and r2) of model performance in simulated crop yield using
SM2RASC, RAASC, TRMMRT and CMORPH precipitation inputs against INCA23km inputs for the three study areas—winter wheat.

Groß-Enzersdorf Hartberg Kremsmünster

Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4 Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4 Soil 1–4 Soil 1 Soil 2 Soil 3 Soil 4

Mean yield (kg/ha) with INCA23km input data

5751 3276 5395 7290 7045 5954 3982 5982 7218 6633 5523 4226 5508 6355 6002

SM2RASC—INCA23km

MAE 838 962 936 1035 419 368 546 319 353 251 141 272 35 145 111
RMSE 1011 1029 1060 1223 646 516 634 411 558 430 223 378 48 180 144

PBias % −13.1 −19.5 −17.3 −14.2 −5.7 −3.8 −5.4 −2.9 −4.3 −3.1 −1 1.5 −0.5 −2.3 −1.9
d 0.93 0.82 0.71 0.61 0.69 0.96 0.82 0.71 0.78 0.85 0.99 0.95 1 0.91 0.95
r2 0.87 0.77 0.68 0.71 0.74 0.89 0.5 0.26 0.62 0.72 0.95 0.93 0.99 0.89 0.92

RAASC—INCA23km

MAE 498 826 698 351 116 320 804 215 88 174 209 397 60 190 188
RMSE 818 1221 961 493 141 504 929 303 110 223 372 660 65 245 228

PBias % 5.6 17 8.3 3.1 0.8 −0.4 −1.3 −1.3 −0.1 0.7 −1 4.2 −0.5 −3 −3.1
d 0.94 0.7 0.51 0.73 0.96 0.96 0.4 0.88 0.98 0.93 0.95 0.79 0.99 0.83 0.87
r2 0.84 0.52 0.01 0.43 0.87 0.86 0.01 0.69 0.95 0.77 0.88 0.5 0.97 0.75 0.86

TRMMRT—INCA23km

MAE 568 984 616 406 265 136 234 92 129 89 241 535 220 89 122
RMSE 909 1430 836 582 470 194 300 129 181 106 426 725 416 102 135

PBias % −4.2 −14.3 −4.7 −2.3 −1.3 −0.9 −1.1 −0.3 −1.6 −0.7 −2.3 −12.1 −3.3 0.8 2
d 0.94 0.7 0.68 0.86 0.79 0.99 0.96 0.98 0.96 0.98 0.96 0.83 0.78 0.98 0.96
r2 0.8 0.25 0.19 0.79 0.79 0.98 0.85 0.92 0.92 0.97 0.89 0.68 0.59 0.95 0.97

CMORPH—INCA23km

MAE 917 1600 932 762 377 496 1318 288 276 102 741 1984 657 154 169
RMSE 1253 1853 1022 1081 794 805 1462 386 539 138 1174 2151 888 251 178

PBias % −12.6 −35.5 −17.3 −8.2 −3.1 −6.9 −30.9 −4.8 −2.2 0.3 −11.5 −46.9 −11.7 −1.4 2.8
d 0.9 0.5 0.71 0.71 0.65 0.93 0.5 0.84 0.78 0.97 0.81 0.43 0.43 0.9 0.93
r2 0.78 0.1 0.74 0.73 0.76 0.9 0.32 0.75 0.52 0.91 0.77 0.23 0.12 0.84 0.97
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4. Discussion

Crop growth simulation models are increasingly being utilized as tools to assess the regional
impact on crop production under different environmental conditions, such as changing climate and
management options. These models need spatially and temporally detailed input data of weather,
soil, crop management, and cultivar, which are usually difficult to get reliably for larger areas [58].
As observation data are merely available at a limited number of meteorological stations within a
region, it is essential to estimate the required weather inputs for the related simulation-scale [59].
The focus of this study was set on daily precipitation data, as they are the main uncertain limiting
crop growth parameter over the area of interest. Crop models are highly sensitive to soil water, as soil
moisture is a limiting factor for different processes for crop growth and yield. A valued alternative
to ground-based measurements can be satellite-rainfall estimate systems, which produce global
coverage data and supply information in areas where data from other sources are unavailable [60].
The spatial and temporal resolution increased lately; e.g., the current NASA–JAXA joint Global
Precipitation Measurement (GPM) mission makes available rainfall products in near-real time with a
spatial sampling of 0.1◦ each 30 min, by utilizing different satellite sensors [61]. Satellite rainfall
products which have been previously developed include the near-real-time TMPA 3B42RT [48];
the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
(PERSIANN) [62]; CMORPH [49]; and the Climate Hazards Group InfraRed Precipitation with Station
(CHIRPS) products [63]. Nevertheless, satellite rainfall estimations are not free of error [64,65]. One
main reason is the inconsistent scan of rainfall patterns, which makes the reconstruction of the
accumulated rainfall in longer temporal scales (e.g., daily accumulated rainfall) challenging [66].
Further, the estimation of light rainfall is generally underestimated especially over land by remote
sensing analyses as a result of land surface emissivity [36,60,67].

Approaches to enhance the quality of satellite rainfall estimates, the use of satellite surface soil
moisture (SSM) data has been utilized recently [38,39,68–71]. These methods analyze the intense
correlation between SSM and rainfall to improve and/or estimate rainfall by using satellite surface SM
data. Here, SM2RAIN [38] is the first method, which directly makes available rainfall estimates from
SSM observations, whereas the other approaches are correction-based techniques [36,38,39,60,72–75].
In our study, we also added a new approach to estimate rainfall directly using the statistical relationship
between measured precipitation and the SM of the ASCAT.

Meteorological station data are normally spatially irregular and can be interpolated to a regular
grid. At this point, especially high-resolution gridded data sets can be used for impact studies.
Examples are the EURO4M-APGD dataset for the Alps [76], the European E-OBS [77], and JRC’s
Agri4cast dataset (http://agri4cast.jrc.ec.europa.eu). These data were not analyzed in the current study.
Here (e.g., for Austria), INCA data exists with a very high-resolution gridded data set; unfortunately,
they are not freely available.

An important aspect of crop models is that they are sensitive to perturbations in precipitation.
In Eitzinger et al. [78], the sensitivity of seven different crop models for winter wheat and maize to
extreme heat and drought over a short but critical period of two weeks after the start of flowering
in two locations in Austria was studied. It showed, that the models respond differently to climate
stresses (according to references [79,80]), even though they mainly present similar trends in grain
yields between different climatic situations. In Fronzek et al. [81], process-based wheat models were
applied, and no single model property was found, which describe the combined yield response to
temperature and precipitation perturbations.

The main objective of the current study was to test different types of spatial precipitation data as
inputs for a crop model application in three locations in Austria with different soil types and climates.
As INCA data are not freely available, a study of acceptable spatial alternatives is of interest for serval
applications. Also, under which circumstances and to which degree errors in precipitation data are
propagated into final crop model results are of interest. Therefore, the aggregated INCA23km presented
in all three locations already a higher precipitation sum as INCA1km and were thus not free of errors.

http://agri4cast.jrc.ec.europa.eu
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All investigated grid-based types of precipitation data perform at their best as crop yield model
inputs on moderately fine-textured soils and under humid conditions (Hartberg and Kremsmünster).

In the semi-arid region of Groß-Enzersdorf, winter wheat and spring barley simulations are very
sensitive to different precipitation model inputs; especially in light-textured soils. This is due to the fact
that soil water availability is a more dominant limiting growth factor under drought-prone conditions.
Therefore, little differences in precipitation input can affect greatly the simulated yield (high RMSE,
low d and r2 values). Also, even one missing precipitation event in a critical development stage can
cause a crop failure. In this region, the model reacts more sensitively for winter wheat than for spring
barley. RAASC (winter wheat) and TRMMRT (winter wheat and spring barley) seem to be the best
predictors for this location.

In the more humid places of Hartberg and Kremsmünster, all four precipitation inputs produced
good agreements. Plant water stress does not occur often and can be observed mainly in light-textured
soils. A bias in the precipitation sum is not such a crucial factor here; much more important is a
prediction of the event. In Hartberg, crop yields with RAASC and TRMMRT input data correspond best
with INCA23km input data (except RAASC soil 1). In Kremsmünster, both SM-based products present
good yield results for soils 1 and 2; even if high monthly precipitation differences to INCA23km were
calculated (Figure 3). Winter wheat and spring barley show similar yield predictions in both locations.

The poorest performances in all three locations and for both crops were found with CMORPH
input data. The general underestimation of rainfall provided by CMORPH is in line with the finding
of Stampoulis and Anagnostou [82], who assess the quality of this product over Europe.

Looking at SM estimated rainfall in more detail, SM2RASC and RAASC perform well in this
study, especially on light-textured soils in Kremsmünster and Hartberg compared to the two satellite
precipitation data. Here, for example, the use of information regarding the spatial–temporal variability
of top soil moisture could improve spatial crop yield simulations against the use of single point
information for single weather stations for a given area. Therefore, the SM estimations (SM2RASC,
RAASC) could be an alternative for potential agriculture applications in regions where other products
are not available once calibrated to the specific climatic conditions. In addition, a remote sensing
product does not necessarily have to be “better” than the model. It should be considered whether the
data add value or new information. Hence, even when r2 values are lower than for models, clever data
assimilation approaches may take advantage of the data (see e.g., [28]).

5. Conclusions

In the current study, different types of spatial precipitation data as inputs were tested for a
crop model application. Two daily satellite precipitation and two estimated rainfall data based on
a satellite SM dataset were evaluated with INCA-input data at a spatial resolution of around 25 km
in three locations in Austria. A bias in precipitation model input has lower impacts on simulated
spring barley and winter wheat yield under humid (Kremsmünster and Hartberg) than under dry
conditions (Groß-Enzersdorf). This can be very well observed in TMPA and in the two SM-based
product simulations. Additionally, light-textured soils (especially soil class 1) show more sensitivity to
different precipitation inputs than the other soils, regardless of the studied region.

This study represents one of the first attempts to integrate estimated rainfall datasets from SM
for crop models. More comprehensive analyses will be approached henceforth in order to better
understand and improve the capability of satellite-derived rainfall.
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