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S1 Density of precipitation station 

Daily precipitation of 13 meteorological stations from the national weather station 
network, which is sparse and distributed unevenly, are selected for this study. The 
contributions of each station to the basin rainfall can be measured by the density map of 
precipitation stations over the region. The Kernel Density (“KD”) function is adopted to create 
a smooth surface evaluating the density of precipitation stations. The KD function calculates 
the density of features in a neighbourhood around those features and expresses the result as 
magnitude per unit area [1]. The density map of precipitation stations is generated using the 
kernel density estimation provided by ArcGIS Spatial Analyst [2]. The search radius 
(bandwidth) is set to 100 km and the population field is set to none. The output cell size (grid 
resolution) is set to 1000 m. The low density (particularly in the south) results in local ‘hot spots’ 
in the density map. The mean density of precipitation station (units: gauges per 104 km2) is 0.91. 

 

Figure S1. Density map of precipitation stations over the region (units: gauges per km2). 

S2 Cross-validation statistics 

The cross-validation statistics were applied to evaluate the overall predictive error of the 
fitted spline surface in this study. The ANUSPLIN enabled a robust detection of error using 
cross validation statistics that were applied to evaluate the overall predictive error of the fitted 
spline surface in this study. In each interpolation, the ANUSPLIN performs cross-validation by 
implicitly holding out each station in turn and calculating the individual difference between 
the observed and the fitted surface values at that station’s location [3]. 

The mean absolute error (MAE), root mean square error (RMSE) and relative error (the 
RMSE divided by the daily observed precipitation at the cross-validation station) of these 
individual unweighted differences can be used to evaluate the overall predictive error of the 
fitted spline surface.The MAE, RMSE and relative error as well as error bars for RMSE and 
relative error for these individual unweighted residuals are shown below (Table S1). 
  



Table S1. Mean absolute error (MAE), root mean square error (RMSE) and relative error of 
cross-validation for daily interpolated precipitation grids. 

 Annual Spring Summer Autumn Winter 
MAE(unit: mm) 4.18  4.52  6.79  2.76  1.54  
RMSE(unit: mm) 6.35  6.67  10.54  4.31  2.18  

Relative Error 13.85%  9.47%  26.99%  10.96%  4.59%  

The error statistics showed that annual average of MAE and RMSE were 4.18mm and 
6.35mm for daily precipitation. The MAE and RMSE of the summer were higher than those of 
other seasons. The annual average error of the relative error was within 13.85% for daily 
precipitation. The study proved that the distributed precipitation surface grid interpolated by 
ANUSPLIN can provide a reliable precipitation grid for the input of hydrologic model. 

S3 Calibrated using NSElog as an objective function 

There is an underestimations of flood peak in simulation, especially for daily streamflow. 
The reason for this phenomenon is probably these models are calibrated using the Nash-
Sutcliffe Efficiency on logarithmic-transformed streamflows (NSElog) that puts more weight on 
low flows as the objective function. The model calibrated using Nash-Sutcliffe Efficiency on 
non-transformed streamflows (NSE) that gives more weight to high flows. See this Supplement 
for the model performance calibrated using NSE as an objective function. 

Setting one year as the warm-up period, selecting 2012–2016 as the calibration period, and 
NSE as the objective function, the Shuffled Complex Evolution algorithm is used to calibrate 
the parameter values of hydrologic models. Using the calibrated parameters, the overall 
performance (NSE) of observed value and simulated value for precipitation datasets and 
models for the period 2008–2016 are as follows (TableS2). 

Table S2. Overall performance (daily NSElog (monthly NSE)) of precipitation datasets for 
models using NSElog as the objective function for calibration. 

 IHACRES Sacramento 
Gauge-interpolated 0.77(0.74) 0.72(0.75) 

TRMM 0.77(0.79) 0.76(0.81) 
CMADS 0.82(0.86) 0.84(0.87) 

Selecting 2012–2016 as the calibration period and 2008–2012 as the validation period, the 
daily and monthly model performance of the IHACRES model and Sacramento model for 
different precipitation products are shown in Table S3 and Table S4. 

Table S3. Model performance of IHACRES model (calibrated using NSElog) for the calibration 
period and validation periods. 

 Datasets rel.bias NSE NSEsq NSElog Monthly NSE 
Calibration period Gauge-interpolated −0.18 0.48 0.67 0.75 0.75  
Validation period Gauge-interpolated −0.24 0.48 0.71 0.78 0.73  
Calibration period TRMM −0.18 0.52 0.69 0.74 0.79  
Validation period TRMM −0.16 0.45 0.70 0.78 0.78  
Calibration period CMADS −0.12 0.65 0.80 0.84 0.91  
Validation period CMADS −0.26 0.56 0.76 0.80 0.81  

  



Table S4. Model performance of Sacramento model (calibrated using NSElog) for the calibration 
period and validation periods. 

 Datasets rel.bias NSE NSEsq NSElog Monthly NSE 
Calibration period Gauge-interpolated −0.12 0.45 0.63 0.68 0.75 
Validation period Gauge-interpolated −0.14 0.46 0.69 0.75 0.75 
Calibration period TRMM −0.14 0.59 0.72 0.73 0.80 
Validation period TRMM −0.07 0.51 0.73 0.77 0.82 
Calibration period CMADS −0.11 0.70 0.81 0.83 0.90 
Validation period CMADS −0.16 0.61 0.81 0.85 0.84 

When the models calibrated using NSElog as the objective function, similar conclusion can 
be reached with the models calibrated using NSE as the objective function. The CMADS 
precipitation datasets performs best in all the three precipitation datasets, followed by TRMM 
precipitation, and then gauge-interpolated precipitation.  

  



Daily NSElog = 0.77 Monthly NSE = 0.74 

Daily NSElog = 0.77 Monthly NSE = 0.79 

Daily NSElog = 0.82 Monthly NSE = 0.86 

Figure S2. Observed and IHACRES-model-simulated daily and monthly runoffs for (a) Gauge-
interpolated, (b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the IHACRES model 
calibrated using NSElog as the objective function). 

(a) Gauge-interpolated 

(b)TMPA-3B42V7 

(c)CMDAS V1.0 



Daily NSElog = 0.72 Monthly NSE = 0.75 

Daily NSElog = 0.76 Monthly NSE = 0.81 

Daily NSElog = 0.84 Monthly NSE = 0.87 

Figure S3. Observed and Sacramento-model-simulated daily and monthly runoffs for (a) 
Gauge-interpolated, (b) TMPA-3B42V7 and (c) CMDAS rainfall datasets (for the Sacramento 
model calibrated using NSElog as the objective function). 

Figure S2 and Figure S3 shows the IHACRES-model-simulated runoff and Sacramento-
model-simulated runoff using the gauge-interpolated product, the TMPA-3B42V7 product and 
CMDAS product. The discharge modelling using the CMDAS precipitation datasets has a 
better performance in capturing the flow peaks during the simulation period. 

Comparing the model performance of using NSElog and NSE as the objective function for 
calibration, the model calibrated using NSE performed better in simulating peak flows while 
underestimate the low flow. While the model calibrated using NSElog performed well in 
simulating low flow while underestimate the flood peak in simulation. 

(a) Gauge-interpolated 

(b)TMPA-3B42V7 

(c)CMDAS V1.0 
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