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Abstract: Water inrush hazards can be effectively reduced by a reasonable and accurate
soft-measuring method on the water inrush quantity from the mine floor. This is quite important
for safe mining. However, there is a highly nonlinear relationship between the water outburst from
coal seam floors and geological structure, hydrogeology, aquifer, water pressure, water-resisting
strata, mining damage, fault and other factors. Therefore, it is difficult to establish a suitable
model by traditional methods to forecast the water inrush quantity from the mine floor. Modeling
methods developed in other fields can provide adequate models for rock behavior on water inrush.
In this study, a new forecast system, which is based on a hybrid genetic algorithm (GA) with the
support vector machine (SVM) algorithm, a model structure and the related parameters are proposed
simultaneously on water inrush prediction. With the advantages of powerful global optimization
functions, implicit parallelism and high stability of the GA, the penalty coefficient, insensitivity
coefficient and kernel function parameter of the SVM model are determined as approximately
optimal automatically in the spatial dimension. All of these characteristics greatly improve the
accuracy and usable range of the SVM model. Testing results show that GA has a useful ability in
finding optimal parameters of a SVM model. The performance of the GA optimized SVM (GA-SVM)
is superior to the SVM model. The GA-SVM enables the prediction of water inrush and provides a
promising solution to the predictive problem for relevant industries.

Keywords: hazard prediction; water inrush; mine floor; GA-SVM

1. Introduction

Water seepage causes constant difficulties in underground mining and creates a range of unstable
operation problems. Handling, pumping, treatment and the disposal of mine water are serious
problems in the observed situation [1]. The inundation in mining disasters is a sudden, violent and
veritable irruption. Sudden water inrush results in hundreds of fatalities in various countries in the
world [2]. In recent years, safe mining production of coal is improved with the development of science
and technology. In developed countries, such as the United States, only a very few of water inrush
accidents occurred with the application of the dewatering technique in mining [3]. However, more
than 90% of the water inrush accidents in China occurred due to the water inflow from karst aquifers
through coal seam floors [4]. According to incomplete statistics, from 2002 to 2012, there were 1110
inrush accidents involving various kinds of mines in China, and 4444 were dead and missing. Among
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them, the number of water damage accidents in individual coal mines in towns and villages accounted
for 80% or more in terms of frequency and deaths [5].

Classifying the mine water inrush is necessary for understanding hidden causes of sudden inflows
so as to provide remedial measures. A critical review of various inundations has been divided into three
categories, namely: (i) event controlled inundation, (ii) accidental inundation and (iii) spontaneous
inundation [3,4]. The first and second types are mining-induced inundation, while the third is a natural
phenomenon. The event-controlled inundation is associated with caved mine workings below either a
confined aquifer or surface bodies of water where the inflow is followed by main and periodic roof
falls in the roof strata [3]. The inflow rate of the water increases suddenly from the background level to
a peak rate within a short time and is then reduced exponentially to the background level over a period
of time [6]. Spontaneous inrush is a natural phenomenon associated with mining in the vicinity of karst
aquifers. Accidental inundation, which poses a threat to life and construction, is a major issue in the
mining industry due to working surface in the vicinity of large water bodies. A lake or ocean, a large
pool of water in an upper seam or water flooding the adjacent ancient workings, if suddenly released
to the lower active workings, could easily flood the current working faces with possible fatalities [6].

Coal floor water inrush is one of the main water hazards, posing a serious threat to coal mine safety
production [7]. When mining is conducted on the coal seam above the confined aquifer, coal floor rock
deformation occurs, as well as failure by the joint action of the mining pressure and confined aquifer.
This forms a water inrush pathway from stability to instability for rock strata [8]. As a result, the
sudden water pressure discharge from the floor under confined aquifer along the pathway [9]. Effective
and timely water inrush prediction is an important way to curb the occurrence of multiple accidents
in coal mines [10]. Therefore, an effective water inrush prediction method has been investigated by
mine hydrogeologists.

Coal floor water inrush occurs in a complex geoscientific system, which consists of a coal
seam, floor confining bed and karst aquifer. This is an open system that continuously exchanges
material, energy and information with the external environment. There is a strong nonlinear dynamic
relationship between the influencing factors and the water inrush quantity [11]. Therefore, the
prediction method of coal mine water inrush requires an adaptive, self-learning and dynamic nonlinear
processing method [12,13].

Prediction of water inrush from the coal floor is a kind of prediction technique. As for the
development of forecasting approaches, the most commonly used in early times are mainly statistical
methods, such as trend analysis and extrapolation [14]. This method is quite simple to use, because
the calculations are not complex. The impact degree can be more objectively reflected by the
multi-information composite prediction than single information. It is widely used in mid-term
and long-term prediction of sub-regions. GIS-based prediction model of coal floor water inrush
is most commonly used [15,16]. Fuzzy system theory is based on fuzzy sets. Fuzzy inference
is conducted through fuzzy rules, which are defined in fuzzy sets [17]. Theoretically, it can
approximate any non-linear mapping. This is a theoretical basis for fuzzy technique to solve
nonlinear and complex problems [18]. A neural network is an artificial network modeled on the
human brain’s nervous system [19]. It can achieve impressive feats, and much more effectively
compared to traditional computers in terms of pattern recognition, combinatorial optimization and
decision-making [20,21]. However, a neural network itself is based on a heuristic method, which
cannot control the generalization ability of the network well after training. There are still over-learning
problems. Sometimes, it is difficult to obtain the optimal solution. In summary, the theory and method
of a nonlinear system applied to the prediction of water inrush from coal seam floor has been a hot
topic in recent years [22,23]. The application of emerging model algorithms, such as dissipation,
cooperation, mutation, chaos and fractals to water inrush prediction in coal mines, has become a new
breakthrough in this field [24].

In terms of coal seam floor water inrush prediction, a truly practical and effective prediction
method has not yet been fully realized; there are many theoretical and practical problems that need
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to be further studied in comprehensive aspects; additionally, the existing water inrush prediction
methods need to be further improved in terms of convenient use. Therefore, the prediction method
of water inrush from the coal seam floor still needs to be continuously explored. The support
vector machine (SVM) has become a research hotspot in the machine learning community, due to
its excellent learning performance [25,26]. To automatically determine the optimal or approximate
optimal parameters in the parameter space, a genetic algorithm (GA) is employed, as it has a powerful
global optimization function [27], including implicit parallelism, high stability of the algorithm, penalty
coefficient, insensitivity coefficient and a kernel function parameter for the SVM model. All of these
characteristics greatly improve the accuracy and use of the SVM model.

Driven by importance of prediction of water inrush hazards, this study first analyzes influencing
factors and provides corresponding data of water inrush cases in Section 2. Section 3 describes a
used method of GA to estimate the SVM model and Section 4 presents the detailed calculation results.
Finally, the implication of these findings is concluded in Section 5.

2. Influencing Factors and Data Collection Cases of Water Inrush from Coal Floor

2.1. Analysis of Influencing Factors

The water inrush from the coal seam floor is affected by various factors, such as geological
structure, hydrogeology and mining conditions [28]. As shown in Figure 1, the existence of the
confined aquifer under the coal seam is the material basis of water inrush, the hydraulic pressure
and the mine pressure is the force source, and the water-resisting strata is the inhibiting condition.
Its suppression ability depends on the thickness, strength and combination of the water-resisting
strata [29]. When the hydraulic pressure, mine pressure and the stability of the water-resisting strata
are in a relatively balanced state, the fault has the controlling effect. According to the in-situ observation
of the field, combined with the comprehensive analysis of relevant data, it was concluded that there
are five main factors affecting water inrush from floor [9,30,31].
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Figure 1. Influencing factors of water inrush from coal floor.

1. Aquifer. The aquifer’s water-richness is the material basis for the size of water inrush.
It determines the scale of the water hazard and the degree of threat to the mine [31]. Therefore,
the aquifer is one of the important factors for water inrush from the coal floor. Water-richness
is related to the development of karst fissures, runoff conditions, structural development and
burial depth.

2. Hydraulic pressure. The hydraulic pressure in the aquifer is the driving force for the water out of
the working face. It is the hydrostatic pressure before the effluent. The hydrostatic pressure has
an expanding effect on the aquifer fissure [27]. The higher the water pressure, the more significant
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the effect; water energy of the aquifer after the effluent converts into kinetic energy. The effect
is that the fractures are scoured and expanded, the filling material is continuously taken away,
channels are more and more opened and the amount of water is getting larger.

3. Thickness of the water-resisting strata. Water-resisting strata act as a barrier to the water inrush
from the floor. The barrier capacity mainly depends on the thickness of water-resisting strata,
mechanical strength of rocks [32,33], and the integrity of the water-resisting rock layer. Under
certain conditions, when the thickness of the water-resisting strata is greater with higher strength,
the probability of water inrush is lower and vice versa.

4. Depth of mining-induced failure zone. The depth of mining-induced failure zone determines the
degree of the failure of rock floor. Practice and theories proof that reducing the failure depth of
floor mining and increasing the thickness of water-resisting strata are important methods and
measures for safe compensated mining under certain premise of conditions [2]. When the failure
depth of floor mining is small, the probability of water inrush becomes smaller, and vice versa.

5. Fault fall. The damage of the fault to coal rock is mainly manifested in the increase of cracks
and pores in the coal and rock layers near the fault [22], and the sharp decrease of strength.
The different size of the fault gap can result in different contact between the coal seam and the
aquifer in the two plates of the fault. The relationship analysis shows that when the fault fall is
larger, the impact becomes greater on the fault, and a fault fall is more likely to occur on the floor
water inrush.

2.2. Data Collection of Water Inrush Cases

Karst water inrush is one of the major mine disasters in North China. It has many distinguishing
features: The water source mainly exists in the fractures of Ordovician karst limestone aquifers,
followed by that of the Carboniferous and Cambrian aquifers. The karst formation of the water inrush
strata is dominated by fractures, followed by caves, pores and underground river pipes. The water
inrush deposits are generally located below the local erosion reference surface; the water storage
structure has a large scale, most of which have abundant water resources for storage and supply [34].
The water inrush method mainly presents as accidental inrush from coal floor, resulting in serious
damage of coal mines. In particular, the five influencing factors listed above all have the obvious
characteristics [35].

Therefore, this paper collected typical data of water inrush of coal mining in northern China
(Figure 2) as samples from a large number of cases. Furthermore, as the previous section described,
Table 1 lists the corresponding influencing factors for each case.
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Table 1. Influencing factors of water inrush cases.

Case No. Name of Working Face Location Limestone
Aquifer Type

Hydraulic
Pressure (MPa)

Thickness of
Water-Resisting Strata (m)

Depth of Mining-Induced
Failure Zone (m) Fault Fall (m)

1 Mining area floor 33, Shiyi Mine Huainan, Anhui Thin 2.00 30.0 12.9 1.5

2 Working face 12031, Jiulishan Mine Jiaozuo, Henan Thin 1.80 23.0 12.3 0.0

3 Working face 9901, Taoyang Mine Feicheng, Shandong Thin 0.60 17.0 8.6 8.0

4 Working face 9204, Dafeng Mine Feicheng, Shandong Thin 1.08 16.5 16.5 3.2

5 Working face 9906, Taoyang Mine Feicheng, Shandong Thin 1.42 25.7 15.2 0.0

6 Working face 1007, Xia Zhuang Mine II Zibo, Shandong Thick 5.19 55.9 17.0 7.0

7 Working face 1441, Wangfeng Mine Jiaozuo, Henan Thin 1.10 20.0 8.5 15.0

8 Working face 2682, Fengfenger Mine Handan, Hebei Thin 2.90 40.0 20.9 0.0

9 Working face 31104, Xiezhuang Mine Xinwen, Shandong Thin 1.30 30.0 18.3 4.9

10 Working face 149, Longquan Mine Zibo, Shandong Thick 4.06 65.9 16.0 10.0

11 Working face 9903, Taoyang Mine Feicheng, Shandong Thin 0.85 23.1 13.9 0.4

12 Working face 617, Yang Zhuang Mine II Huaibei, Anhui Thin 3.11 44.3 14.4 3.5

13 Working face 1532, Fengfeng Mine I Handan, Hebei Thick 2.30 7.3 7.3 0.0

14 Working face 7505, Chuzhuang Mine Feicheng, Shandong Thin 1.01 18.0 11.7 0.0

15 Working face 2671, Fengfeng Mine II Handan, Hebei Thin 2.80 40.0 15.0 6

16 Working face 2131, Hanwang Mine Jiaozuo, Henan Thin 1.10 16.0 8.0 0

17 Working face 9206, Dafeng Mine Huangbei, Anhui Thin 1.26 23.5 8.5 0

18 Working faces 1301, Fengying Mine Jiaozuo, Henan Thin 1.90 15.0 13.0 65
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3. Methodology

In order to accurately predict the water inrush from the coal seam floor, this paper first initialized
the raw data so that it satisfied the input requirements of SVM training samples. At present, this
new theoretical method shows unique advantages and good application prospects in solving practical
problems, such as small samples, nonlinearity, high dimensionality and local minimums [36]. It has
a good application in pattern recognition, density estimation, data mining, two-dimensional object
recognition, remote sensing image analysis, nonlinear system control, function approximation, function
fitting and regression estimation. However, there are few researches on SVM prediction with strong
color noise performance [37]. Next, for SVM, as in the radial basis function (RBF) network, there still
exists the following problem: How to select a kernel function and the most suitable kernel function for
specific problems. The prediction performance of the SVM is sensitive to the choice of parameters [38].

Figure 3 shows the established prediction system. Firstly, the original data was defined and
initialized as input training data set of SVM model, namely, the data processing stage of the prediction
model established in this paper. Then, by coding the training data set, initial population parameters
were randomly generated to produce a group of population. Through SVM training, the fitness of each
individual in the population could be calculated. According to the fitness evaluation function, optimal
SVM parameters were found.
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After finding the optimal parameters, if the termination conditions of the SVM training model
were met, i.e., the value of the loss function was smaller than that of the learning error rate, the
optimal SVM model was output. If it did not satisfy the conditions, a series of genetic operations were
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performed on the existing optimal parameters through the GA algorithm to carry out operations of
copying, crossover and mutation. Then, new parameter populations were generated, training was
continued and fitness was evaluated until the optimal SVM parameters were found and the optimal
SVM model was output. This process was the GA optimization SVM platform (GA-SVM) in this article.

Finally, according to the existing SVM model, the test data set was input into the trained SVM
model. The actual data were compared and analyzed on the basis of the output results. According
to the error analysis results, the accuracy of the prediction was judged on whether the trained SVM
reached a predetermined precision requirement. If the requirements were not satisfied, i.e., the value of
the loss function was larger than that of the learning error rate, the SVM model needed to be improved.
If the requirements were met (the termination conditions of the SVM training model were met), the
actual coal seam floor was predicted based on the SVM model optimized by the GA algorithm and
applied to practice. This was the forecast and recall stage.

3.1. Data Preprocessing

As the classification model was generated, the selection of training samples had a certain influence
on the classification results [39–41]. If there were a small number of samples, it as easy to cause the
under-learning; if there were a large number of samples, it might increase training. It was easy to
cause over-learning. The key was to select representative samples for training.

Because the research data were measurement data of each coal mine, there were many
unpredictable qualitative factors. Therefore, in order to meet the input data requirements of SVM, i.e.,
feature vectors of the classification model, the existing sample data were reprocessed in this paper.
First of all, according to Jin’s research [42], the aquifer and the maximum water inrush volume is
defined as shown in Table 2. It can be seen from Table 2 that through the value of the variable, the
actual concept of water inrush, the aquifer can be quantified to facilitate the input of the SVM training
data set. By collecting data of maximum water inrush of cases in Table 1, the input information for
water inrush grade is listed in Table 3.

Table 2. Definition of the aquifer and the maximum water inrush volume.

Variable Name Variable Type Variable Value

Aquifer Thin layer limestone 1
Thick layer limestone 0

Maximum water inrush

Q < 600 (small water inrush) 1000
600 ≤ Q < 1200 (medium water inrush) 0100

1200 ≤ Q < 3000 (large water inrush) 0010
Q ≥ 3000 (super-large water inrush) 0001

Table 3. Input information for water inrush cases.

Case No. 1 2 3 4 5 6 7 8 9
Limestone aquifer type 1 1 1 1 1 0 1 1 1

Maximum water inrush (m3) 1085 1620 1083 1628 420 4006 3060 865 1960
Water inrush grade 0100 0010 0100 0010 1000 0001 0001 0100 0010

Case No. 10 11 12 13 14 15 16 17 18
Limestone aquifer type 0 1 1 0 1 1 1 1 1

Maximum water inrush (m3) 1512 310 3153 4212 586.6 1310 900 436 5082
Water inrush grade 0010 1000 0001 0001 1000 0010 0100 1000 0001
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3.2. GA-SVM Coupling Method

3.2.1. SVM Prediction

SVM is a new generation of machine learning technology based on the statistical learning
theory [43–45], which is better at solving practical problems, such as a small sample, nonlinearity,
high dimension and local minimum point. SVM is based on optimal methods and statistical theory.
It follows the principle of Structural Risk Minimization (SRM) and can handle small samples, high
dimensionality and nonlinearity issues. It is widely used to solve the problem of pattern recognition
and function fitting [46].

The kernel parameter and penalty factor of SVM have a great influence on the prediction effect,
however, the theory itself does not give the best method to obtain the kernel parameter and the penalty
factor. The main idea is: There are l sample data, (x1, y1), (x2, y2), . . . , (xl , yl) ∈ Rn × R, in which
xk is the sample input and yk is the sample output. Firstly, the input vector was mapped from the
original space Rn to a high-dimensional feature space (Hilbert space) by using the nonlinear mapping
ϕ(·). Then, the optimal decision function was constructed by using the structural risk minimization
principle in this high-order feature space, and the kernel function of the original space was used to
replace the dot product operation in the high-dimensional feature space to avoid complex operations.
Thus, the nonlinear function estimation problem transformed into a linear function problem in the
high-dimensional feature space [47].

The form of the optimal decision function of a structure is as follows:

f (x) = ωT ϕ(xk) + b (1)

Therefore, the goal is to use the structural risk minimization principle to find the parameters ωT

and b, making
∣∣y−ωT −ωT ϕ(xk − b)

∣∣ ≤ ε for the input x outside the sample, which is equivalent to
solving the following problems:

minJ =
1
2
‖ω‖2 + C · Remp (2)

where ‖ω‖2 is the complexity of the control model of confidence interval; C is the Error penalty
function, i.e., penalty parameter, which represents the compromise between the smoothness of the
function and the allowable error greater than the value of ε, C > 0; and Remp is the experience risk,
namely the ε insensitive loss function.

Lagrange multipliers are introduced to construct the Lagrange function, through the dual problem
of the original problem is obtained. The dual form can be used to establish the Lagarangian functions
according to the constraints of the objective function machine:

L(ω, b, ξ, α) =
1
2

ωTω +
1
2

C
l

∑
i=1

ξ2
i −

l

∑
i=1

αi

[
ωT ϕ(xi) + b + ξi

]
(3)

According to the optimization conditions:

∂L
∂ω

= 0,
∂L
∂b

= 0,
∂L
∂ξ

= 0,
∂L
∂α

= 0 (4)

then:  ω−
l

∑
i=1

αi ϕ(xi) = 0,
l

∑
i=1

αi = 0, αi = Cξi

ωT ϕ(xi) + b + ξi − yi = 0
(5)
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Based on this, the solution to the optimization problem can be solved by solving linear equation:

f (x) =
l

∑
i=1

αiK(x, xi) + b (6)

As previously mentioned, there is a complex and nonlinear mapping relationship between water
inrush from a coal seam floor and its influence factors [48–50]. Using the latest machine learning tool
based on statistical learning theory, the support vector machine can express the non-linear relationship
between them, so to conduct water inrush prediction. At the same time, the problem of coal floor water
inrush prediction is essentially a typical two-category classification problem, because no matter how
large the number of influencing factors is, or how complex the relationship between the factors and
their classification results, there are only two possibilities, namely, water inrush and no water inrush.
That is to say, in theory, water inrush can be predicted completely through proper classification force.
SVM is specially designed for finite samples. It has a strict theoretical basis and can solve practical
problems such as small samples, nonlinearity, high dimensionality, and local minimums.

Specifically, the water inrush prediction of the support vector machine is to map samples of the
input space to a high-dimensional feature space through some kind of non-linear function relationship.
Through the classifier processing, the prediction result of the sample can be obtained, and the model
can be expressed as:

f (x) = sgn

(
l

∑
i=1

α∗i yiK(xi · x) + b∗
)

(7)

where xi is the i samples in the l samples and K(xi · x) is the kernel function. The model inputs are
the actual field measurement data, and the output is the corresponding prediction result. The SVM
prediction model is listed as Figure 4.

Water 2018, 10, x FOR PEER REVIEW  9 of 17 

 

1
( ) ( , )

l

i i
i

f x K x x bα
=

= +  (6)

As previously mentioned, there is a complex and nonlinear mapping relationship between 
water inrush from a coal seam floor and its influence factors [48–50]. Using the latest machine 
learning tool based on statistical learning theory, the support vector machine can express the 
non-linear relationship between them, so to conduct water inrush prediction. At the same time, the 
problem of coal floor water inrush prediction is essentially a typical two-category classification 
problem, because no matter how large the number of influencing factors is, or how complex the 
relationship between the factors and their classification results, there are only two possibilities, 
namely, water inrush and no water inrush. That is to say, in theory, water inrush can be predicted 
completely through proper classification force. SVM is specially designed for finite samples. It has a 
strict theoretical basis and can solve practical problems such as small samples, nonlinearity, high 
dimensionality, and local minimums. 

Specifically, the water inrush prediction of the support vector machine is to map samples of 
the input space to a high-dimensional feature space through some kind of non-linear function 
relationship. Through the classifier processing, the prediction result of the sample can be obtained, 
and the model can be expressed as: 

* *

1
( ) sgn ( )

l

i i i
i

f x y K x x bα
=

 = ⋅ + 
 
  (7)

where ix  is the i  samples in the l  samples and ( )⋅iK x x  is the kernel function. The model 
inputs are the actual field measurement data, and the output is the corresponding prediction result. 
The SVM prediction model is listed as Figure 4. 

 

Figure 4. SVM prediction model. 

3.2.2. GA-SVM Prediction 

According to the basic principle of the SVM model, the SVM model parameters mainly include 
the penalty parameter C, the insensitivity coefficient ε, the kernel function and the corresponding 
parameters. The determination of these three parameters will greatly affect the accuracy of the SVM 
model. Parameters of SVM have great influence on the efficiency of the algorithm and the ability of 
generalization and prediction. Their choice is an important content of building a SVM model. The 
emergence of genetic algorithms makes it possible. 

Figure 4. SVM prediction model.

3.2.2. GA-SVM Prediction

According to the basic principle of the SVM model, the SVM model parameters mainly include
the penalty parameter C, the insensitivity coefficient ε, the kernel function and the corresponding
parameters. The determination of these three parameters will greatly affect the accuracy of the SVM
model. Parameters of SVM have great influence on the efficiency of the algorithm and the ability
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of generalization and prediction. Their choice is an important content of building a SVM model.
The emergence of genetic algorithms makes it possible.

The principle of the genetic algorithm (GA) is derived from Darin’s evolution theory and Mendel’s
genetic theory [51,52]. Genetic algorithm expresses the solution of the problem as “chromosomes”
(using code to represent strings). The algorithm starts with a bunch of “chromosomal” strings.
According to the principle of survivability of the fittest, a highly-adapted “chromosome” is selected
for replication, and a new generation of more adaptable environmental “chromosomal” populations
is generated through cross and mutational genetic manipulations. The algorithm is carried out
from generation to generation. Those models with high fitness will grow exponentially in the later
generations, and finally get the chromosome with the highest degree of fitness, that is, the optimal
solution to the optimization problem.

Genetic algorithms imitate the evolutionary process of living organisms, use the modern heuristic
algorithm [53] of Darwin’s theory of evolutionary “survival of the fittest” to search in the solution
space by means of simulated genetic operations (crossover and mutation operations), and to search
the optimal in the solution space by selecting operations. On the basis of the SPL method, the genetic
algorithm is used to obtain the best or satisfactory layout.

The basic principles of genetic algorithm are as follows:
Assuming that the global optimization problem is considered as (P):

max{F(x) : x ∈ Rn}, F : Ω ⊂ Rn → R1 , then an invariant scale of the solution problem (P),
which is assumed to be N, is described as follows:

Step 1: Initialize the population X(0) = {X1(0), X2(0), . . . , XN(0)} and set k = 0;
Step 2: Calculate the fitness value (i = 1, 2, . . . , N) of each individual Xi(k) of the

current population;
Step 3: Specify the replication probability of its corresponding individual according

to adaptability;
Step 4: According to the specified replication probability, a suitable population of the new

generation population is produced by the genetic mechanism of crossing and variation.
Step 5: According to some selection rules, a new generation of population X(k + 1) is determined

from the candidate population.
Step 6: Test whether the current population has a satisfactory solution or has reached a preset

evolutionary time limit. If it has been satisfied, stop it. Otherwise, let k = k + 1 and go to Step 2.
Given that GA has global optimization capabilities, SVM seeks the best compromise between

model complexity and learning ability based on limited sample information in order to obtain the best
generalization capability. Compared with the traditional neural network, an SVM algorithm can be
transformed into a quadratic optimization. Theoretically speaking, the obtained global optimization
will solve the problem of local extremum that cannot be avoided in the neural network. SVM topology
is determined by support vectors, which avoids the need for empirical trial and error of traditional
neural network topology. SVM can also approximate any function with arbitrary accuracy.

This paper combines the two and proposes a genetic algorithm-based support vector machine
(GA-SVM). The basic idea is: Before SVM algorithm, we first used GA to optimize in the random point
set, quickly determine the approximate range of the global optimal solution, calculate the initial weight
of SVM, and to use the improved SVM algorithm to train the network. The specific algorithms are
as follows:

1. Initialize the population P, including the determination of cross-scale, crossover probability Pc,
mutation probability Pm and initialization of any connection weight. In the coding, the real
number code is used.

2. Calculate each individual evaluation function, sort them, and select individuals according to

their probability values. The probability value is ps = fi/
N
∑

i=1
fi, where fi is the adaptation value

of the individual i.
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3. New individuals G′i and G′i+1 are generated by probability Pc crossing the individual Gi and Gi+1,
and no cross individuals are directly copied.

4. Generate Gj and new individual G′j by using probability Pm mutation.

5. The new individual is inserted into population P and the evaluation function of the new individual
is calculated.

6. If a satisfied individual is found, it ends. Otherwise, after achieving the required performance
index, the optimal individual in the final group can be decoded to obtain the optimized network
connection weight coefficient.

The connection weight coefficient optimized by GA is used as the initial weight; the Least
Squares-Support Vector Machine (LS-SVM) algorithm is used to train the network, and the sum of
square error is calculated until the specified precision is satisfied. The specific framework of GA-SVM
model is shown in Figure 5.
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4. Testing Designs and Results

Based on the SVM, the key problems of coal seam floor water inrush prediction model was the
determination of input mode, selection of training samples and selection of model structure parameters.
One aspect of GA applied to SVM optimization was to optimize the structure of SVM. Moreover, it
was also used to optimize the weights of SVM kernel functions. The prediction steps of SVM water
inrush from coal seam floor, which were optimized by GA, are as follows:

4.1. Selection of Kernel Function and Parameters

The common kernel functions were the linear kernel function, polynomial kernel function, radial
basis function (RBF) kernel function and Sigmoid kernel function. Through statistical analysis of a
large number of floor water inrush cases, the five main factors affecting water inrush were: hydraulic
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pressure, aquifer, thickness of water-resisting strata (floor thickness), depth of water flowing fractured
zone on the floor and fault fall (the fault depth is zero in the case of floor failure water inrush).

4.2. Determination of SVM Structure

The SVM prediction model with optimized parameters was trained by training samples to obtain
the support vector, and the structure of the SVM was determined.

In this study, 18 typical data of water inrush from coal face floor were selected as samples from
a large number of water inrush cases (Table 1). The first 15 samples were selected as the training
samples of the network, and the network was optimized and trained with the help of the GA toolbox
of the MATLAB software (version: R2014a) and the SVM toolbox. The significance of the selection and
parameter determination of the kernel function can be explained by the principle of structural risk
minimization (SRM). The SRM principle seeks the minimum empirical risk in every subset. It refers to
the subset of functions that determine the VC dimension, where each specific function has different
empirical risks due to different parameters and forms. SVM can find the minimum experience risk
function. Furthermore, for a given empirical error, the decision function obtained by the SVM is
the simplest function that can achieve this empirical error. In the SRM principle, “compromise the
empirical risk and confidence range among subsets” is to select the SVM with the smallest actual
risk among the SVM in different VC dimensions by adjusting the parameters. The SRM principle is
made for the determined data subspace. The data distribution in different data subspaces is different.
The empirical risk changes with the VC dimension. Optimizing the SVM kernel parameter (kp) and
penalty parameter (C) at the same time is significant: in addition to optimizing C in the same data
subspace to obtain the optimal SVM, kp is also optimized to obtain the optimal SVM. The initial values
of some parameters through random SVM generation and the range of parameters produced are
shown in Table 4.

Table 4. Statistics of the parameter initial range.

Kernel Type Parameter
Minimum Value Maximum Value

kp C Error Rate kp C Error Rate

Polynomial kernel Valence number 1 10−5 47% 2 103 18%
Gaussian RBF kernel Width 25 2−1 36% 215 231 6%

In the training process, the relation curve of the classification precision and the penalty parameter
C can be obtained, which is listed in Figure 6. It can be seen from the above that the maximum value of
test accuracy and training accuracy did not coincide, further indicating that the traditional principle of
minimizing the empirical risk cannot guarantee good promotion. When kp reached a certain value,
the number of support vectors started to increase again. At the same time, the corresponding training
accuracy and test accuracy began to decrease, indicating that the discriminative ability and promotion
performance of the training samples all deteriorated. That is to say, when the kernel parameter
increased from zero gradually, the learning and promotion ability of the optimal support vector
machine underwent a process from low–high–low. Table 5 shows the statistics of the SVM classifier
parameter comparison.

Table 5. Statistics of the SVM classifier parameter comparison.

Kernel Function kp C Training
Precision

Test
Accuracy

Support Vector
Number

Proportion of
Training Set

Polynomial kernel 2 0.0008 96.3% 95% 20 20%
Gaussian RBF kernel 213 223.5 96.5% 96% 26 26%

Test results show that SVM had a high prediction accuracy for training samples and test samples;
additionally, it had good generalization ability. For the prediction of water inrush on the floor of the
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working face, SVM was able to achieve more than 90% of the classification results in the case of 20
learning samples. Through the SVM parameters optimized by GA, the final SVM parameters and the
trained SVM model were obtained.
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4.3. Prediction of the Test Data

After the network passed the training, the test data were input for simulation; after the output, the
anti-normalization procedure was run, and the trained support vector predictor was used to predict
the test sample. The predicted values of the last three samples in Table 1 were obtained, and the results
are shown in Table 6. The prediction error (PE) can be calculated as:

PE =

∣∣∣∣ xa − xp

xa
× 100%

∣∣∣∣ (8)

where, xa is the actual water inrush value; xp is the predictive value.

Table 6. Predictive values of SVM and GA-SVM.

No. Actual Water
Inrush Volume

SVM Predictive
Value

Prediction
Error (%)

GA-SVM
Predictive

Value

Prediction
Error (%)

Actual
Level

SVM
Prediction

GA-SVM
Prediction

16 900 864.8 3.91 887.1 1.43

0 0.00216 0.00039
0 0.00398 0.00073
1 0.9254 0.9671
0 0.00871 0.00021

17 436 479.3 9.93 413.4 5.18

0 0.0019 0.00085
1 0.9346 0.99763
0 0.0044 0.00068
0 0.0033 0.00033

18 5082 4144.5 18.45 4959.1 2.42

1 0.8974 0.99535
0 0.0068 0.00024
0 0.0052 0.00052
0 0.0015 0.00081

It can be seen from Table 6 that the SVM model has a certain ability to predict; however, the
prediction error remained large: The average error of the three test samples was 10.76%, which cannot
guarantee the prediction accuracy, or meet the actual water inrush prediction and control. After
optimizing the parameters of the GA-optimized SVM model, the average error of the prediction was
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3.01%, and the prediction accuracy was high. Meanwhile, the error was very small in predicting the
inrush level, and the actual situation of water inrush was well predicted. Therefore, the SVM model
optimized by GA can be used to predict the water inrush of the coal seam floor with a high accuracy.

4.4. Comparison and Analysis of Predictive Results

The SVM prediction model optimized by GA had small error and good stability. The execution
time of the program (0.0154 s) was shorter than that of the standard SVM algorithm (0.0358 s).
It showed that GA was applied to the SVM network to reduce the network oscillation, and the number
of iterations was significantly reduced. GA can also use the support vector machine to find the best
compromise between the complexity of the model and the learning ability based on the limited sample
information, so as to obtain the optimization of the best generalization ability. Combining GA with
improved SVM, the prediction of water inrush of coal seam floor was able to be carried out accurately
and quickly.

Figure 7 is the comparison of the predicted values of the SVM and the SVM model after the GA
optimization. As can be seen from Figure 7, the SVM model can be used to predict water inrush
cases. However, the average error of the three test samples was 10.76%, which cannot guarantee the
prediction accuracy, or meet the actual water inrush prediction and control. After optimization of the
optimal parameters in the training, the GA-optimized SVM model had a higher prediction accuracy.
At the same time, the prediction of the inrush had a small error, which is a good predictor of the actual
situation of water inrush. Therefore, the SVM model optimized by GA can be used to predict the water
inrush of the coal seam floor, and the prediction accuracy is high.
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5. Conclusions

There is a highly nonlinear relationship between the water outburst from coal seam floor and
geological structure, hydrogeology, aquifer, water pressure, water-resisting strata, mining damage,
fault and other factors. Therefore, it is difficult to establish a suitable model by traditional methods to
forecast the water inrush quantity from mine floor. Modeling methods developed in other fields can
provide adequate models for rock behavior on water inrush.

The prediction model of water inrush from a coal seam floor established in this paper can
quickly and accurately predict coal seam floor water inrush under different environments when fitting
nonlinear multi variables. The prediction of water inrush from coal seam floor had a high accuracy, and
the prediction result was more reliable. Since the SVM has a self-learning function, it can continuously



Water 2018, 10, 1618 15 of 17

improve the prediction accuracy in the application; thus, this method made a breakthrough in the
prediction of coal mine water inrush.

To automatically determine the optimal or approximate optimal parameters in the parameter
space, this paper used the powerful global optimization function in genetic algorithm, implicit
parallelism, and high stability of the algorithm, penalty coefficient, insensitivity coefficient and kernel
function parameter for the SVM mode. All of these characteristics greatly improved the accuracy and
usable range of the SVM model.

The coal seam floor water inrush prediction model established in this paper has significant
advantages in the fitting of non-linear multivariable, and was able to quickly and accurately predict
coal floor water inrush in different environments. The prediction of water inrush from coal seam floor
had high accuracy, and the prediction result was more reliable. Since the support vector machine had
a self-learning function, it can continuously improve the prediction accuracy in application. Therefore,
this method has a broad application prospect in coal mine water inrush.
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