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Abstract: Outdoor water use for irrigation constitutes a substantial urban water flux yet its impact
on the land surface remains poorly quantified. This study analyzes the impact of irrigation
on land surface temperatures and the hydrologic regime of a large, semi-arid urban metropolis.
Using remotely sensed products, municipal water use data, and simulations with a coupled land
surface-hydrologic model we find significant impacts on both land surface temperatures and the
hydrologic dynamics of the study domain, Los Angeles, CA. The analysis of remotely sensed land
surface temperature finds a decrease of up to 3.2 ± 0.02 K between low and high irrigation areas of
similar land cover. These temperature differences, caused by a human-induced flux, are on par with
estimates of the urban heat island effect and regional warming trends; simulations are able to capture
this difference but underestimate absolute values throughout. Assessment of change in irrigation
volume and timing through simulations show that irrigation timing has a small impact (<±2%) on
evapotranspiration and runoff. Furthermore, relatively low irrigation volumes push the semi-arid
urban environment into a sub-humid regime.
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1. Introduction

Outdoor water use, or urban irrigation, has often been overlooked in typical studies of the
urban hydrologic environment. In semi-arid regions, however, outdoor water use accounts for
a large percentage of potable domestic water use (at times eclipsing indoor water use) providing
a significant input to the urban water budgets of these areas [1,2]. Exacerbating the issue of water
sustainability, urbanization is most rapidly occurring in regions of the world that are less equipped to
handle the process [3,4], increasing the water resource stress in already water-stressed environments.
Many municipalities in these regions have implemented water sustainability plans and have stated
goals of reducing imported water volumes by increasing use of sustainable local sources of water
(often local groundwater), re-using wastewater, and reducing outdoor water use [4–6]. Since outdoor
water use can be a significant input of water to semi-arid urban hydrologic systems [2,7], any change
in the flux can be expected to have impacts on hydrologic and energy balances, yet quantification of
these effects is lacking.

Much of what can be found in the literature regarding irrigation’s effect on the land surface
originates from the climate and agricultural sciences communities and pertains to agricultural settings
at large regional scales. These studies [8–14] generally conclude that irrigation significantly alters
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the climate regime and may even be masking the effects of global warming in these regions due
to the “irrigation cooling effect”. This cooling effect is the shift in the Bowen ratio from sensible
to latent heating caused by increased soil moisture. The strong coupling of atmospheric processes
with soil moisture (and by extension irrigation) have been shown in a variety of natural domains
as well [15–18]. Recent studies [19–25] have also begun to examine irrigation’s effect on the urban
hydrologic environment by utilizing a variety of approaches and conclude that the effect of irrigation
is largely dependent on the prevailing regional climatic and hydrologic regimes (i.e., irrigation may
have a much larger influence on the recharge rates of arid and semi-arid cities).

Various other hydrologic fluxes in urban environments have been identified in the literature [22,26–30];
however, the scientific understanding of these processes varies. Urban-specific fluxes, such as leaking
infrastructure and outdoor water use, can increase recharge to groundwater systems in many semi-arid
cities [20,31–34] as well as impact the surface energy budget [35,36]. Assessing the long-term hydrologic
impacts of changing anthropogenic fluxes remains difficult using conventional methods. Recent use of
Budyko [37,38] space and water-energy partitioning plots [39,40] have assessed the relative impacts
of land cover (LC), climate, and human induced changes on the hydrologic regimes of watersheds
around the globe.

The hydrometeorologic and atmospheric sciences communities have also studied the impacts of
urban areas on regional climate, most prominently through the urban heat island (UHI) effect [41–48].
Vahmani and Ban-Weiss [49] show the effects of drought resistant vegetation and associated changes in
irrigation patterns on air temperature utilizing a mesoscale weather model over Los Angeles. Day-time
increases in temperature are simulated along with decreases in night-time temperatures. A study
across 89 cities in India described the existence of the urban cool island (UCI) in cities located in arid
and semi-arid environments [50]. These studies provide important insights into the processes altered
by urbanization and, when implemented into integrated models of the urban environment, improve
scientific understanding while guiding policies for more sustainable cities. However, they often fail
to analyze the heterogeneities within the urban domain at higher resolutions (<1 km) by focusing
on temperature differences between rural areas and cities as a whole [51–54]. This leaves a gap in
understanding of the effects of anthropogenic fluxes on otherwise similar land surfaces within the
city. Questions abound regarding the heterogeneity presented by cities (residential areas, urban parks,
industrial regions, downtowns, etc.) and the processes that cause and produce them.

The purpose of the current study is to understand some of the impacts of irrigating the
semi-arid urban land surface and assess the changes that may occur under various irrigation
scenarios. By analyzing domestic water use data, satellite remote sensing observations, and using
an integrated hydrologic and land surface modeling we find that, irrespective of LC, the effects of
outdoor water use are wide ranging causing changes to the hydrologic regime of the system. We seek
to answer the following questions in our work: (1) Are differences in land surface temperature
(LST) detectable between irrigated and non-irrigated areas of similar LC within a semi-arid urban
environment and how do these differences manifest? Can we accurately model these differences using
an integrated hydrologic and land surface model? And (2) What impact does irrigation have on the
hydrologic and energy fluxes of typical urban LC types when applied at various irrigation rates and
times of day? How do various scenarios of urban irrigation alter the hydrologic regime of urban
semi-arid environments?

2. Methods

LST and hydrologic changes due to urban outdoor water use are evaluated using remotely sensed
products, municipal data, and an integrated hydrologic and land surface model applied throughout
an 11-year study period. This provides insight into the significant urban irrigation flux in semi-arid
regions while advancing the implementation of physical hydrologic models in urban environments.
This section provides a description of the methods used in this study.
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2.1. Area of Interest

The area of interest, Ballona Creek watershed in Los Angeles, California, is a highly urbanized
domain covering approximately 231 km2 (89 mi2) above the USGS gauge [55]. The City of Los Angeles
resides in a semi-arid Mediterranean climate with a large percentage of total precipitation occurring in
the fall and winter months and a comparatively dry spring and summer. The northern stretches of
the watershed consist of the Santa Monica Mountains with the rest of the watershed encompassing
parts of Downtown Los Angeles and cities and neighborhoods to the west. The region reached
its current level of urbanization around the 1950’s exhibiting water use and management patterns
that include: large amounts of imported water (~85% of total water supply) [56]; high domestic,
municipal and commercial outdoor water use (~60% of their total water use) [56]; and a storm sewer
system and channelized surface water networks designed for efficient flood mitigation. These water
use and management patterns are characteristic, to varying degrees, of other urban semi-arid regions
in developed countries in the past 70 years or so.

2.2. Landsat Land Surface Temperature

Atmospherically corrected Landsat 5 TM and Landsat 7 ETM+ data (obtained from the LEDAPS
project) [57] from 1 January 2000 through 31 December 2010 are used for land surface temperature (LST)
estimation in this study. Utilizing the physical relationship between sensor brightness temperature (TB)
and the emissivity (ε) of a surface as given by Artis and Carnahan [58], LST is estimated as follows:

LST =
TB

1 +
(

λTB
α

)
ln ε

(1)

where λ is the mean of the wavelength of emitted radiance (11.45 µm for Band 6 of Landsat 5 and 7) and
α is a combination of the Planck, speed of light, and Boltzmann constants (α = hc/k = 1.44× 10−2).
At sensor brightness temperature of the surface in the thermal range is obtained from Band 6
of the instruments. To estimate emissivity, we use the Normalized Difference Vegetation Index
(NDVI, defined as [Band 4− Band 3]/[Band 4 + Band 3]) threshold method as developed by Sobrino
et al. [59] and modified for the urban domain by Stathopoulou et al. [60]. Pixels with an NDVI of less
than 0.2, NDVImin, are assumed to have full urban built coverage and are assigned an emissivity of
0.92. Fully vegetated pixels are assumed to be those that have an NDVI of 0.5 or greater, NDVImax,
and have an emissivity set to 0.99. Mixed pixels utilize the greenness vegetation fraction, also termed
the proportion of vegetation coverage, Pv, in a mixing model to calculate emissivity as follows:

ε =


εg = 0.92, NDVI < 0.2

0.026Pv + 0.964, 0.2 ≤ NDVI < 0.5
εv = 0.99, NDVI ≥ 0.5

(2)

Pv is calculated using the NDVI of the pixel as follows:

Pv =

[
NDVI − NDVImin

NDVImax − NDVImin

]2
=

[
NDVI − 0.2

0.5− 0.2

]2
(3)

Using this method, and masking out pixels with cloud and shadow cover, we obtain 364 useful
Landsat 5 and 7 scenes within the study period. These LST values are aggregated by LC and irrigation
rate for each month and year in the study period as described in Section 2.4 below.

2.3. Outdoor Water Use Data and LST Classification

To analyze the impacts of urban irrigation on LSTs of various urban LCs, we first need to
classify each of the pixels in each scene by LC type and water use rate. Both USGS National Land
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Cover Database (NLCD) 2001 [61] and 2006 [62] were used to classify pixels into the four urban LC
types throughout the time period; these are “Developed, Open Space”, “Developed, Low Intensity”,
“Developed, Medium Intensity” and “Developed, High Intensity”. Next, we use monthly water use
data obtained from the Los Angeles Department of Water and Power (LADWP) to classify high and
low outdoor water use areas. This data [2] is aggregated by census tract and contains monthly total
water use data for single-family homes in the LADWP service area from January 2000 through 2010.
Using the minimum use method [63] we estimate outdoor water use for each month. We then classify
the high water-users as those in the top 25th percentile and low outdoor water users as those in
the bottom 25th percentile of water-use for each month. This creates a total of 8 combined LC and
water use classes that change each month given the addition of low and high water-use areas of high,
medium, low intensity developed, and developed open space. This classification and methodology are
shown for a typical month in Figure 1.
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Figure 1. Study domain and land surface temperature classification methodology: (a) Estimated
outdoor water use data for a typical month (April 2005), (b) high and low water use areas overlying
the NLCD 2001 land cover (Developed, High Intensity; Developed; Medium Intensity; Developed;
Low Intensity; Developed; Open Space; “Natural” refers to all other land cover), (c) medium intensity
developed LST pixels from the 21 April 2005 Landsat overpass within high and low water use areas.

2.4. Land Cover, Irrigation and Model Used

The hydrologic and land surface model used for this work is PF.CLM [16,64–67] which consists of
ParFlow (PF) [68–71] coupled to a version of the Common Land Model (CLM) [72,73]. PF.CLM models
variably saturated groundwater and overland flow using the three-dimensional Richards’ equation [74]
with surface water equations integrated into Richards’ equation through the use of an overland
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flow boundary condition and the assumption of pressure continuity between the surface-subsurface
systems as described by Kollet and Maxwell [70]. For detailed discussion of the coupling philosophy
and governing equations in PF.CLM please refer to the aforementioned papers. Irrigation in the
model is represented as “spray irrigation”, a suitable proxy to the typical methods seen in domestic
applications. The application of water above the vegetation canopy allows the model to account for
canopy interception, throughfall, runoff, and infiltration as irrigation occurs [75–77].

The top model layer is represented as one of four LC types established to represent the
heterogeneity in the urban environment. These are the USGS NLCD 2001 [61] and 2006 [62] urban LC
types: “Developed, Open Space”, “Developed, Low Intensity”, “Developed, Medium Intensity” and
“Developed, High Intensity”. These four urban LC types correspond with ranges of imperviousness
used to produce effective soil parameters for the model. The land surface component of our model
adapts the typical soil-vegetation-atmosphere transfer (SVAT) scheme for urban surfaces as described
by Masson [43]. Land surface parameterization for urban soils and LC types have been produced in
previous work [78] and are used in this study.

A single column domain is used to conduct an analysis on the sensitivity of land surface and
hydrologic fluxes. This consists of a single homogenous 30 m× 30 m grid box with 15 subsurface layers
of variable thickness reaching a depth of 84 m below the surface. The bottom 14 layers are modeled as
sandy loam with the top layer corresponding to one of the 4 NLCD urban LC types described above.
The water table is initialized at 34 m below the surface (at layer 13) and the hydrology of the system
is spun-up for each irrigation rate and LC until the change in storage is less than 1% (~15 years) per
Ajami et al. [79]. Using this steady-state pressure field we spin-up the land surface model using the
first 2 years of the forcing data (plus irrigation), then run the simulations again using the full 11 years
of forcing data for analysis. The irrigation rates are calculated using the average precipitation rate
for the 11-year period from 2000 through 2010 (397 mm year−1). Thirteen irrigation rates are tested
(Table 1) ranging from no outdoor water use up to 1192 mm year−1, or 300% of average precipitation.
To test the sensitivity of irrigation timing in the model, simulations with irrigation applied at varying
times of the day (12 am, 6 am, 12 pm, and 6 pm local times) for one hour every other day are completed.
In total, this study completed 196 simulations.

Table 1. Total yearly irrigation and irrigation plus precipitation rates for all simulations. Irrigation is
applied for 1 hour every other day at the specified hour of the simulation (00, 06, 12, or 18 local time).

Scenario Base 5% 10% 25% 50% 75% 100% 125% 150% 175% 200% 250% 300%

Irrigation Rate (mm yr−1) 0 20 40 99 199 298 397 496 596 695 794 993 1192
Precipitation + Irrigation (mm yr−1) 397 417 437 496 596 695 794 893 993 1092 1191 1390 1588

2.5. Model Forcings

North American Land Data Assimilation System (NLDAS) [80] hourly meteorological forcings
were obtained for the period from 1 January 2000 through 31 December 2010 for the “Downtown Los
Angeles” pixel at UTM 11N 378833.47 3769919.25. We replaced NLDAS precipitation with observations
from a network of 43 Los Angeles Department of Public Works (LADPW), 18 National Climatic Data
Center (NCDC), and 6 California Irrigation Management Information System (CIMIS) precipitation
gauges in Los Angeles County. A simple inverse distance weighting (IDW) method (with an alpha
set at 3) [81] was used to spatially interpolate the precipitation data to the center point of our NLDAS
forcing pixel. In aggregate, these hourly forcings include: precipitation rate [mm s−1], air temperature
[K]; atmospheric pressure [Pa], water-vapor specific humidity [−], U− and V−components of wind
[m s−1], and short-wave and long-wave radiation [W m−2] all estimated at standard heights (i.e., 2 m
above the land surface). A digital elevation model was obtained from the USGS’s National Elevation
Dataset [82] at a 30 m spatial resolution and was used to calculate the average slope of the watershed
(~0.02) for the simulations.
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3. Results

3.1. Irrigation Impact on LST

In order to assess the impact of the irrigation flux on various urban LC, we classify the remotely
sensed LST values based on the 4 urban NLCD LC types (developed open space, low intensity
developed, medium intensity developed, and high intensity developed), estimations of high and low
outdoor water use rates in the Ballona Creek domain, and month of the year (Figure 1). The City of Los
Angeles began to place restrictions on the amount of domestic water use allowed in the city beginning
in 2008. Although this restriction in water use does not significantly appear in our aggregated water
use data, we decided to limit the scope of the analysis to the pre-water restriction years (2000 through
2007). Water restriction rules are often inconsistently implemented and enforced throughout the
city, therefore including these post-water restriction years in the analysis might introduce a bias in
the results.

Figure 2 displays comparisons of the Landsat-derived [57] remotely sensed LST values, aggregated
for pre-water restriction year months (from January 2000 through December 2007). Each box-plot
constitutes an average of 2–3 Landsat scenes for each month with ~20,000–150,000+ individual 30 m
pixels (data points) per class. This data was tested for normality using the Kolmogorov–Smirnov test
and for equal variance using Bartlett’s test. We find that nearly all months and all urban LC types
exhibit a statistically significant decrease in LST from low to high water use areas even through the
spatial and temporal variability exhibited by the LST values.

Applying an unpaired Student’s t-test to each month of data yields a statistically significant
(p < 0.01) decrease in LST from low irrigated areas to highly irrigated areas, generally irrespective
of LC and month of the year (see Figure 2 and monthly differences shown above each box plot).
This decrease in LST ranges from 0.3 K in February for high intensity developed areas to 3.2 K in May
for medium intensity areas. Decreases in LST are most prominent during spring (May/April/May)
and summer (June/July/August) months likely due to the decrease in precipitation as compared to
the fall and winter months in the Los Angeles area. Average decreases for developed open space,
low, medium, and high intensity developed during these months are 2.1 K, 2.4 K, 2.9 K, and 1.2 K
respectively. Medium intensity LC shows the largest decrease, perhaps due to the wide range of land
uses within this LC type. These decreases in LST are large and are in similar ranges to increases in
air temperature caused by the UHI [41–43,47,48,52–54], similar decreases between rural-urban areas
caused by the UCI [50], and projected increases caused by climate change [83].

In an attempt to separate the potential climate effects from the anthropogenic signal, we look
at LST values from a dry year (water year 2002 with 135 mm total precipitation) and a wet year
(water year 2005 with 966 mm total precipitation) in the study area. We compare LST values for each
month in the water year (Figure 3) for low intensity developed LC and show the mean differences
for all urban LC types (Table 2). Again, there is a general decrease in mean LST for all LCs and
months, however the larger decreases in LST during the dry year, during seasons when irrigation is
greater, and when precipitation decreases points to the irrigation flux as the likely cause of the decrease.
For instance, the average decrease in mean LST for the spring and summer months for developed
open space is 1.1 K during the wet year but increases to 2.4 K during the dry year. Spring and summer
month mean LST decreases for low, medium, and high intensity developed LCs for these two years
are 1.4/2.7 K (wet/dry), 2.4/3.4 K (wet/dry), and 1.0/1.5 K (wet/dry) respectively. These values both
show how the anthropogenic signal varies in each LC type and help establish upper and lower limits
on the impact of outdoor water use on LSTs.
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Figure 2. Box plots of monthly LST pixels aggregated across years for (a) Developed, Open Space,
(b) Developed, Low Intensity, (c) Developed, Medium Intensity, and (d) Developed, High Intensity
land cover. The box represents the middle 50% of data, line and circle within the box are the median
and mean respectively, the whiskers encompass 96% of the data, and the points are outliers. Mean
difference between urban land cover in low (dark color) and high (light color) water use areas for
pre-water use restriction years (1/2000 through 12/2007) is shown above the box plot for each month.
All mean differences are significant (p < 0.01) except for those with an asterisk (*).

Our study period also includes periods of varying outdoor water use restrictions throughout the
domain in years 2008, 2009, and 2010 [84]. However, consistent changes between mean LST difference
of pre- and post-water restriction years were not detected in the data. We hypothesize this may be due
to varying degree of success in implementation of water use restriction throughout these years and
possible lag in LST response to outdoor water use change.
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Figure 3. Box plots for low and high water-use areas of low intensity LC. Similar to Figure 2 for a (top)
dry year and (bottom) wet year. During the spring and summer months of the dry year, irrigations
impact on the LST is greater than during the wet year; all mean differences are significant (p < 0.01)
except for “*”. See Table 2 for mean differences for all land cover types.

Table 2. Mean differences between high and low irrigation rates for dry (WY20002) and wet (WY2005)
years for each month and land cover type.

Land Cover Open Space Low Intensity Med. Intensity High Intensity

Month Dry Wet Dry Wet Dry Wet Dry Wet

October −3.9 −1.9 −2.1 −1.9 −2.7 −2.5 −0.6 −1.2
November −0.6 −0.9 −0.4 −0.8 −0.7 −1.5 * −0.9
December −1.3 −1.1 −1.0 −1.0 −1.4 −1.3 * −0.8

January −2.3 * −1.0 * −1.1 * * *
February −1.3 * −1.3 * −1.6 −1.2 −0.6 −0.3

March −1.4 * −1.6 * −2.5 −1.9 −1.4 −1.4
April −2.4 −0.7 −2.5 −0.9 −3.4 −1.4 −1.2 *
May −2.8 −0.8 −3.0 −1.3 −3.8 −2.4 −1.7 −0.6
June −2.6 −1.7 −2.8 −2.4 −3.5 −3.7 −1.2 −2.0
July −2.6 −1.2 −3.2 −1.9 −3.7 −2.2 −1.9 −1.0

August −2.6 −1.7 −3.0 −2.3 −3.4 −2.6 −1.6 −1.4
September −2.5 −1.3 −3.0 −2.1 −3.2 −2.4 −1.3 −1.2

* Mean difference not statistically significant (p > 0.01).

3.2. Simulated LST Change

An integrated hydrologic and land surface model is used to simulate the effects of 13 irrigation
volumes (Table 1) and 4 irrigation times of the day on the fluxes produced by the four urban LC types
during our study period. Hourly LST results for each of the urban LCs from these simulations are
compared to the values estimated for each of the 364 scenes in our study period (Figure 4). Our model
generally underestimates LST by −6.5 K in developed open space up to −11.1 K for high intensity
developed which has also been shown to be the case in other studies utilizing similar models. There are
three possible sources for this bias: (1) errors in remote sensing retrieval and subsequent calculation
of LST; (2) uncertainty in emissivity estimation and mixing model methodology (see Section 2.2;
and (3) challenges in urban land surface parameterization in land surface models. Eliminating this
linear bias in our modeling results improves agreement between simulations and observations to an
R2 range of 0.43–0.70.



Water 2018, 10, 1563 9 of 16
Water 2018, 10, x FOR PEER REVIEW  9 of 17 

 

 

Figure 4. Comparison of simulated and observed Landsat LST for all overpass times. Horizontal bars 

represent the standard deviation of values observed for that scene; vertical bars represent the full 

range of model results from all simulations. 1:1 and mean bias lines shown as dark and light grey 

dashed lines, respectively. 

More important to this work is the relative change in LST between the low irrigation and high 

irrigation simulations. To evaluate, we compare the mean LST differences between high and low 

water use areas (similar to Figures 2 and 3) to the modeled mean differences between the best-fit 

irrigation volume scenarios, all aggregated by month and LC (Figure 5). The best-fit irrigation 

scenarios are found by calculating the monthly mean LST difference between each combination of 

low to higher irrigation rate. This, effectively, provides an indirect estimation of the irrigation rates 

of low and high irrigated areas for our study period and domain, which are found to be low→high 

scenarios (Table 1) +5%→+50%, Base→+300%, +25%→+300%, and +25%→+300% for high, medium, 

low intensity developed and developed open space, respectively. However, due to the simulated 

constant irrigation rate throughout the year, the LST change during the spring months are 

consistently underestimated. Removing these underestimated spring months (March, April, May) 

alone increases the agreement between modeled and observed mean LST difference (R2 values 

increase from a range of 0.23–0.64 to 0.70–0.85). Our model is also able to capture the relative impact 

of irrigation on the LST of different LCs. The LCs most impacted by the irrigation flux are the medium 

and low intensity developed LC, while smaller LST changes occur in developed open space and high 

intensity developed LC. Since our model is capturing relative change in LST caused by irrigation, we 

continue with an analysis of the impacts on hydrologic fluxes in the following section. 

280 290 300 310 320
280

290

300

310

320

280 290 300 310 320

275 285 295 305 315
275

285

295

305

315

275 285 295 305 315275 285 295 305 315
275

285

295

305

315

275 285 295 305 315

Mean and Standard Deviation of Observed LST (K) 

M
e

a
n

 a
n

d
 R

a
n

g
e

 o
f 

S
im

u
la

te
d

 L
S

T
 (

K
) 

Figure 4. Comparison of simulated and observed Landsat LST for all overpass times. Horizontal bars
represent the standard deviation of values observed for that scene; vertical bars represent the full range
of model results from all simulations. 1:1 and mean bias lines shown as dark and light grey dashed
lines, respectively.

More important to this work is the relative change in LST between the low irrigation and high
irrigation simulations. To evaluate, we compare the mean LST differences between high and low
water use areas (similar to Figures 2 and 3) to the modeled mean differences between the best-fit
irrigation volume scenarios, all aggregated by month and LC (Figure 5). The best-fit irrigation
scenarios are found by calculating the monthly mean LST difference between each combination of
low to higher irrigation rate. This, effectively, provides an indirect estimation of the irrigation rates
of low and high irrigated areas for our study period and domain, which are found to be low→high
scenarios (Table 1) +5%→+50%, Base→+300%, +25%→+300%, and +25%→+300% for high, medium,
low intensity developed and developed open space, respectively. However, due to the simulated
constant irrigation rate throughout the year, the LST change during the spring months are consistently
underestimated. Removing these underestimated spring months (March, April, May) alone increases
the agreement between modeled and observed mean LST difference (R2 values increase from a range
of 0.23–0.64 to 0.70–0.85). Our model is also able to capture the relative impact of irrigation on the
LST of different LCs. The LCs most impacted by the irrigation flux are the medium and low intensity
developed LC, while smaller LST changes occur in developed open space and high intensity developed
LC. Since our model is capturing relative change in LST caused by irrigation, we continue with an
analysis of the impacts on hydrologic fluxes in the following section.
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along the 1:1 line are shown with and without spring months (3, 4, 5) included in the calculation.

3.3. Sensitivities of Hydrologic Fluxes and Regime Change

Utilizing our model simulations, we identify the impacts of the various irrigation volumes and
timings on the mean total runoff and ET produced by the urban LC (Figure 6). Developed high
intensity LC is not analyzed due to the observed findings of very low irrigation rates for this LC
type (+5%→+50%, low→high irrigation rates). At lower volumes, most of the irrigation volume is
partitioned into ET while runoff remains relatively stable until an inflection point is reached at the +75%
irrigation rate for medium and low intensity developed, and the +125% irrigation rate for developed
open space. At these points, runoff begins to increase as ET plateaus consistent with the different
energy limitations of each LC. The effect of irrigation timing is found to be insignificant as compared
to irrigation volume with a maximum change of ±2% of mean runoff and ET. We note that irrigation is
added to the simulations without assessing any potential associated impacts on air temperature or
humidity (which are inputs to the model).

Budyko and water-energy partitioning plots are used to assess the general impact of the irrigation
flux on the hydrologic regime–defined here as the general pattern of runoff, ET, and infiltration in a
given domain. We calculate the evaporative index (ET/P), aridity index (PET/P), and evaporative
efficiency (ET/PET) for our domain for the full 11-year simulation and modify the precipitation value
by adding the total irrigation volume to the calculation for each (P + Irr.); this allows us to assess
the impact of irrigation within the traditional spaces of the Budyko and water-energy partitioning
frameworks. The aridity index of the irrigation scenarios crosses the semi-arid/sub-humid regime
threshold (Figure 7a) with irrigation rates of only ~+75% of precipitation for these LCs, yet higher
irrigation volumes are common across Los Angeles. As irrigation increases, the change in climatic
regime has large implications for increased runoff and potential recharge rates within the domain.
The changes occurring at lower irrigation volumes cause shifts along slopes of similar aridity in the
water-energy partitioning space (Figure 7b) pointing to changes in the inherent behavior of the LC
caused by the change in land use [39], attributable to increases in vegetation. At higher irrigation rates,
evaporative efficiency remains fairly constant (Figure 7b) as the energy limit is reached. The additional
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water in the system is increasingly partitioned into runoff and potential recharge rather than to ET and
vegetation growth indicating the irrigation rates at which inefficiencies occur in outdoor water use in
Los Angeles for these LC types.Water 2018, 10, x FOR PEER REVIEW  11 of 17 
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Figure 6. Study-period mean simulated evapotranspiration and runoff. All simulated irrigation timings
and volumes for the study period are shown. The shading represents the range of timing, which is
small throughout with the largest range seen for the open space LC at +300% simulation.
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index vs. evaporative index and (b) evaporative efficiency vs. evaporative index for each irrigation
volume (mean of all irrigation timings). Irrigation volume is represented by size of symbol and the
“mean” high water use area volumes (middle 50% of high irrigation rates for domain and time period)
are shown in (a). Black lines in (a) are the theoretical water and energy limits and the dotted blue lines
are transition points in aridity [85,86].

4. Discussion and Conclusions

By leveraging the strengths of remote sensing, integrated hydrologic and land surface modeling,
and analysis of municipal water use data, this study captures the important relationships between
outdoor water use, LST, and hydrologic regimes. Specifically, we first conducted an analysis using
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Landsat-based observations of LST and a unique municipal water use dataset to understand impacts of
outdoor water use on LST. Next, a coupled integrated hydrologic and land surface model was utilized
to complete a sensitivity study of irrigation on land surface and hydrologic fluxes. This allowed for a
comparison of modeling output and remote sensing data as well as an analysis of how the hydrologic
regime changes due to outdoor water use. We find that:

1. LST decreases with higher outdoor water use within similar LC type throughout our study period
and at all times of the year. A larger impact on LST is seen in the spring and summer months,
hypothesized to be a result of both larger irrigation volumes and increased prevailing LST during
these months. Furthermore, by analyzing the LST difference during a wet year and a dry year we
conclude that the cooling effect is largely caused by the irrigation flux, rather than any changes in
regional meteorology.

2. We are able to capture the relative change in LST caused by irrigation given that our simulations
implement a constant irrigation pattern as opposed to higher irrigation rates in the spring and
summer months. Furthermore, we capture the observed relative behavior of each urban LC type
indicating fairly realistic representation of the urban land surface using our parameterization.
However, these models consistently underestimate LST as compared to values of remotely sensed
LST throughout the study period and for each LC type, with more developed LCs causing larger
biases. This points to possible systematic errors in both model parameterization and in the
method used to estimate LST from the remote sensing observations.

3. The urban irrigation flux causes significant changes to the hydrologic regime of the urban
semi-arid environment. The timing of irrigation only has a small impact on hydrologic fluxes for
urban LC; the largest impact (±2%) occurs at high irrigation volumes for developed open space.
At low volumes (less than ~75% of mean precipitation), the irrigation flux is partitioned into ET
and into vegetation growth with runoff held relatively constant. At higher volumes, closer to
estimated values in Los Angeles for the study period, the flux moves the system into a sub-humid
regime with implications for increased runoff and infiltration. The model results presented here
show some deficiencies in recreation of land surface temperatures by the land surface model
used. However, adding the irrigation flux is shown to have a clear advantage in simulating the
difference in LST between high and low water use areas of otherwise similar land cover.

The interconnected nature of the terrestrial hydrologic and energy cycles is well documented in
the literature, yet many urban water sustainability plans fail to consider these realities. We hope that
further quantification of the ways in which changes in water use, for instance, impact local groundwater,
runoff, temperatures, and other environmentally important metrics will help in creating holistic plans
for policy makers to manage their cities in a sustainable manner. For Ballona Creek watershed, and Los
Angeles in general, long-term water use plans should be implemented with an understanding of
these interactions with groundwater levels, possible changes in pollution concentration in runoff,
and temperature increases shown in this study. This work provides further impetus for the inclusion
of urban heterogeneity and the irrigation flux in hydrologic studies, especially studies in urban
semi-arid regions. These insights into the effects of irrigation in semi-arid urban settings are significant,
yet further work is needed at the watershed scale to evaluate the impacts of local water conservation
plans, the significance of irrigation fluxes on local water resources, and changes to the microclimate.
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