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Abstract: The accurate estimation of soil hydraulic parameters (θs, α, n, and Ks) of the van
Genuchten–Mualem model has attracted considerable attention. In this study, we proposed a new
two-step inversion method, which first estimated the hydraulic parameter θs using objective function
by the final water content, and subsequently estimated the soil hydraulic parameters α, n, and Ks,
using a vector-evaluated genetic algorithm and particle swarm optimization (VEGA-PSO) method
based on objective functions by cumulative infiltration and infiltration rate. The parameters were
inversely estimated for four types of soils (sand, loam, silt, and clay) under an in silico experiment
simulating the tension disc infiltration at three initial water content levels. The results indicated that
the method is excellent and robust. Because the objective function had multilocal minima in a tiny
range near the true values, inverse estimation of the hydraulic parameters was difficult; however,
the estimated soil water retention curves and hydraulic conductivity curves were nearly identical to
the true curves. In addition, the proposed method was able to estimate the hydraulic parameters
accurately despite substantial measurement errors in initial water content, final water content,
and cumulative infiltration, proving that the method was feasible and practical for field application.

Keywords: inverse modeling; soil hydraulic properties; parameter estimation; multiobjective
optimization; vector-evaluated genetic algorithm

1. Introduction

Soil hydraulic properties are essential characteristics for describing field-scale water flow and
solute transport processes [1–3]. Therefore, the accuracy and rapid estimation of soil hydraulic
parameters are vital [4]. Several direct methods have been developed to estimate the hydraulic
properties of unsaturated soils [5–7]. Unfortunately, direct methods have various limitations such as
being time consuming and tedious, as well as being difficult for use in the field because of spatial
variations in soil hydraulic properties [8–10].

The development of computer technology has led to an increased interest in indirect methods.
Zachmann et al. [11,12] were the first to study the estimation of hydraulic properties using transient
flow experiments in the laboratory. Since then, studies have developed inverse methods for estimating
soil hydraulic parameters using in situ or laboratory experiments and silico simulation, such as
one-step outflow and multistep outflow experiments [13–15], and evaporation experiments [16–18];
studies have proposed estimation devices, such as the tension disc infiltrometer [19,20], the modified
cone penetrometer [21,22], and the field multiple extraction device [23].
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The nonuniqueness and instability of parameter solutions in inverse methods are the key
problems considered in most relevant studies. Most inverse methods use multitarget optimization
algorithms, which utilize various data to improve the stability of solutions. Toorman et al. [19]
evaluated inverse methods related to the one-step outflow method from the perspective of various
objective functions, including combinations of matric potential, water content, and outflow data;
specifically, they discovered that the matric potential data could greatly improve the sensitivity of
parameter estimation. Dam et al. [24] concluded that, based on the multistep outflow method, the use
of cumulative output alone can easily lead to a nonunique solution; however, with the addition
of water content, a reliable parameter solution can be obtained. Eching and Hopmans [25] and
Eching et al. [26] determined that the calibration of the parameters of the soil water retention curve was
greatly improved using cumulative transient outflow data with simultaneously measured soil matric
potential data; furthermore, they discovered that the addition of automatically measured soil pressure
head data provided unique parameters in their multistep outflow experiment. Vereecken et al. [27]
analyzed the effect of four parameters on the estimation of hydraulic functions based on multistep
outflow experiments; they obtained an improved estimation with the addition of moisture retention
characteristic data sets obtained directly from an outflow experiment. Vrugt et al. [28] proposed
the parameter identification method based on the localization of information, which can be used in
multistep outflow experiments to improve the uniqueness and stability of inverse parameters.

Tension disc infiltration has the advantages of short measurement time, wide availability of
measured data sets, and easy application. Given these advantages, an in silico experiment was
conducted to simulate tension disc infiltration. In this study, we first analyzed the synergistic
effects of θs, α, n, and Ks by the objective functions of cumulative infiltration (Q), infiltration rate (v),
and final water content (θfinal) using the van Genuchten–Mualem [29] model. Then, based on a hybrid
vector-evaluated genetic algorithm (VEGA) [30] and particle swarm optimization (PSO) method [31],
we proposed a new inverse method of soil hydraulic parameters named the “two-step method” under
in silico experiments of tension disc infiltration, which first searches the hydraulic parameter θs by
the objective function of θfinal, and then searches the soil hydraulic parameters α, n, and Ks using the
hybrid VEGA and PSO method by the objective functions of Q and v. Subsequently, because of the
existence of local multiminimum domains of the objective functions in a tiny range of the true values,
we analyzed the uniqueness and multiminimum values of the inverse method, as well as the stability
and robustness of the inverse method. Finally, we analyzed the feasibility and stability of the proposed
method in the presence of measurement errors.

2. Theory

2.1. Unsaturated Flow Governing Equation

The governing flow equation for radially symmetric isothermal Darcy flow in a variably saturated
isotropic rigid porous medium, assuming that the air phase plays an insignificant role in the liquid
flow process, is provided in the following modified form of the Richards equation [32]:
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where θ is the volumetric water content (cm3 cm−3); h is the matric potential induced by capillary
action (cm); K(h) is the hydraulic conductivity (cm min−1); z is the depth from the soil surface (cm)
measured with positive values in a downward direction; r is the radial coordinate (cm); and t is
time (min).

2.2. Initial and Boundary Condition

In Equation (1), we did not consider root water uptake by plant roots and assumed that the
porous medium was isotropic; in addition, we assumed that the initial water content (θinitial) and the
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initial matric potential (hi) were the same in the vertical direction. The following initial and boundary
equations (Equations (2)–(5)) were used when Equation (1) was solved numerically.

h(r, z, t) = hi, t = 0 (2)

h(r, z, t) = h0(t), 0 < r < r0, z = 0 (3)

−∂h(r, z, t)
∂z

− 1 = 0, r > r0, z = 0 (4)

h(r, z, t) = hi, r2 + z2 → ∞ (5)

where hi is the initial matric potential (cm), h0 is the time-variable supply matric potential (cm);
and r0 is the disc radius (cm). Equation (1), subject to the abovementioned initial and boundary
conditions, was solved using a quasi-three-dimensional finite element model, SWMS-2D, developed
by Šimůnek et al. [33]. The numerical solution was based on the mass-conservative iterative scheme
proposed by van Genuchten et al. [34].

2.3. van Genuchten–Mualem Model

The soil water retention curve (SWRC), h(θ), and soil water conductivity curve (SWCC), K(θ),
are described by Equations (6)–(8) [29]:

Se =
1

(1 + |αh|n)m , (6)

K(θ) = KsSe
l
[
1− (1− S1/m

e )
m]2

, (7)

Se =
θ − θr

θs − θr
(8)

where θr and θs are the residual and saturated water content levels (cm3 cm−3), respectively; Ks is the
saturated hydraulic conductivity (cm min−1); α is an empirical parameter that is inversely related to
the air-entry pressure value (cm−1); n is an empirical parameter related to the pore-size distribution;
l is an empirical shape parameter, normally equal to 0.5; m = 1 − 1/n; and Se is the effective saturation.

3. Inverse Method

3.1. Formulation of the Inverse Problem

As evidenced in the previous analysis, h(θ) (Equations (6) and (8)) and K(θ) (Equations (7) and (8))
are highly dependent on the effective saturation, Se. In addition, from Equation (8), the parameters
of θr and θs have collinear relationships, thus simultaneous inverse estimation of θr and θs is not
possible. Moreover, the value of θr is relatively small with tiny variation range and can be either
obtained experimentally (e.g., measuring the water content on very dry soil) or defined as the
water content at a large negative value of the matric potential (e.g., the permanent wilting point
(h = −15,000 cm)) [29]. Besides, θr can also be obtained from the pedotransfer functions by mechanical
composition, bulk density, etc. [10]. Therefore, in the following inverse procedure, we set the value of
θr as constant.

The soil water content (θ), cumulative infiltration (Q), infiltration rate (v), and matric potential
(h) during the process of the infiltration can be used for the estimation of soil hydraulic parameters.
However, measuring the h during infiltration is difficult, and thus, we calibrated the soil hydraulic
parameters based on θ, Q, and v.

The parameters α, n, and Ks in the van Genuchten–Mualem model clearly have a complicated
nonlinear relationship, and parameters α and Ks vary greatly, which makes them even more difficult
to use in an inverse model. Table 1 was obtained from RETC software [34]. Figure 1 illustrates the
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relationship between α–Ks (1a) and α–n (1b). Notably, as α increases, the corresponding Ks sharply
increase, and n increases linearly; the correlation of these parameters should be considered in future
research. The ratio α/Ks was used in the development of the inverse model. In Table 1 and other
references, the scope of soil hydraulic parameters (θr, θs, α, n, Ks) and α/Ks were determined in Table 2
(set l as 0.5), which covers the vast majority of soil conditions.

Table 1. Soil hydraulic parameters of the van Genuchten–Mualem model for 12 soils.

Texture Class
θr θs α n l Ks α/Ks

cm3 cm−3 cm3 cm−3 cm−1 - - cm min−1

Sand 0.045 0.43 0.145 2.68 0.5 0.49500 0.293
Loamy sand 0.057 0.41 0.124 2.28 0.5 0.24317 0.510
Sandy loam 0.065 0.41 0.075 1.89 0.5 0.07367 1.018

Loam 0.078 0.43 0.036 1.56 0.5 0.01733 2.077
Silt 0.034 0.46 0.016 1.37 0.5 0.00417 3.840

Silt loam 0.067 0.45 0.020 1.41 0.5 0.00750 2.667
Sandy clay loam 0.100 0.39 0.059 1.48 0.5 0.02183 2.702

Clay loam 0.095 0.41 0.019 1.31 0.5 0.00433 4.385
Silty clay loam 0.089 0.43 0.010 1.23 0.5 0.00117 8.571

Sandy clay 0.100 0.38 0.027 1.23 0.5 0.00200 13.500
Silty clay 0.070 0.36 0.005 1.09 0.5 0.00033 15.000

Clay 0.068 0.38 0.008 1.09 0.5 0.00333 2.400

Note: Data for θr, θs, α, n, l, and Ks were obtained from RETC.

Table 2. Inverse scope of soil hydraulic parameters.

Scope
θs α n Ks α/Ks

- cm−1 - cm min−1 -

min 0.35 0.001 1.05 0.00010 0.2
max 0.55 0.200 3.00 0.60000 20

Figure 1. Relationship between selected soil hydraulic parameters: (a) α–Ks; and (b) α–n.

The objective function was defined as the root mean squared error (RMSE) divided by the standard
deviation (σ) of the observed Q, v, or θ, as shown in Equation (9):

ψ =
RMSE

σ
=

√
1

m−1

m
∑

i = 1
(Y(ti, β)−Y∗(ti))

2

√
1

m−1

m
∑

i = 1

(
Y∗(ti)−Y∗(ti)

)2
, (9)

where Y* represents specific measurements, such as Q, v, and θ, at time ti; Y denotes the corresponding
model prediction data under parameter vector β; β is the vector of optimized parameters (α, n, and Ks);
and m represents the number of measurement sets (of Q, v, and θ).
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The objective function ψ can be used to construct the response surface, by varying parameters α, n,
θs, and Ks, which can be formulated with one of Q, v, or θ in VEGA, or a combination of them in PSO.

Most relevant studies have used various combinations of objective functions with Q, v, and θ to
estimate soil hydraulic parameters; such combinations can convert multiple objective optimization
problems into a single-objective optimization problem. However, determining the reasonable weight
for the combination objective function is difficult; furthermore, it is likely to increase the complexity
of the response surface, as well as the difficulty of searching for a global optimization solution.
We adopted a hybrid VEGA and PSO method to solve these inverse problems.

3.2. The Hybrid Optimal Algorithm for Inverse Parameters

3.2.1. The Genetic Algorithm and Particle Swarm Optimization

Genetic Algorithm (GA) is a global stochastic search technique developed by Holland [35].
It begins with initializing a population of candidate solutions randomly sampled from a feasible
solution space. Each individual is an entity with a characteristic chromosome, which is the main carrier
of genetic material. The binary coding process, which is the process that is most commonly used in
GAs, must be implemented from the start. It can realize chromosome mapping from phenotype to
genotype. In each generation, individuals are sorted and selected according to values calculated by
a fitness function. Then, the system executes combination crossover and variation on all members of the
population, using the genetic operators of natural genetics. The best chromosome of the last population
can be decoded and regarded as an approximate solution to a practical problem. This process causes
the population to evolve in a manner similar to natural evolution, as the most recent generation is more
adapted to the environment than the previous generation was. After initialization, the population
evolves through the aforementioned steps and approximates the solution more closely with each
iteration. This iterative evolution of the parameter solutions ends only when an optimal goal of model
evaluations has been reached.

Particle Swarm Optimization (PSO) is an evolutionary optimization algorithm developed by
Kennedy and Eberhart [31], which is derived from a study on bird foraging behavior. Initial particles
are produced in the solution space. Each particle (Pi) in PSO has three characteristics: its position (Xi)
represents a potentially optimal solution, its velocity (Vi) represents the direction and speed of the
particle’s movement, and its fitness value (Fi) (calculated by the fitness function) represents the relative
merit of the particle. The particle moves in the solution space and updates the its location by tracking
the current optimal position (Pbest) and the current global optimal position (Gbest), that is the fitness of
the position calculated by one individual and by all particles. In each iteration, each particle is updated;
thus, the Pbest and Gbest collected from the particles in each generation are updated. Each particle’s
speed can be adjusted dynamically according to its motion and the motions of the other particles,
so that the best solution can be achieved in the optimal solution space.

In PSO, each particle (Pi) can be updated using the following equations:

Vi
new = wVi

old + c1r1(Pbest − Xi
old) + c2r2(Gbest − Xi

old), (10)

Xi
new = Xi

old + Vi
new, (11)

where w < 1 is the inertial weight; c1 and c2 are learning factors; and r1 and r2 are random numbers
uniformly distributed in (0,1).

The basic GA with a single population is powerful that its solutions are applicable in most
situations. The multi-populations algorithm, in which the individuals can be exchanged through the
various sub-groups, is closer to the nature of human evolution and often achieves a more desirable
result. GAs have global search capabilities and robust performance, but their optimization searches
may have limited efficiency. PSO searches run faster and more accurately than GA searches in local
domains, but PSO is susceptible to unstable optimized solutions compared with GA.



Water 2018, 10, 84 6 of 23

3.2.2. Multiobjective Optimization Method Using Hybrid VEGA and PSO Algorithms

In general, inverse problems actually have multiple response variables, such as cumulative
infiltration (Q), soil water content (θ), and infiltration rate (v). As these variables may conflict with
each other, minimizing a single objective function often results in unacceptable outcomes for other
objectives. One classical approach is to combine the individual objective functions into a single
composite function. A weight can be assigned to each normalized objective function to solve the
multiobjective optimization problem. Consider a decision maker who wishes to optimize multiple
objectives, such that the objectives are incommensurable; the decision maker has no clear preference
for one or the other. Therefore, in many practical problems, precisely and accurately selecting these
weights can be difficult, even for someone familiar with the problem domain.

To solve the multiobjective problems, a VEGA [30] can provide a straightforward and efficient
approach compared with the single-objective GA. In this algorithm, the whole population is divided
into several subpopulations, which are evaluated with respect to the various objective functions.
Normally when a VEGA operates, the whole population is randomly initialized and uniformly divided
into K subpopulations of equal size. Each solution in a subpopulation is assigned one fitness value
based on each objective function. Solutions are selected from these subpopulations using proportional
selection. Crossover and mutation are performed on the new population in the same manner as for
a single-objective GA. In addition, the lost individuals in the selection process are complemented by
newly created random individuals and the elite population that remains from the previous generation.

Multiobjective functions can be allocated separately by VEGA; the optimization results always
fall into the fittest Pareto sets but not the unique, precise solutions [36]. In fact, VEGA can manage
the sufficiency and equilibrium of all objective functions, but the shortcoming of this algorithm is
that the solution tends to converge to extremes for each objective. Because of this, PSO is introduced
to modify the extreme population towards more suitable individuals, but it cannot ensure whether
the best solution is the global minimum. Therefore, the algorithms of VEGA and PSO should be
rapidly operated alternately to maintain the balance between global searching and the local accuracy of
minima. The detailed steps of the hybrid VEGA–PSO algorithm in this inverse problem are as follows:

Step 1. Generate the initial population. The initial population is generated using a binary coding
system with total number of K × N; K is the number of subpopulations classified by VEGA,
while N is the number of individuals in each subpopulation.

Step 2. Divide the population and calculate fitness in VEGA. VEGA divides the population into
K subpopulations and the individuals in each subgroup are evaluated by corresponding
fitness functions.

Step 3. Sort and select separately. All the individuals are sorted and selected to eliminate unfit
individuals based on the fitness values calculated in Step 2, but different fitness functions
operate independently in each subpopulation.

Step 4. Cross and mutate together. The populations selected in Step 3 are mixed together to execute
the processes of crossing and mutation, in order to ensure the sufficiency and equilibrium of
all fitness functions that VEGA includes.

Step 5. Consider termination of VEGA. If the VEGA iteration number (Steps 3 and 4) is less than the
specified value m1, then return to Step 3; otherwise, go to Step 6 (the PSO process).

Step 6. Calculate fitness in PSO. All the individuals are evaluated in PSO by a composite fitness
function with several measurement indices, to find minima.

Step 7. Perform PSO operations. Each individual updates its velocity and position according to
equations 10 and 11.

Step 8. Consider termination of PSO. If the PSO process iteration number (Steps 6 and 7) is less than
the specified value m2, then return to Step 6; otherwise, return to Step 2 (VEGA process).
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One cycle of this hybrid VEGA–PSO algorithm (Figure 2) finishes when the iteration numbers
m1 in VEGA and m2 in PSO have been reached. If the process reaches the defined number m3 (Gen),
the final termination condition is met and the final solution is output.

Figure 2. Flowchart of an entire optimizing cycle of the hybrid VEGA–PSO algorithm.

3.3. Data Generation

This study conducted an inverse estimation of the soil hydraulic parameters for four soils (sand,
loam, silt, and clay from Table 1) under three initial levels of water content, θinitial, (Se = 20%, 40% and
60%). The infiltration data used in this study were generated using SWMS-2D software [33]. Only the
first three hours of the infiltration process were considered with the time-variable supply matric
potential, h0, which are described in Equation (12). The initial hi were calculated by the corresponding
parameters in Table 1. Figure 3 illustrates the results of Q under θinitial = 40% effective saturation degree.

h0(t) =


−15 cm 0 < t < 60 min
−10 cm 60 min < t < 120 min
−3 cm 120 min < t < 180 min

, (12)

3.4. Similarity Evaluation Criteria between Estimated and True SWRC and SWCC

To evaluate the similarity of the estimated (by inverse solution) and true soil water retention
curves (SWRCs) and soil water conductivity curves (SWCCs), a certain amount of points were selected
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on the estimated (by inverse solution) and the true curves, with the same suction under SWRC and
the same conductivity under SWCC. Subsequently, the soil water content levels of various points
were calculated. Therefore, the similarity between the estimated and true SWRCs and SWCC were
quantified using the following statistical indices: the root mean square error (RMSE), percent bias
(PBIAS), and Nash–Sutcliffe coefficient (NS) [37]. These indices are defined as follows:

RMSE =

√
1

m− 1

m

∑
i = 1

(
θest

i − θtrue
i
)2, for i = 1, 2 . . . n, (13)

PBIAS =
∑m

i = 1
(
θest

i − θtrue
i
)

∑m
i = 1 θtrue

i
, (14)

NS = 1− ∑m
i = 1

(
θest

i − θtrue
i
)2

∑m
i = 1 (θ

true
i − θtrue

i )
2 (15)

where m is the number of selected points in each SWRC and SWCC, which was set as 50 in our study;
θi

est is the ith point of soil water content on the estimated SWRC and SWCC; and θi
true is the ith point

of soil water content on the true SWRC and SWCC, with the same suction and conductivity.

Figure 3. Cumulative infiltration versus time for four types of soil with three consecutive supply matric
potentials (h0 (t = 0) = −15 cm; h0 (t = 60) = −10 cm; and h0 (t = 120) = −3 cm): (a) Sand; (b) Loam;
(c) Silt; and (d) Clay.

4. Results and Discussion

4.1. Response Surface and Inverse Solutions

Based on the aforementioned analysis, we concentrated on the soil hydraulic parameters of θs,
α, n, and Ks, with the θr set as constant. To more clearly analyze the mutual interactions in objective
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function ψ of the four parameters θs, α, n, and Ks, the response surfaces for various parameter planes
(α–n, α–Ks, n–Ks, n–θs, α–θs, and Ks–θs) for four types of soil (sand, loam, silt, and clay) with three
initial soil water content levels (Se = 20%, 40%, and 60%) were calculated. Each parameter domain
was evenly divided into 50 discrete points, resulting in 2500 (50 × 50) grid points for each response
surface. All operations were conducted using an Intel® XEON® CPU E5-2683 2.00 GHz processor and
32 GB of RAM in a Windows 7 Ultimate environment; a 28-core server was available for us to compute
the algorithm.

4.1.1. Analysis of the Objective Function ψ(θfinal)

The objective function ψ(θfinal) was defined using the water content at the end of infiltration
(θfinal). Figure 4 illustrates the response surfaces of parameter planes, including α–n (Figure 4a),
α–Ks (Figure 4b), n–Ks (Figure 4c), n–θs (Figure 4d), α–θs (Figure 4e), and Ks–θs (Figure 4f), with the
remaining two parameters set at the true values in the objective function of ψ(θfinal). For visualization,
the logarithmic coordinates were selected for α and Ks. From observing the first three contours in
Figure 4a–c, the three planes α–n, α–Ks, n–Ks and the minimum values of ψ(θfinal) all clearly fall in
a significant narrow and long valley. This means that even if the other two parameters are determined,
the stable optimal values of α, n, and Ks are still difficult to determine from ψ(θfinal). In Figure 4d–f,
all three response surfaces, θs–n, θs–α, and θs–Ks, display smooth uniform rings and have obvious
extreme points in each minimum circle. This feature suggests that it was possible to use the objective
function, ψ(θfinal), to obtain the true value of θs.

4.1.2. Analysis of the Objective Functions ψ(v) and ψ(Q)

If the value of θs can be determined with objective function ψ(θfinal), similar to the abovementioned
analysis, the mutual interactions of α–n, α–Ks, and n–Ks can be determined with objective functions ψ(v)
and ψ(Q); the results of those calculations are illustrated in Figures 5 and 6. In Figure 5a–c, α–n, α–Ks,
and n–Ks are depicted; all response surfaces evidently have global optima; therefore, after the value
of θs is determined, finding the true values of α, n, and Ks is possible using the optimization method
under the objective function ψ(v). Furthermore, the response surface ψ(v), with the parameters α, n,
and Ks, was re-estimated near its true value and the results are shown in Figure 5d–f. The response
surfaces of α–n (Figure 5d) and n–Ks (Figure 5f) can be observed to have obvious global optimal
solutions, whereas for α–Ks (Figure 5e), global optimal solutions exist in the response surfaces with
numerous optimal bubbles in the valley. This creates difficulty in precisely searching for the true
values of α, n, and Ks only using ψ(v).

In Figure 6a–c, the response surfaces of α–n (Figure 6a), α–Ks (Figure 6b), and n–Ks (Figure 6c)
clearly reveal that the minimum values of ψ(Q) were concentrated in a long narrow valley. Therefore,
only using the objective function of ψ(Q) to search for the true values of α, n, and Ks directly
is difficult, but it can compress α–n, α–Ks, and n–Ks in a narrow space. Furthermore, similar to
the aforementioned analysis, the response surface of ψ(Q) under the parameters α, n, and Ks was
recalculated to approximate its true value and the results are shown in Figure 6d–f. This further
confirmed that the role of the objective function ψ(Q) is compressing α–n, α–Ks, and n–Ks in a narrow
space in the search for α, n, and Ks. Specifically, the response surface of the plane of α–Ks (Figure 6e)
indicated that the optimal value was decompressed in a distinct line-like interval, which was helpful
for us in searching for the true values.

As a result, with synthetic analysis, the relationships between the parameter planes of α–n
(Figure 5d) and n–Ks (Figure 5f) with the objective function ψ(v), as well as α–Ks (Figure 6e) with the
objective function ψ(Q), determining the true values of α, n, and Ks based on the multiple applications
of the objective functions ψ(v) and ψ(Q) was possible.
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Figure 4. Contours of objective function ψ(θfinal) of silt under θinitial equal to a 40% effective saturation degree. The hydraulic parameters of silt: θr = 0.034 cm3 cm−3;
θs = 0.46 cm3 cm−3; α = 0.016 cm−1; n = 1.37; Ks = 0.0042 cm min−1. Results are plotted in the: (a) α–n; (b) α–Ks; (c) n–Ks; (d) n–θs; (e) α–θs; and (f) Ks–θs parameter
planes. The solid circles are the true parameters.
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Figure 5. Contours of objective function ψ(v) of silt under θinitial equal to a 40% effective saturation degree. The hydraulic parameters of silt: θr = 0.034 cm3 cm−3;
θs = 0.46 cm3 cm−3; α = 0.016 cm−1; n = 1.37; Ks = 0.0042 cm min−1. Results are plotted in the: (a,d) α–n; (b, e) α–Ks; and (c,f) n–Ks parameter planes. (a–c) depict the
global scale, while (d–f) depict the local scale near the minimum. The solid circles are the true parameters.
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Figure 6. Contours (in detail) of objective function ψ(Q) of silt under θinitial equal to a 40% effective saturation degree. The hydraulic parameters of silt:
θr = 0.034 cm3 cm−3; θs = 0.46 cm3 cm−3; α = 0.016 cm−1; n = 1.37; Ks = 0.0042 cm min−1. Results are plotted in the: (a,d) α–n; (b,e) α–Ks; and (c,f) n–Ks

parameter planes. (a–c) depict the global scale, while (d–f) depict the local scale near the minimum. The solid circles are the true parameters.
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4.2. Inverse Solution and Analysis

4.2.1. The Procedure of Inverse Modeling

According to the aforementioned analysis, we first used the objective function of ψ(θfinal) to search
for θs with the GA. The values of θfinal for the inverse modeling of typical soils with various θinitial
values were simulated using SWMS-2D. The true parameters are shown in Table 1. For practical use,
24 grid points of θfinal located at radial distance = 0, 5, 10, and 15, and depth = 2, 5, 10, 15, 20, and 35
were used for inverse parameters. According to the scope and features of these parameters, θs and n
were coded in arithmetic scaling and Ks was coded in logarithmic scaling, whereas α was represented
by the ratio value of α/Ks, which was coded in arithmetic scaling. The population size (PopSize) of GA
was 24 and the maximum number of iterations was 30.

Second, with the value of θs set as in the abovementioned inverse model, the hybrid VEGA–PSO
algorithm was used with two objective functions, ψ(v) and ψ(Q), comprehensively. The values of Q
and v were selected every three minutes, with 60 points in total. The PopSize of PSO was 24, and each
subgroup had two objective functions, ψ(v) and ψ(Q). The two subgroups of GA for ψ(v) and ψ(Q) had
the same PopSize of 12. The coding mode of θs, α, n, and Ks were the same as the aforementioned
step. For each individual, we set the generation iterations m1 and m2 as 3 in both GA and PSO for
one coupling cycle, and the total number of coupling cycles was set at 30. The selection probability
Ps, the crossover probability Pc, and the mutation probability Pm were defined from GA optimization
experience as the values 0.667, 0.80, and 0.20, respectively. In PSO, the inertial weight, w, and the
learning factors, c1, and c2 (in Equation (10)), were defined as the default values, equal to 0.729, 2.0,
and 2.0 respectively.

4.2.2. Inverse Solution

To further verify the feasibility of the parameter inverse estimation approach, we conducted 12
cases including four types of typical soil from RETC (sand, loam, silt, and clay) under three initial water
content levels (20%, 40%, and 60% degrees of effective saturation). Table 3 summarizes the results of
the 12 cases of parameter inversion. Although small differences existed between the estimated and
true values of each parameter, the estimates were close to the true values.

4.2.3. Analysis of the Inverse Solution

The true and the inversely estimated parameter values listed in Table 3 were used to draw the
SWRC and SWCC, respectively, which are depicted in Figure 7. SWRCs are illustrated as a1, b1, c1,
and d1; SWCC are illustrated as a2, b2, c2, and d2. Despite the small differences between the true and
estimated values of α, n, and Ks (Table 3), the true and the estimated SWRCs and SWCCs are almost
identical, which indicates that the proposed inverse method is effective and robust.

Table 3. Estimated parameters under three initial water content levels for four types of soil.

Soil Category
θr θs α n Ks

cm3 cm−3 cm3 cm−3 cm−1 - cm min−1

Sand

20%
0.0450

0.4303 0.1455 2.6967 0.4922
40% 0.4314 0.1449 2.6751 0.4971
60% 0.4285 0.1448 2.6967 0.4898

True Value 0.0450 0.4300 0.1450 2.6800 0.4950

Loam

20%
0.0780

0.4302 0.0359 1.5196 0.0181
40% 0.4285 0.0356 1.5522 0.0170
60% 0.4299 0.0363 1.5798 0.0171

True Value 0.0780 0.4300 0.0360 1.5600 0.0173

Silt

20%
0.0340

0.4606 0.0161 1.3739 0.0042
40% 0.4623 0.0163 1.3639 0.0044
60% 0.4594 0.0166 1.3905 0.0041

True Value 0.0340 0.4600 0.0160 1.3700 0.0042

Clay

20%
0.0680

0.3787 0.0088 1.0889 0.0039
40% 0.3812 0.0069 1.0919 0.0027
60% 0.3803 0.0084 1.0919 0.0033

True Value 0.0680 0.3800 0.0080 1.0900 0.0033
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Figure 7. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) for various
treatments (20% effective saturation degree for initial water content, circle; 40% effective saturation
degree for initial water content, triangle; 60% effective saturation degree for initial water content,
square; true value, line): (a) Sand; (b) Loam; (c) Silt; and (d) Clay.

Figure 7. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) for various
treatments (20% effective saturation degree for initial water content, circle; 40% effective saturation
degree for initial water content, triangle; 60% effective saturation degree for initial water content,
square; true value, line): (a) Sand; (b) Loam; (c) Silt; and (d) Clay.
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To evaluate the precision and robustness of the proposed inverse method, several performance
indicators (RMSE, PBIAS, and NS) were adopted to estimate the differences between the true and
estimated curves. Fifty points were selected from suction curves, h(θ), and conductivity curves, K(θ).
Subsequently, the corresponding 50 soil water content levels were calculated. Table 4 illustrates the
results of the error evaluation indicators, which indicate that our procedure is suitable for inverse
modeling of soil hydraulic properties; this is because of extremely small MAE, RMSE, and PBIAS
values for SWRCs (0.00039–0.000076 cm3·cm−3, 0.00071–0.00097 cm3·cm−3, and 0.0147–0.1603%,
respectively) and also for conductivity curves (0.000004–0.00014 cm3·cm−3, 0.00003–0.00059 cm3·cm−3,
and 0.2725–1.2131%, respectively), as well as a large NS (nearly 1.0). Furthermore, the inverse method
is indicated to be able to estimate the SWRC and SWCC with precision and robustness.

Table 4. Soil water content errors from estimated SWRCs and SWCCs for the four types of soil.

Soil
From h(θ) From K(θ)

MAE RMSE PBIAS (%) NS MAE RMSE PBIAS (%) NS

Sand 0.00069 0.00082 −0.0147 0.9999 0.00014 0.00059 0.4023 0.9999
Loam 0.00039 0.00060 0.0987 0.9999 0.00002 0.00008 −0.5136 0.9991

Silt 0.00076 0.00097 −0.1603 0.9999 0.00000 0.00003 −1.2131 0.9985
Clay 0.00060 0.00071 −0.0161 0.9999 0.00002 0.00008 −0.2725 0.9778

4.3. Inverse Solutions with Measurement Errors

In real situations, some errors always exist, which are related to instrumentation, calibration,
and other factors. Therefore, to assess the stability of the inverse solution, we considered a random
error in cumulative infiltration and both the random error and system error for the initial and final
water content levels, respectively. First, we set the random error as a 0.05 standard deviation (5.0%) and
the two system errors as +0.02 and −0.02, respectively, for the θinitial and θfinal. Subsequently, the two
random errors were set as 0.02 and 0.05 of standard deviation (2.0% and 5.0%), and superimposed
them to the cumulative infiltration. Similar to the error-free inverse method, all of the inversion
computations were run again based on the proposed algorithm for the four representative soils (sand,
loam, silt, and clay) with the θinitial (40% degree of effective saturation).

4.3.1. Inverse Solution Analysis Based on Initial and Final Water Content

Table 5 shows the inverse parameter values (θs, α, n, Ks) of the four typical soils. The results
suggested that superimposition of random and system errors on the error-free data result in only small
deviations from the true parameters. Table 5 reveals that most values of the inverse parameters
were even closer to their true values, which indicates that the proposed method was useful in
practical application.

Table 5. Estimated parameters considering random and system errors on initial and final water content
levels for the four typical soils.

Texture Class Error Source Error Category
θr θs α n Ks

cm3 cm−3 cm3 cm−3 cm−1 - cm min−1

Sand

θinitial

RE 5.0%

0.0450

0.4292 0.1430 2.6512 0.4912

SE
θi + 0.02 0.4352 0.1389 2.6931 0.4959
θi − 0.02 0.4096 0.1281 2.6988 0.4912

θfinal

RE 5.0% 0.4296 0.1455 2.6780 0.4867

SE
θf + 0.02 0.4423 0.1464 2.6874 0.4943
θf − 0.02 0.4004 0.1449 2.6994 0.4877

True Parameter 0.0450 0.4300 0.1450 2.6800 0.4950
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Table 5. Cont.

Texture Class Error Source Error Category
θr θs α n Ks

cm3 cm−3 cm3 cm−3 cm−1 - cm min−1

Loam

θinitial

RE 5.0%

0.0780

0.4435 0.0376 1.5437 0.0185

SE
θi + 0.02 0.4712 0.0404 1.5799 0.0189
θi − 0.02 0.3866 0.0341 1.5151 0.0191

θfinal

RE 5.0% 0.4266 0.0365 1.5265 0.0188

SE
θf + 0.02 0.4798 0.0362 1.5761 0.0164
θf − 0.02 0.3893 0.0328 1.5151 0.0162

True Parameter 0.0780 0.4300 0.0360 1.5600 0.0173

Silt

θinitial

RE 5.0%

0.0340

0.4546 0.0159 1.3768 0.0040

SE
θi + 0.02 0.5035 0.0233 1.4474 0.0067
θi − 0.02 0.4218 0.0136 1.2787 0.0028

θfinal

RE 5.0% 0.4640 0.0167 1.3493 0.0046

SE
θf + 0.02 0.5072 0.0179 1.2825 0.0056
θf − 0.02 0.4051 0.0143 1.2177 0.0033

True Parameter 0.0340 0.4600 0.0160 1.3700 0.0042

Clay

θinitial

RE 5.0%

0.0680

0.3965 0.0087 1.0854 0.0036

SE
θi + 0.02 0.4241 0.0105 1.1220 0.0051
θi − 0.02 0.3522 0.0062 1.0729 0.0022

θfinal

RE 5.0% 0.3774 0.0079 1.0824 0.0032

SE
θf + 0.02 0.4296 0.0112 1.1015 0.0056
θf − 0.02 0.3514 0.0054 1.0681 0.0018

True Parameter 0.0680 0.3800 0.0080 1.0900 0.0033

Note: RE = random error; RE 5.0% means of standard deviation of random error equal to 0.05. SE = system error.

Again, to assess the effective measurement error of the estimated values, the SWRCs and SWCCs
were plotted based on the estimated and true values of the four typical soils in three error source cases,
as shown in Figure 8 (initial water content) and Figure 9 (final water content). Both curves suggested
that, although slight differences existed between the random and system error curves and the true
curves, the effective measurement error was still acceptable.
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Figure 8. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) with random
errors (RE) and system errors (SE) for various treatments with objective function ψ(θinitial): (a) Sand;
(b) Loam; (c) Silt; and (d) Clay.

Figure 8. Cont.
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Figure 8. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) with random
errors (RE) and system errors (SE) for various treatments with objective function ψ(θinitial): (a) Sand;
(b) Loam; (c) Silt; and (d) Clay.

Figure 8. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) with random
errors (RE) and system errors (SE) for various treatments with objective function ψ(θinitial): (a) Sand;
(b) Loam; (c) Silt; and (d) Clay.
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Figure 9. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) with random
errors (RE) and system errors (SE) for various treatments with objective function ψ(θfinal): (a) Sand; (b)
Loam; (c) Silt; and (d) Clay.

Figure 9. Cont.
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Figure 9. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) with random
errors (RE) and system errors (SE) for various treatments with objective function ψ(θfinal): (a) Sand; (b)
Loam; (c) Silt; and (d) Clay.

Figure 9. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) with random
errors (RE) and system errors (SE) for various treatments with objective function ψ(θfinal): (a) Sand; (b)
Loam; (c) Silt; and (d) Clay.

Table 6 illustrates several error evaluation indicators, including RMSE, PBIAS, and NS, to estimate
the differences between inverse solutions with measurement errors and true values. Fifty points were
averaged and selected from suction curves, h(θ), and conductivity curves, K(θ), and the corresponding
50 soil water content levels were calculated. Table 6 illustrates the results of error evaluation indicators,
with extremely small RMSE (0.0018 to 0.03849 from h(θ), and 0.00039 to 0.02591 from K(θ)); small PBIAS
(0.1401 to 14.1667 from h(θ), and 00847 to 10.0447 from K(θ)); and large NS (0.9308 to 0.9999 from h(θ),
and 0.9319 to 1.0000 from K(θ)). The results indicated that the proposed inverse method is suitable for
estimating soil hydraulic properties.

Table 6. Soil water content errors from estimated SWRCs and SWRCs considering both random and
system errors on initial and final water content levels for the four typical soils.

Source Texture Class Error Category

From h(θ) From K(θ)

RMSE PBIAS NS RMSE PBIAS NS

cm3 cm−3 % - cm3 cm−3 % -

θinitial

Sand
RE 5.0% 0.0018 0.5904 0.9999 0.0004 −0.1621 1.0000

SE
θi + 0.02 0.0057 2.3078 0.9986 0.0025 1.0377 0.9995
θi − 0.02 0.0090 −0.1401 0.9963 0.0096 −4.0328 0.9924

Loam
RE 5.0% 0.0065 2.4456 0.9976 0.0064 2.4012 0.9961

SE
θi + 0.02 0.0176 4.4951 0.9826 0.0195 7.3571 0.9630
θi − 0.02 0.0200 −5.0526 0.9777 0.0205 −7.7544 0.9589

Silt
RE 5.0% 0.0035 −1.5893 0.9995 0.0026 −1.0461 0.9996

SE
θi + 0.02 0.0243 −3.6490 0.9771 0.0205 8.4125 0.9719
θi − 0.02 0.0254 4.5768 0.9752 0.0181 −7.4018 0.9783

Clay
RE 5.0% 0.0098 5.0416 0.9905 0.0078 3.3498 0.9924

SE
θi + 0.02 0.0209 −5.1589 0.9565 0.0208 8.9355 0.9461
θi − 0.02 0.0142 3.5927 0.9799 0.0132 −5.6430 0.9785
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Table 6. Cont.

Source Texture Class Error Category

From h(θ) From K(θ)

RMSE PBIAS NS RMSE PBIAS NS

cm3 cm−3 % - cm3 cm−3 % -

θfinal

Sand
RE 5.0% 0.0004 −0.1770 1.0000 0.0002 −0.0847 1.0000

SE
θi + 0.02 0.0056 1.9248 0.9986 0.0058 2.4310 0.9973
θi − 0.02 0.0149 −5.7688 0.9901 0.0140 −5.8520 0.9841

Loam
RE 5.0% 0.0034 0.7115 0.9994 0.0016 −0.6000 0.9998

SE
θi + 0.02 0.0244 7.7015 0.9666 0.0235 8.8927 0.9460
θi − 0.02 0.0182 −4.1199 0.9815 0.0192 −7.2658 0.9639

Silt
RE 5.0% 0.0047 2.2844 0.9991 0.0019 0.7703 0.9998

SE
θi + 0.02 0.0385 19.0410 0.9428 0.0223 9.1314 0.9669
θi − 0.02 0.0433 10.3832 0.9275 0.0259 −10.6175 0.9553

Clay
RE 5.0% 0.0063 3.0968 0.9961 0.0012 −0.5325 0.9998

SE
θi + 0.02 0.0169 2.7096 0.9715 0.0234 10.0447 0.9319
θi − 0.02 0.0188 6.7122 0.9646 0.0135 −5.8014 0.9773

Note: RE = random error; RE 5.0% means of standard deviation of random error equals to 0.05. SR = system error.

4.3.2. Inverse Solution Analysis Based on Cumulative Infiltration

In terms of cumulative infiltration, only random errors occurred; therefore, only two standard
deviations of random errors, 0.02 and 0.05, were analyzed for the inverse solutions. Table 7 shows
the results, which still suggest that small deviations existed between the estimated values with
measurement errors and true values.

Table 7. Estimated parameters considering random errors on cumulative infiltration for the four
typical soils.

Texture Class Error Category θr θs α n Ks

cm3 cm−3 cm3 cm−3 cm−1 - cm min−1

Sand
2.0%

0.0450
0.4314 0.1416 2.6903 0.4930

5.0% 0.4314 0.1475 2.6988 0.4987
True Parameter 0.0450 0.4300 0.1450 2.6800 0.4950

Loam
2.0%

0.0780
0.4285 0.0341 1.6466 0.0144

5.0% 0.4285 0.0365 1.7919 0.0124
True Parameter 0.0780 0.4300 0.0360 1.5600 0.0173

Silt
2.0%

0.0340
0.4623 0.0147 1.2996 0.0043

5.0% 0.4623 0.0160 1.3817 0.0039
True Parameter 0.0340 0.4600 0.0160 1.3700 0.0042

Clay
2.0%

0.0680
0.3812 0.0104 1.0862 0.0046

5.0% 0.3812 0.0074 1.0901 0.0027
True Parameter 0.0680 0.3800 0.0080 1.0900 0.0033

Note: 2.0% and 5.0% means the standard deviation of random error equals to 0.02 and 0.05, respectively.

Figure 10 depicts the SWRCs and SWCCs based on the inverse solutions within two standard
deviations of random error. Small differences exist between the estimated values with measurement
errors and the true values from these curves; their existence indicates that the inverse method
was reasonable and robust for the inversion of soil hydraulic parameters. Furthermore, Table 8
demonstrates the values of RMSE, PBIAS, and NS between the true values and the estimated values
with measurement errors. The small RMSE and PBIAS and large NS indicate the effectiveness and
robustness of the inverse modeling.
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Figure 10. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) with random
errors and system errors for various treatments with objective function ψ(Q) (random error (RE), 2.0%,
circle; random error, 5.0%, triangle; true value, line): (a) Sand; (b) Loam; (c) Silt; and (d) Clay.

Figure 10. Comparison of SWRCs (a1,b1,c1,d1) and conductivity curves (a2,b2,c2,d2) with random
errors and system errors for various treatments with objective function ψ(Q) (random error (RE), 2.0%,
circle; random error, 5.0%, triangle; true value, line): (a) Sand; (b) Loam; (c) Silt; and (d) Clay.
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Table 8. Soil water content errors from estimated SWRCs and SWCCs considering random errors on
cumulative infiltration for the four typical soils.

Texture Class Error Category

From h(θ) From K(θ)

RMSE PBIAS NS RMSE PBIAS NS

cm3cm−3 % - cm3cm−3 % -

Sand
2.0% 0.0024 0.9524 0.9997 0.0007 0.2774 0.9997
5.0% 0.0017 −0.4835 0.9999 0.0007 0.2774 0.9999

Loam
2.0% 0.0073 −2.6803 0.9970 0.0007 −0.2678 1.0000
5.0% 0.0205 −7.2361 0.9765 0.0007 −0.2678 1.0000

Silt
2.0% 0.0212 9.5425 0.9826 0.0011 0.4451 0.9999
5.0% 0.0023 −0.6324 0.9998 0.0011 0.4451 0.9999

Clay 2.0% 0.0022 0.9520 0.9995 0.0006 0.2432 1.0000
5.0% 0.0011 0.4907 0.9999 0.0006 0.2432 1.0000

Note: 2.0% and 5.0% means of standard deviation of random error equals to 0.02 and 0.05, respectively.

5. Conclusions

In this study, we analyzed the inversion of soil hydraulic parameters for four typical soils (sand,
loam, silt, and clay) under three initial water content levels (Se = 20%, 40%, and 60%). A new
inverse method called the “two-step method” was proposed. According to the two-step method,
the saturated water content, θs, was primarily searched through GA with θfinal. Subsequently, using the
multiobjective optimization method based on the hybrid VEGA algorithm, the soil characteristic
parameters α, n, and Ks could be accurately estimated by cumulative infiltration and infiltration rate
obtained by the SWMS-2D software for simulating water flow in two-dimensional variably unsaturated
porous media. The results indicated that the proposed method is highly effective. In particular,
compared with the traditional multitarget weighted sum optimization method, the hybrid VEGA–PSO
algorithm method can overcome the difficulties of weight determination and search for the global
optimal values efficiently and robustly.

Using the proposed method, accurate estimation of the hydraulic parameters remained difficult
because the objective function had multilocal minimum values near the tiny range of true values.
However, by comparing the SWRCs and SWCCs from the estimated and true values, we discovered
that the curves were nearly identical. The results indicated that the proposed method can accurately
estimate the SWRC and SWCC, although drawing a unique solution with the algorithm was difficult.
Furthermore, considering that measurement errors of the initial water content, final water content,
and cumulative infiltration inevitably exist in practical applications, comparison of the estimated
SWRCs and SWCCs under measurement errors with the true curves proved that little difference
existed. The results were acceptably accurate, which proved the proposed method to be robust and
practical in the field. However, the inhomogeneity of soil textures and soil water content distribution
require further investigation.
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20. Šimůnek, J.; van Genuchten, M.T. Estimating Unsaturated Soil Hydraulic Properties from Multiple Tension
Disc Infiltrometer Data. Soil Sci. 1997, 162, 383–398. [CrossRef]

21. Gribb, M.M. Parameter Estimation for Determining Hydraulic Properties of a Fine Sand from Transient Flow
Measurements. Water Resour. Res. 1996, 32, 1965–1974. [CrossRef]
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