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Abstract: Understanding hydrological responses to climate change and land use and land cover
change (LULCC) is important for water resource planning and management, especially for
water-limited areas. The annual streamflow of the Wuding River Watershed (WRW), the largest
sediment source of the Yellow River in China, has decreased significantly over the past 50 years at a
rate of 5.2 mm/decade. Using the Budyko equation, this study investigated this decrease with the
contributions from climate change and LULCC caused by human activities, which have intensified
since 1999 due to China’s Grain for Green Project (GFGP). The Budyko parameter that represents
watershed characteristics was more reasonably configured and derived to improve the performance
of the Budyko equation. Vegetation changes were included in the Budyko equation to further improve
its simulations, and these changes showed a significant upward trend due to the GFGP based on
satellite data. An improved decomposition method based on the Budyko equation was used to
quantitatively separate the impact of climate change from that of LULCC on the streamflow in the
WRW. Our results show that climate change generated a dominant effect on the streamflow and
decreased it by 72.4% in the WRW. This climatic effect can be further explained with the drying
trend of the Palmer Severity Drought Index, which was calculated based only on climate change
information for the WRW. In the meantime, although human activities in this watershed have been
very intense, especially since 1999, vegetation cover increase contributed a 27.6% decline to the
streamflow, which played a secondary role in affecting hydrological processes in the WRW.

Keywords: climate change; LULCC; Budyko equation; streamflow; drought

1. Introduction

Climate change and land use and land cover change (LULCC) have had profound influences
on global and regional hydrological processes [1–3]. Understanding the hydrological responses in
watersheds to climate change and LULCC is important for water resource planning and management
throughout the world, especially in arid and semi-arid areas where water is the primary limiting
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factor for environmental services and social development [4–6]. Climate change causes changes in
different components of hydrological processes [2,7]. These components include evapotranspiration,
infiltration, streamflow, soil moisture, etc. Global evapotranspiration has shown a significant upward
trend over the past three decades, caused partly by the increasing atmospheric moisture demand [8].
In particular, hydrological processes are very sensitive to climate change in arid and semi-arid areas.
In the Middle East, acceleration of hydrological processes induced by climate change has caused more
severe droughts and flooding events, affecting the region’s well-being [9].

In addition to climate change, LULCC also alters hydrological processes. Reforestation/afforestation
or deforestation changes surface evapotranspiration, canopy water interception, and soil water infiltration
capacity, changing the hydrological processes within watersheds. Many previous studies have shown
that reforestation results in a decrease in streamflow due to greater infiltration into the soil and higher
precipitation interception by vegetation [10,11]. Deforestation can reduce root density and depth,
and lower leaf mass, resulting in decreased vegetation water consumption, weaker evapotranspiration,
and higher streamflow [12,13]. These changes within a watershed lead to a redistribution among the
components of hydrological processes [14].

As mentioned, climate change and LULCC are two important factors that significantly affect
hydrological processes at different temporospatial scales. Streamflow observations around the world
have indicated varying levels of climate change and LULCC impact, particularly in basins located
in arid and semi-arid climate zones [15,16]. Modeling techniques have been adopted to evaluate
the contributions of climate change and LULCC to streamflow changes. The Budyko equation is a
commonly used and effective tool to address such contributions due to its simplicity and physical
background [17,18]. The Budyko equation, based on the water and energy balance at a watershed
scale, demonstrates the physical distribution among precipitation, evapotranspiration, and streamflow
at a long-term temporal scale [19]. Since it was established, the Budyko equation has been widely used
to answer water and energy balance questions throughout the world [20–22].

However, limitations still exist for applications of the Budyko equation, which assumes
non-changing water storage in a watershed over an application period. This assumption is often very
difficult to satisfy due to the lack of sufficient observations. Yang et al. [23] used the Budyko equation
to derive the elasticity of streamflow in relation to climatic variables in China at an annual timescale.
Jiang et al. [24] used a time length of 11 years to satisfy the non-changing water storage assumption
without observed evidence. Donohue et al. [25] asserted that 30 years of data were required to meet
the criterion of the Budyko non-changing water storage for their study watersheds. In addition, many
studies assume that the physical properties of a watershed do not exhibit significant changes by setting
the Budyko parameter that represents such properties to a constant [26,27]. Nevertheless, vegetation as
a key component in the watershed often changes significantly under climate change and/or through
human activities. In this study, variable vegetation was introduced to the Budyko equation to improve
understanding of the influence of LULCC on hydrological processes. Thus, we applied the Budyko
equation to a watershed in the Loess Plateau, China, where vegetation cover has been significantly
altered by climate and human activities. In Section 2, the study methods are described, Section 3
introduces the study area and data, Section 4 describes the results, and conclusions are given in
Section 5.

2. Methods

2.1. Budyko Parameter Estimation

With the Budyko equation’s assumption that changes in water storage in a watershed are
negligible over a sufficiently long time, precipitation (P) is partitioned into evapotranspiration (E) and
streamflow (R) for a watershed [19]. The ratio of actual evapotranspiration to precipitation (θ = E/P,
the evapotranspiration ratio) is controlled principally by the ratio of potential evapotranspiration to
precipitation (ε = Ep/P, the climatic dryness index) on a long-term timescale. For humid watersheds
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(P > Ep), the actual evapotranspiration is controlled predominantly by the energy supply (Ep), while
for non-humid watersheds (P < Ep), it is controlled mainly by the water supply (P), as shown in
Figure 1. Different functional forms of the Budyko equation have been developed [28]; one of the most
widely used forms, the Choudhury-Yang (CY hereafter) equation, was selected for this study [29]. Ep

was estimated using the Penman-Monteith method [30], and P, Ep, and R were used as inputs for the
CY equation:

E = P ∗ Ep/
(

Pη + Eη
p

) 1
η (1)

where η is the Budyko parameter that represents the average state of watershed characteristics such as
vegetation cover, soil properties, topography, etc.
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Figure 1. Schematic of water-energy balance changes in a watershed as indicated by the Choudhury-
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Traditionally, η can be derived from climate and streamflow data [27], but η cannot be calculated
for ungauged watersheds using such a method (e.g., lack of streamflow data). Thus, determining η for
ungauged watersheds is a challenge. For this study, we propose a polynomial equation to calculate
η using climate, soil, topography, vegetation, and other available data (e.g., remote sensing data) for
ungauged watersheds (without streamflow measurements) as follows:

η = β0 + βh H + βcC (2)

where H represents explanatory variables defining LULCC caused by human activities, C represents
explanatory variables defining climate change; β0 is a constant term, and βh and βc are the
corresponding regression coefficients. Through the maximum likelihood estimation method, βh
and βc are estimated, and η is then estimated.

2.2. Quantifying the Contributions of Different Factors to Streamflow Changes

The Budyko parameter η might change for a watershed, implying a change in the watershed’s
characteristics. To quantify the contribution of each factor to a change in a watershed’s water-energy
balance, we adopted the decomposition method [14,24], described in Figure 1. There are two assumed
paths to change a watershed from Point A to Point B: (1) a move from A to C along the dashed line,
and (2) a vertical move from C to B. The first (A to C) shows that the η value for the watershed does
not change, implying that the watershed ecosystem automatically adapts itself to climate change.
The second (C to B) indicates a change in η, implying that external forcing alters the watershed’s
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physical features such as vegetation. Such external forcing could stem from human influences and/or
climate change, but in the original decomposition method this external forcing is wholly attributed
to human activities, assuming that all the factors that influence η originate from human activities.
In our study, the contribution represented by the second path is decomposed based on the polynomial
equation (Equation (2)) in Section 2.1.

2.3. Calculation of Vegetation Fraction and Relative Infiltration Capacity

The accuracy of the Budyko equation can be improved if vegetation changes are included [31–33].
To study the effect of vegetation on the hydrological processes, the green vegetation fraction (Fg) was
introduced in the Budyko equation. Fg can be derived from the normalized difference vegetation index
(NDVI) based on satellite data. In this study, a quadratic equation was adopted to calculate Fg using
NDVI [34]:

Fg = (NDVIi − NDVIs/NDVI∞ − NDVIs)
2 (3)

where NDVIi is the NDVI value on a remote sensing map, NDVIs is for bare soil, and NDVI∞ is for
dense green vegetation. For this study, NDVI∞ and NDVIs were set to 0.05 and 0.68, respectively,
based on remotely sensed data and land use types [35,36].

Besides vegetation, water infiltration into the soil also affects the production of streamflow.
The infiltration rate is controlled by rainfall intensity and soil infiltration capacity. In this study,
the relative infiltration capacity was used to describe the relationship between the soil and the
parameter η. The relative infiltration capacity is defined as the ratio of the saturation hydraulic
conductivity, Ks, to the average rainfall intensity, ir, within a period of 24 h [37]; ir is the average
value for rainy days, and Ks is obtained from the soil type database for the Wuding River Watershed
(WRW) [38].

3. Study Area and Data Sources

3.1. Study Area

To control soil erosion and improve environmental conditions, many soil conservation measures
have been applied in the Loess Plateau (Figure 2) since the 1960s, one of which is the Grain for Green
Project (GFGP) [39]. This project has remarkably increased the vegetation cover in the Loess Plateau
through afforestation/reforestation [40]. Furthermore, this water-limited, environmentally fragile area
is vulnerable to climate change at different temporospatial scales [41]. For this study, we selected a
typical watershed in the Loess Plateau, the WRW (Figure 2), to explore how afforestation/reforestation
due to the GFGP affects hydrological processes under climate change.

Covering an area of approximately 30,261 km2, the WRW, located at 37.04◦–39.03◦ N and
108.04◦–110.57◦ E, is in the center of the Loess Plateau. The Wuding River is a first-order tributary of
the Yellow River. Streamflow data for this study were obtained from the Baijiachuan gauging station,
which is located 100 km from the outlet of the WRW and has a drainage area accounting for 98%
of the WRW. The WRW is in a semi-arid temperate continental climate zone, with average annual
precipitation of 405 mm, a mean annual temperature of 8.0 ◦C, and potential evapotranspiration of
1007 mm, based on observational data over 1960–2011 (http://data.cma.cn/). Affected by the East
Asian monsoon, approximately 75% of the annual rainfall occurs between June and September and
is characterized by a significant number of heavy rain events. The topography is a typical loess
hilly/gullied landscape with elevation ranging from 579 m to 1824 m.

http://data.cma.cn/
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Figure 2. Locations of the study area and hydrometeorological stations (asterisk shows the river outlet).

3.2. Data Sources

3.2.1. Hydrometeorological Data

Monthly streamflow data from gauge stations located in the main stream and first-order tributaries
in the WRW were obtained from the Yellow River Hydrological Bureau. Only data covering at least
50 years were used in this study; data from eight stations met this criterion. Thus, all streamflow data
used in this study covered the period from 1960 to 2011. Daily meteorological data from 12 stations
in and around the WRW were obtained from the National Meteorological Information Center, China
Meteorological Administration (http://data.cma.cn/), for the study period. These meteorological
data include precipitation, maximum and minimum temperature, relative humidity, wind speed,
sunshine duration, and solar radiation. We used the nonparametric Mann-Kendall (MK) test to detect
the significance of temporal trends with a 95% confidence interval [42].

3.2.2. Digital Elevation Model (DEM) and Soil Data

A DEM dataset at 30-m resolution was provided by the Geospatial Data Cloud site, Computer
Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn). A soil dataset at
1-km resolution, containing soil property data and the spatial distribution of each soil type in the WRW,
was provided by the Ecological Environment Database of the Loess Plateau (http://www.loess.csdb.
cn/pdmp/index.action). The saturation hydraulic conductivity was verified with site observations
from the WRW.

3.2.3. Satellite Remote Sensing Data

As one of the most useful indices for vegetation monitoring in terrestrial ecosystems, NDVI
derived from remote sensing data was used. This study selected the Global Inventory Modeling
and Mapping Studies Normalized Difference Vegetation Index 3rd generation dataset (NDVI3g)
for the WRW [43]. The NDVI3g covers the period from 1982 to 2011 at a 0.083◦ spatial resolution
and a semi-monthly time step. NDVI3g data have been examined and compared with other NDVI
products [44] and were found to be consistent with these data. The maximum value composite
method was used to obtain the monthly and annual NDVI values [45]. Therefore, this dataset

http://data.cma.cn/
http://www.gscloud.cn
http://www.loess.csdb.cn/pdmp/index.action
http://www.loess.csdb.cn/pdmp/index.action
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was used to analyze the long-term vegetation trends and the relationship between vegetation and
climate variability.

4. Results

4.1. Hydrometeorological Trends Analysis

4.1.1. Temporal Trends of Streamflow

Figure 3a shows the changes in annual streamflow in the WRW from 1960 to 2011. The annual
streamflow in the WRW experienced a significant decrease over this 52-year period. The observed
downward trend of 5.2 mm/decade passes the 95% significance level using the MK test. Moreover,
the annual streamflow shows two significant abrupt points in 1972 and 1998, which were detected
using the nonparametric multiple change-points detection method [46]. These abrupt points divide
the study period into three stages, i.e., 1960–1972, 1973–1998, and 1999–2011, defined as Stages 1, 2,
and 3, respectively. Figure 3a also shows that the amplitude of streamflow variation over the study
period becomes weaker with time.
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These three stages are consistent with water and soil conservation activities in the WRW, according
to a survey of the WRW [47] (p. 385), which shows that soil and water conservation activities over the
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WRW involve approximately three stages. The first stage spans from the 1950s to early 1970s, during
which small-scale experimental field tests were performed to explore suitable ways of controlling soil
erosion. The second stage lasts from the mid-1970s to the end of the 1990s, when the WRW was used
as a national water and soil erosion management area. The last stage begins in 1999, when the WRW
was one of the first GFGP pilot areas and more intensive conservation was performed. Watershed
management records prove the validity of the abrupt statistical tests employed; thus, streamflow
changes are closely related to human activities in the watershed.

4.1.2. Temporal Trends of Precipitation and Temperature

Climate change is one of the main factors affecting hydrological processes in the WRW.
In Figure 3b, the annual precipitation shows a downward trend of 10 mm/decade, but this trend
does not reach the 95% statistical significance level. A comparison of Figure 3a,b demonstrates
that streamflow variability is controlled partly by precipitation changes. The correlation coefficients
between precipitation and streamflow over the three stages are 0.8, 0.5, and 0.4, respectively, implying
that the response by streamflow to precipitation becomes weaker. There must be other factors causing
the decline in streamflow.

Figure 3c shows the time series of area-averaged annual temperature for the WRW. An upward
trend of 0.27 ◦C/decade at the 95% significance level was detected by the MK test. This remarkable
trend is five times the global average temperature change [48]. A rising temperature could contribute
to the reduced streamflow in this area by increasing evapotranspiration [49], as will be discussed again
in Section 4.5.

4.2. Determination of Timescale in the Budyko Equation

In the Budyko equation, water storage change in a watershed is assumed to be zero or very close
to zero over a long-term period. However, the length of this period is watershed dependent, and it
is impossible to accurately measure water storage change in almost any watershed. In some studies,
researchers have arbitrarily set water storage change to be zero over a period ranging from 1 to 30 years
with no support from observed evidence [23–25]. For this study, we made a series of sensitivity tests to
determine the timescale at which the water storage change is reasonably close to zero in the WRW.
In these tests, we calculated the Budyko parameter η on timescales of 1 to 52 years with increments of
one year. For each of the 52 tests, the water storage change was set to zero. We found that the Budyko
parameter η stabilized on timescales longer than 13 years, although there was a slight upward trend
between timescales of 13 and 52 years (Figure 4). Therefore, we derived the value of η on a timescale
of 13 years, at which water storage change can be reasonably assumed to be zero.
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4.3. Temporospatial Changes in Vegetation

NDVI is an effective parameter representing vegetation cover in the WRW. Figure 5 shows that
the area-averaged annual NDVI for the WRW increased from 1982 to 2011, indicating a growth in
vegetation over this period. There was a pronounced change around 2000, which divided the period
into two stages. These two stages fall within Stages 2 and 3, characterized by significant water
conservation activities in the watershed. The NDVI trends for these two stages are 3.6 × 10–3/yr and
11.8 × 10–3/yr, respectively. The significant increase in the latter stage indicates remarkable vegetation
growth in the WRW associated with the GFGP since 1999 [41].
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The average NDVI spatial distributions over the two stages are shown in Figure 6a,b. Generally,
the NDVI increases from southeast to northwest in the watershed during both stages, consistent with a
change from a humid climate to a semi-arid one. The vegetation cover increases quite dramatically
from the 1982–1998 to 1999–2011 periods. Figure 6c,d show the trends of NDVI in the WRW (pixels)
and their 95% significance levels (black dots) for the same two stages, where 29% of the WRW in
1982–1998 and 83% of the WRW in 1999–2011 pass the 95% significance level. Particularly in the second
stage, the middle and lower reaches of the WRW have the most significant NDVI increases, where the
most severe soil erosion often occurs, and thus where reforestation/afforestation has been focused.
In addition, pixels that did not pass the 95% significance level are predominantly urban areas.

Based on the above analysis, the WRW has experienced remarkable vegetation growth,
particularly from 1999 to 2011, due to reforestation/afforestation. Such a substantial landscape
change goes against the rules of the Budyko equation application, which assumes minimal landscape
changes in a watershed. In this study, we made a significant effort to include landscape changes in the
Budyko equation, with a focus on vegetation.
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significance level).

4.4. Estimation of Parameter η in the Budyko Equation

By considering the vegetation changes in the WRW, we used covariate analysis with the
Akaike information criterion [50] to develop an empirical scheme to estimate η. In this scheme,
we parameterized η as a function of explanatory variables including vegetation cover, Fg, the relative
infiltration capacity, irrigation area, and terrace area. The Budyko parameter η was optimized using
the above method to quantify the relationship between η and the explanatory variables. Finally, η was
estimated as follows:

η = 2.21 + 0.19× log10Fg − 1.29× 10−5 × exp(Ks/ir) (4)

where Fg reflects the vegetation conditions as one of the most important landscape factors in a
watershed and is derived from NDVI through the conversion model discussed above. The relative
infiltration capacity denotes the infiltration property that influences streamflow generation.

The multiple R-squared of the regression equation is 0.86 and passes the 95% significance
level, indicating that these factors can realistically explain η. These factors represent vegetation,
soil, and climate conditions, in which vegetation changes are induced mainly by human activities.
The result reveals a significant positive correlation (0.76) between Fg and η in the WRW. Figure 7
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illustrates the η estimated with Equation (4) versus the η calculated based on the Budyko equation
with the observed input variables. For the WRW, the η value generated with the above regressed
polynomial equation agrees very well with that derived from the Budyko equation.
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By inputting this estimated η into the Budyko equation, we calculated the streamflow for the
WRW. As shown in Figure 8, the root mean square error and Nash Sutcliffe efficiency coefficient are
1.22 mm and 0.91, respectively. The streamflow results calculated by a constant η are also displayed in
Figure 8, and the root mean square error and Nash Sutcliffe efficiency coefficient are 2.95 mm and 0.49,
respectively. The constant η was derived on a timescale of the entire period, indicating no watershed
landscape change over the study period. A comparison between these two calculated results indicates
that the Budyko equation is more accurate when changes in landscape factors, especially vegetation,
are included. The streamflow calculated by the η that considers vegetation changes reflects not only
the streamflow trend but also the magnitude. Conversely, the streamflow calculated by a constant
η greatly underestimates streamflow during the first several years and overestimates streamflow in
the last several years of the period. This implies that a constant η cannot reflect dynamic changes
in watershed landscape characteristics. However, it is worth noting that the constant η case also
substantially demonstrates the streamflow trend. This case is useful for situations where vegetation
data are insufficient, especially on the large timescale of future climate scenarios.

4.5. Contributions of Climate Change and Vegetation to Streamflow

To quantify the contributions of different factors to streamflow changes, the improved
decomposition method mentioned in Section 2 was applied. In view of the good performance of
explanatory variables at interpreting the Budyko parameter η, Equation (4) was used to calculate
the change in mean annual streamflow in each 13-year period, together with the Budyko equation
(Equation (1)). Therefore, the streamflow changes in each period are compared with the baseline period
1970–1982, which is the first 13-year period containing vegetation information. The baseline period
is denoted as the pre-stage, and other lengths are denoted as the post-stage. The calculated result of
the decomposition method is shown in Figure 9, indicating that a combination of climate and human
activities (mainly from vegetation changes) led to the streamflow decline in recent years. From the
average contributions of climate and vegetation during different periods (Figure 9a), the conclusion
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can be made that climate change is the dominant factor affecting streamflow, accounting for nearly
76% of the total streamflow reduction. Vegetation changes are also important factors, accounting for
about 24% of the streamflow decrease. Further, the streamflow reduction induced by climate increased
substantially after 1999 (Figure 9a), which is attributed to the increasingly dry climate. The relationship
between drought and streamflow change is discussed in the following.
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Climate and landscape changes in a watershed have an important effect on hydrological processes;
this effect can be reflected in the Budyko equation by altering parameter η. The contribution from
climate can be divided into two parts: the first part is caused by change in the meteorological input of
precipitation and potential evapotranspiration to the WRW (direct climate change); the other part is
caused by climate change through modification of the watershed landscape characteristics (indirect
climate change). In this study, the impact of climate change on η (indirect climate change) originates
from the change in average rainfall intensity, which influences the relative infiltration capacity. This is
a crucial factor to consider in landscape characteristics, because infiltration excess overland flow is
the main mechanism for streamflow generation in a typical loess soil watershed [51]. In order to
distinguish the impact of climate and vegetation changes on η, the streamflow reduction induced by
these two factors via altering η is compared in Figure 9b. In Figure 9b, streamflow reduction caused
by climate change remains steady with little variation and is smaller than that caused by vegetation
changes. This indicates that changes in η induced by climate change are not negligible, which has
not previously been considered [52]. Figure 9b also indicates that vegetation is the primary factor
affecting η; streamflow reduction induced by vegetation changes represents the majority of streamflow
reduction caused by altering parameter η. This implies that vegetation is vital to the hydrology in
this semi-arid watershed, and growth in vegetation cover increases the evapotranspiration ratio and
reduces the streamflow ratio to precipitation. It also demonstrates the significance of introducing a
vegetation factor into streamflow estimates in the Budyko equation.
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of climate change.

The two different components of climate change contribution to the streamflow are shown
in Figure 9c. One represents the contribution directly induced by climate change (direct climate
change), and the other is the contribution induced by altering η by climate change (indirect climate
change). The direct climate change contribution accounts for the majority (88%) of the total climate
change contribution, and the indirect climate change contribution accounts for 12%. In order to
test the validity and rationality of the improved decomposition method, the contribution was also
quantified using another mainstream method called the elasticity method [27,53]. The elasticity method
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results are not shown here, but our results with this method are similar to those with the improved
decomposition method.

There are 74 dams with a storage capacity greater than one million cubic meters in the WRW
with the purpose of flooding control [54] (p. 705). Nevertheless, these dams mainly affect the seasonal
variations of streamflow in the WRW, and they do not have a significant influence on the volume of
annual streamflow. In addition, most of these dams lost normal function in the end of 1980s due to the
sediment deposition caused by severe soil erosion [55] (pp. 428–429). Thus, our study did not include
the influence of dam regulation on the streamflow, and focused on the change in annual streamflow in
WRW over the period of 1982 to 2011.

Precipitation is the only source of water input to a closed watershed and is partitioned into
different parts, such as soil water storage and evapotranspiration. The results with our improved
Budyko equation application indicate that hydrological processes are the result of the long-term
co-evolution of a watershed’s vegetation and climate [14]. The contribution analysis results of the
WRW demonstrate the dominant role of climate in this complex evolved system. These findings
were further confirmed with the Palmer Drought Severity Index (PDSI) [56,57], a physically based
hydrometeorological index. The calculation of PDSI does not consider interference from human
activities in this watershed, and thus this index explains hydrological drought patterns regardless of
human influences [58]. The annual changes in streamflow and PDSI in the WRW from 1960 to 2011 are
shown in Figure 10. These two variables derived from independent datasets exhibit similar trends
and variations. The downward trend of streamflow is −0.048 mm/yr and that of PDSI is −0.047.
The MK test results indicate that both show a significant downward trend at the 95% significance
level. The decreasing PDSI indicates that the WRW has experienced increasingly serious droughts
since the early 1980s. Moreover, this similarity shows that PDSI captures the trend of streamflow
change and the dominant role of climate in streamflow reduction. However, the performance of PDSI
deteriorates in Stage 2 and Stage 3 compared to Stage 1, which demonstrates that human activities
play a non-negligible role in streamflow reduction in the WRW.
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5. Conclusions

In this study, we diagnosed hydrometeorological changes in the WRW, with a focus on vegetation
cover changes. Over recent years, streamflow has dramatically declined, regional climate change
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has become evident, and the watershed has experienced more severe drought. Vegetation cover
changes are the main reason for underlying surface changes in the WRW. The timing of abrupt changes
indicates that NDVI changes are closely tied to water and soil conservation activities in the WRW and
streamflow changes. Intense variations of NDVI in such a short time reveal that human activities are
the main driving force of vegetation cover changes.

Using the moving average method with a timescale of 13 years, an optimized model was
established, incorporating the Budyko parameter, vegetation cover, and relative infiltration capacity.
The main factors that influence watershed landscape characteristics were then determined, i.e., climate
change and vegetation changes. The good performance of the estimated streamflow implies that the
Budyko parameter can be explained by these variables. Based on this optimized model, an improved
decomposition method was used to separate the impact of climate change and vegetation cover
changes on streamflow. It should be noted that we considered the climatic impact on the Budyko
parameter η, which has previously been ignored. Furthermore, introducing the main factors that
affect the Budyko parameter improved the performance of the Budyko equation by incorporating
physical mechanisms.
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P.W. designed the study, interpreted the results, and supervised the research; G.-y.N. contributed ideas during
analysis and interpretation, and edited the paper.

Funding: This research was funded by the National Natural Science Foundation of China (No. 41571030,
No. 91637209, No. 91737306), and it was also partially funded by Utah Agricultural Experiment Station.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Neupane, R.P.; Kumar, S. Estimating the effects of potential climate and land use changes on hydrologic
processes of a large agriculture dominated watershed. J. Hydrol. 2015, 529, 418–429. [CrossRef]

2. Serpa, D.; Nunes, J.P.; Santos, J.; Sampaio, E.; Jacinto, R.; Veiga, S.; Lima, J.C.; Moreira, M.; Corte-Real, J.;
Keizer, J.J.; et al. Impacts of climate and land use changes on the hydrological and erosion processes of two
contrasting Mediterranean catchments. Sci. Total Environ. 2015, 538, 64–77. [CrossRef] [PubMed]

3. Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on
hydrological components in the Johor River basin, Malaysia. Hydrol. Sci. J. 2015, 60, 873–889. [CrossRef]

4. Kahil, M.T.; Dinar, A.; Albiac, J. Modeling water scarcity and droughts for policy adaptation to climate
change in arid and semiarid regions. J. Hydrol. 2015, 522, 95–109. [CrossRef]

5. Salazar, A.; Baldi, G.; Hirota, M.; Syktus, J.; McAlpine, C. Land use and land cover change impacts on the
regional climate of non-Amazonian South America: A review. Glob. Planet. Chang. 2015, 128, 103–119.
[CrossRef]

6. Yin, J.; He, F.; Xiong, Y.J.; Qiu, G.Y. Effects of land use/land cover and climate changes on surface runoff in a
semi-humid and semi-arid transition zone in northwest China. Hydrol. Earth Syst. Sci. 2017, 21, 183–196.
[CrossRef]

7. Hattermann, F.F.; Krysanova, V.; Gosling, S.N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.;
Motovilov, Y.; Buda, S.; et al. Cross-scale intercomparison of climate change impacts simulated by regional
and global hydrological models in eleven large river basins. Clim. Chang. 2017, 141, 561–576. [CrossRef]

8. Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z. Vegetation greening
and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 2015, 5, 15956.
[CrossRef]

9. Sowers, J.; Vengosh, A.; Weinthal, E. Climate change, water resources, and the politics of adaptation in the
Middle East and North Africa. Clim. Chang. 2011, 104, 599–627. [CrossRef]

10. Greenwood, W.J.; Buttle, J.M. Effects of reforestation on near-surface saturated hydraulic conductivity in a
managed forest landscape, southern Ontario, Canada. Ecohydrology 2014, 7, 45–55. [CrossRef]

11. Locatelli, B.; Catterall, C.P.; Imbach, P.; Kumar, C.; Lasco, R.; Marín-Spiotta, E.; Mercer, B.; Powers, J.S.;
Schwartz, N.; Uriarte, M. Tropical reforestation and climate change: Beyond carbon. Restor. Ecol. 2015, 23,
337–343. [CrossRef]

http://dx.doi.org/10.1016/j.jhydrol.2015.07.050
http://dx.doi.org/10.1016/j.scitotenv.2015.08.033
http://www.ncbi.nlm.nih.gov/pubmed/26298249
http://dx.doi.org/10.1080/02626667.2014.967246
http://dx.doi.org/10.1016/j.jhydrol.2014.12.042
http://dx.doi.org/10.1016/j.gloplacha.2015.02.009
http://dx.doi.org/10.5194/hess-21-183-2017
http://dx.doi.org/10.1007/s10584-016-1829-4
http://dx.doi.org/10.1038/srep15956
http://dx.doi.org/10.1007/s10584-010-9835-4
http://dx.doi.org/10.1002/eco.1320
http://dx.doi.org/10.1111/rec.12209


Water 2018, 10, 1781 15 of 17

12. Coe, M.T.; Marthews, T.R.; Costa, M.H.; Galbraith, D.R.; Greenglass, N.L.; Imbuzeiro, H.M.A.; Levine, N.M.;
Malhi, Y.; Moorcroft, P.R.; Muza, M.N.; et al. Deforestation and climate feedbacks threaten the ecological
integrity of south-southeastern Amazonia. Philos. Trans. R. Soc. B 2013, 368, 20120155. [CrossRef] [PubMed]

13. Panday, P.K.; Coe, M.T.; Macedo, M.N.; Lefebvre, P.; de Almeida Castanho, A.D. Deforestation offsets water
balance changes due to climate variability in the Xingu River in eastern Amazonia. J. Hydrol. 2015, 523,
822–829. [CrossRef]

14. Wang, D.; Tang, Y. A one-parameter Budyko model for water balance captures emergent behavior in
darwinian hydrologic models. Geophys. Res. Lett. 2014, 41, 4569–4577. [CrossRef]

15. Guardiola-Claramonte, M.; Troch, P.A.; Breshears, D.D.; Huxman, T.E.; Switanek, M.B.; Durcik, M.; Cobb, N.S.
Decreased streamflow in semi-arid basins following drought-induced tree die-off: A counter-intuitive and
indirect climate impact on hydrology. J. Hydrol. 2011, 406, 225–233. [CrossRef]

16. Hughes, J.D.; Petrone, K.C.; Silberstein, R.P. Drought, groundwater storage and stream flow decline in
southwestern Australia. Geophys. Res. Lett. 2012, 39. [CrossRef]

17. Cong, Z.; Zhang, X.; Li, D.; Yang, H.; Yang, D. Understanding hydrological trends by combining the Budyko
hypothesis and a stochastic soil moisture model. Hydrol. Sci. J. 2015, 60, 145–155. [CrossRef]

18. Yang, H.; Yang, D.; Hu, Q. An error analysis of the Budyko hypothesis for assessing the contribution of
climate change to runoff. Water Resour. Res. 2014, 50, 9620–9629. [CrossRef]

19. Budyko, M. Climate and Life; Academic Press: New York, NY, USA, 1974; ISBN 9780080954530.
20. Abatzoglou, J.T.; Ficklin, D.L. Climatic and physiographic controls of spatial variability in surface water

balance over the contiguous United States using the Budyko relationship. Water Resour. Res. 2017, 53,
7630–7643. [CrossRef]

21. Koppa, A.; Gebremichael, M. A Framework for validation of remotely sensed precipitation and
evapotranspiration based on the Budyko hypothesis. Water Resour. Res. 2017, 53, 8487–8499. [CrossRef]

22. Wang, C.; Wang, S.; Fu, B.; Zhang, L. Advances in hydrological modelling with the Budyko framework:
A review. Prog. Phys. Geogr. 2016, 40, 409–430. [CrossRef]

23. Yang, H.; Yang, D. Derivation of climate elasticity of runoff to assess the effects of climate change on annual
runoff. Water Resour. Res. 2011, 47. [CrossRef]

24. Jiang, C.; Xiong, L.; Wang, D.; Liu, P.; Guo, S.; Xu, C.-Y. Separating the impacts of climate change and human
activities on runoff using the Budyko-type equations with time-varying parameters. J. Hydrol. 2015, 522,
326–338. [CrossRef]

25. Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Assessing the differences in sensitivities of runoff to changes in
climatic conditions across a large basin. J. Hydrol. 2011, 406, 234–244. [CrossRef]

26. Han, S.; Hu, H.; Yang, D.; Liu, Q. Irrigation impact on annual water balance of the oases in Tarim Basin,
Northwest China. Hydrol. Process. 2011, 25, 167–174. [CrossRef]

27. Xu, X.; Yang, D.; Yang, H.; Lei, H. Attribution analysis based on the Budyko hypothesis for detecting the
dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [CrossRef]

28. Du, C.; Sun, F.; Yu, J.; Liu, X.; Chen, Y. New interpretation of the role of water balance in an extended Budyko
hypothesis in arid regions. Hydrol. Earth Syst. Sci. 2016, 20, 393–409. [CrossRef]

29. Zhang, S.; Yang, H.; Yang, D.; Jayawardena, A.W. Quantifying the effect of vegetation change on the regional
water balance within the Budyko framework. Geophys. Res. Lett. 2016, 43, 1140–1148. [CrossRef]

30. Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M.J.F. Crop Evapotranspiration-Guidelines for Computing Crop Water
Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109.

31. Gentine, P.; D’Odorico, P.; Lintner, B.R.; Sivandran, G.; Salvucci, G. Interdependence of climate, soil,
and vegetation as constrained by the Budyko curve. Geophys. Res. Lett. 2012, 39. [CrossRef]

32. Liu, Q.; McVicar, T.R.; Yang, Z.; Donohue, R.J.; Liang, L.; Yang, Y. The hydrological effects of
varying vegetation characteristics in a temperate water-limited basin: Development of the dynamic
Budyko-Choudhury-Porporato (dBCP) model. J. Hydrol. 2016, 543, 595–611. [CrossRef]

33. Troch, P.A.; Carrillo, G.; Sivapalan, M.; Wagener, T.; Sawicz, K. Climate-vegetation-soil interactions and
long-term hydrologic partitioning: Signatures of catchment co-evolution. Hydrol. Earth Syst. Sci. 2013, 17,
2209–2217. [CrossRef]

34. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index.
Remote Sens. Environ. 1997, 62, 241–252. [CrossRef]

http://dx.doi.org/10.1098/rstb.2012.0155
http://www.ncbi.nlm.nih.gov/pubmed/23610166
http://dx.doi.org/10.1016/j.jhydrol.2015.02.018
http://dx.doi.org/10.1002/2014GL060509
http://dx.doi.org/10.1016/j.jhydrol.2011.06.017
http://dx.doi.org/10.1029/2011GL050797
http://dx.doi.org/10.1080/02626667.2013.866710
http://dx.doi.org/10.1002/2014WR015451
http://dx.doi.org/10.1002/2017WR020843
http://dx.doi.org/10.1002/2017WR020593
http://dx.doi.org/10.1177/0309133315620997
http://dx.doi.org/10.1029/2010WR009287
http://dx.doi.org/10.1016/j.jhydrol.2014.12.060
http://dx.doi.org/10.1016/j.jhydrol.2011.07.003
http://dx.doi.org/10.1002/hyp.7830
http://dx.doi.org/10.1016/j.jhydrol.2013.12.052
http://dx.doi.org/10.5194/hess-20-393-2016
http://dx.doi.org/10.1002/2015GL066952
http://dx.doi.org/10.1029/2012GL053492
http://dx.doi.org/10.1016/j.jhydrol.2016.10.035
http://dx.doi.org/10.5194/hess-17-2209-2013
http://dx.doi.org/10.1016/S0034-4257(97)00104-1


Water 2018, 10, 1781 16 of 17

35. Montandon, L.M.; Small, E.E. The impact of soil reflectance on the quantification of the green vegetation
fraction from NDVI. Remote Sens. Environ. 2008, 112, 1835–1845. [CrossRef]

36. Yang, H.; Yang, Z. A modified land surface temperature split window retrieval algorithm and its applications
over China. Glob. Planet. Chang. 2006, 52, 207–215. [CrossRef]

37. Yang, D.; Shao, W.; Yeh, P.J.-F.; Yang, H.; Kanae, S.; Oki, T. Impact of vegetation coverage on regional water
balance in the nonhumid regions of China. Water Resour. Res. 2009, 45. [CrossRef]

38. Gao, X.; Wu, P.; Zhao, X.; Zhou, X.; Zhang, B.; Shi, Y.; Wang, J. Estimating soil moisture in gullies from
adjacent upland measurements through different observation operators. J. Hydrol. 2013, 486, 420–429.
[CrossRef]

39. Qiu, L.; Wu, Y.; Wang, L.; Lei, X.; Liao, W.; Hui, Y.; Meng, X. Spatiotemporal response of the water cycle to
land use conversions in a typical hilly-gully basin on the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2017,
21, 6485–6499. [CrossRef]

40. Zhang, B.; Long, B.; Wu, Z.; Wang, Z. An evaluation of the performance and the contribution of different
modified water demand estimates in drought modeling over water-stressed regions. Land Degrad. Dev. 2017,
28, 1134–1151. [CrossRef]

41. Fan, X.; Ma, Z.; Yang, Q.; Han, Y.; Mahmood, R.; Zheng, Z. Land use/land cover changes and regional
climate over the Loess Plateau during 2001–2009. Part I: Observational evidence. Clim. Chang. 2015, 129,
427–440. [CrossRef]

42. Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis.
J. Hydrol. 2008, 349, 350–363. [CrossRef]

43. Ibrahim, Y.; Balzter, H.; Kaduk, J.; Tucker, C. Land degradation assessment using residual trend analysis of
GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan West Africa from 1982 to 2012. Remote Sens. 2015,
7, 5471–5494. [CrossRef]

44. Pinzon, J.; Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6,
6929–6960. [CrossRef]

45. Zhang, B.; Wu, P.; Zhao, X.; Wang, Y.; Gao, X. Changes in vegetation condition in areas with different
gradients (1980–2010) on the Loess Plateau, China. Environ. Earth Sci. 2013, 68, 2427–2438. [CrossRef]

46. Zou, C.; Yin, G.; Feng, L.; Wang, Z. Nonparametric maximum likelihood approach to multiple change-point
problems. Ann. Stat. 2014, 42, 970–1002. [CrossRef]

47. Wang, G.; Fan, Z. Study on Changes of Water and Sediment of the Yellow River; The Yellow River Water
Conservancy Press: Zheng Zhou, China, 2002; Volume 3, p. 385, ISBN 9787806215708.

48. Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming
on wild animals and plants. Nature 2003, 421, 57–60. [CrossRef] [PubMed]

49. Zhang, B.; He, C.; Burnham, M.; Zhang, L. Evaluating the coupling effects of climate aridity and vegetation
restoration on soil erosion over the Loess Plateau in China. Sci. Total Environ. 2016, 539, 436–449. [CrossRef]

50. Akaike, H. Akaike’s information criterion. In International Encyclopedia of Statistical Science; Springer: Berlin,
Germany, 2011; p. 25, ISBN 9783642048975.

51. Kang, S.; Zhang, L.; Song, X.; Zhang, S.; Liu, X.; Liang, Y.; Zheng, S. Runoff and sediment loss responses to
rainfall and land use in two agricultural catchments on the Loess Plateau of China. Hydrol. Process. 2001, 15,
977–988. [CrossRef]

52. Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean
annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47. [CrossRef]

53. Sankarasubramanian, A.; Vogel, R.M.; Limbrunner, J.F. Climate elasticity of streamflow in the United States.
Water Resour. Res. 2001, 37, 1771–1781. [CrossRef]

54. Wang, G.; Fan, Z. Study on Changes of Water and Sediment of the Yellow River; The Yellow River Water
Conservancy Press: Zheng Zhou, China, 2002; Volume 2, p. 705, ISBN 9787806215692.

55. Wang, G.; Fan, Z. Study on Changes of Water and Sediment of the Yellow River; The Yellow River Water
Conservancy Press: Zheng Zhou, China, 2002; Volume 3, pp. 428–429, ISBN 9787806215708.

56. Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008.
J. Geophys. Res. Atmos. 2011, 116. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2007.09.007
http://dx.doi.org/10.1016/j.gloplacha.2006.02.015
http://dx.doi.org/10.1029/2008WR006948
http://dx.doi.org/10.1016/j.jhydrol.2013.02.007
http://dx.doi.org/10.5194/hess-21-6485-2017
http://dx.doi.org/10.1002/ldr.2655
http://dx.doi.org/10.1007/s10584-014-1069-4
http://dx.doi.org/10.1016/j.jhydrol.2007.11.009
http://dx.doi.org/10.3390/rs70505471
http://dx.doi.org/10.3390/rs6086929
http://dx.doi.org/10.1007/s12665-012-1927-1
http://dx.doi.org/10.1214/14-AOS1210
http://dx.doi.org/10.1038/nature01333
http://www.ncbi.nlm.nih.gov/pubmed/12511952
http://dx.doi.org/10.1016/j.scitotenv.2015.08.132
http://dx.doi.org/10.1002/hyp.191
http://dx.doi.org/10.1029/2010WR010283
http://dx.doi.org/10.1029/2000WR900330
http://dx.doi.org/10.1029/2010JD015541


Water 2018, 10, 1781 17 of 17

57. Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65.
[CrossRef]

58. Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer Drought Severity Index. J. Clim. 2004, 17,
2335–2351. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/wcc.81
http://dx.doi.org/10.1175/1520-0442(2004)017&lt;2335:ASPDSI&gt;2.0.CO;2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Budyko Parameter Estimation 
	Quantifying the Contributions of Different Factors to Streamflow Changes 
	Calculation of Vegetation Fraction and Relative Infiltration Capacity 

	Study Area and Data Sources 
	Study Area 
	Data Sources 
	Hydrometeorological Data 
	Digital Elevation Model (DEM) and Soil Data 
	Satellite Remote Sensing Data 


	Results 
	Hydrometeorological Trends Analysis 
	Temporal Trends of Streamflow 
	Temporal Trends of Precipitation and Temperature 

	Determination of Timescale in the Budyko Equation 
	Temporospatial Changes in Vegetation 
	Estimation of Parameter  in the Budyko Equation 
	Contributions of Climate Change and Vegetation to Streamflow 

	Conclusions 
	References

