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Abstract: In the context of a growing population in West Africa and frequent yield losses due to
erratic rainfall, it is necessary to improve stability and productivity of agricultural production systems,
e.g., by introducing and assessing the potential of alternative irrigation strategies which may be
applicable in this region. For this purpose, five irrigation management strategies, ranging from no
irrigation (NI) to controlled deficit irrigation (CDI) and full irrigation (FI), were evaluated concerning
their impact on the inter-seasonal variability of the expected yields and improvements of the yield
potential. The study was conducted on a maize crop (Zea mays L.) at a representative site in northern
Togo with a hot semi-arid climate and pronounced dry and wet rainfall seasons. The OCCASION
(Optimal Climate Change Adaption Strategies in Irrigation) framework was adapted and applied.
It consists of: (i) a weather generator for simulating long climate time series; (ii) the AquaCrop model,
which was used to simulate the irrigation system during the growing season and the yield response
of maize to the considered irrigation management strategies; and (iii) a problem-specific algorithm for
optimal irrigation scheduling with limited water supply. We found high variability in rainfall during
the wet season which leads to considerable variability in the expected yield for rainfed conditions
(NI). This variability was significantly reduced when supplemental irrigation management strategies
(CDI or FI) requiring a reasonably low water demand of about 150 mm were introduced. For the
dry season, it was shown that both irrigation management strategies (CDI and FI) would increase
yield potential for the local variety TZEE-W up to 4.84 Mg/ha and decrease the variability of the
expected yield at the same time. However, even with CDI management, more than 400 mm of water
is required if irrigation would be introduced during the dry season in northern Togo. Substantial
rainwater harvesting and irrigation infrastructures would be needed to achieve that.

Keywords: AquaCrop model; maize; deficit irrigation; crop-water production function; West Africa

1. Introduction

The present world population of 7.3 billion will increase to 9.7 billion by 2050 [1]. Similarly, the
medium variant of the UN Population Division [2] predictions disclose that the total population of
the West African region would increase from 350 million in 2015 to 450 million in 2030, and nearly
800 million in 2050. FAO [3] estimates that agricultural production will have to rise by 60% by 2050
to meet the world’s projected demands for food and feed. In West Africa, Liniger et al. [4] reported
that food production should increase by 70% by 2050 to meet the necessary caloric requirements.
However, a lack of available water for agricultural production, the energy sector, and other forms of
anthropogenic water consumption is already harming several parts of the world. This lack of water
is projected to become more severe with the growing population, rising temperatures, and altering
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precipitation patterns [5]. The variation of the food diets in many developing countries compound this
problem and lead to the demand for more processed food and animal proteins by consumers [6].

The World Bank [7] reports that the rate of increase in food demand is projected to be higher in
developing than in developed countries. These are also the regions that are subject to a wide yield gap.
The world demand (billion tons) of cereals was 1.20 in 1974, 1.84 in 1997 and is expected to be 2.50 in
2020 [8]. In addition, van Ittersum et al. [9] pointed out that Sub-Saharan Africa (SSA) is the region
with lowest food security because by 2050 its demand for cereals will almost triple, whereas current
levels of cereal consumption already rely on considerable importations.

Lobell and Gourdji [10] pointed out that, in the past several decades, air temperatures have been
increasing in most of the main cereal cropping areas around the world. They added that the changes in
temperature and the intensity and seasonal volume of rainfall are impacting soil moisture. In turn, soil
moisture is of high importance for crop production. In developing countries, particularly, the changes
in these climatic variables over time are likely to have a damaging impact on water accessibility, which
in turn affects crop yield. Kotir [11] and Druyan [12] stressed the fact that researchers have described
Sub-Saharan Africa as the most sensitive region to the impacts of climate variabilities and change
because of its dependence on rainfed agriculture and low capacity for adaptation. Moreover, Sarr [13]
contended that the West African region has faced decades of severe drought, which have affected
agricultural production substantially. The observations already show the late onset and early cessation
dates of rainfall and the reduction of length of growing period.

According to the Togolese Ministry of the Environment and Forestry (MERF) [14], in the dry
savannah of northern Togo, a West African country, the wet season, which spanned six months in the
1970s, has reduced to five or four months nowadays. Consequently, on the one hand, a substantial
amount of rainwater falls within a short period causing flooding, while, on the other hand, frequent
dry spells in the wet season lead to crop failure [15]. In addition, there is no rainfed agricultural activity
during the dry season in northern Togo because of a lack of rainfall [16].

Researchers and practitioners are putting more focus on producing more with limited resources
in agriculture to meet the food demand and at the same time address the adverse effects of climate
change [17–19]. Agriculture, which accounts for 38% of Togo’s gross domestic product, provides
over 20% of export earnings and employs 70% of the active population. Togolese agriculture is
predominantly rainfed [20,21]. According to the International Commission on Irrigation and Drainage
(ICID) [22], rainfed agriculture is “agriculture without application of irrigation. It may be without,
or with a drainage system.” A promising practice to overcome water shortage in rainfed cropping
systems is supplemental irrigation (SI). The ICID [22] defines SI as: “the addition of small amounts of
water to essentially rainfed crops during times when rainfall fails to provide sufficient moisture for
normal plant growth, in order to improve and stabilize yields.” SI practice increases yields and water
productivity in rainfed cropping systems [23]. In addition, conventional irrigation systems can be used
to improve crop productivity. The ICID [22] defines conventional irrigation as: “the replenishment of
soil water storage in plant root zone through methods other than natural precipitation”.

Irrigation scheduling is the procedure of deciding when, where, and how much water to apply [24]
for irrigation. Farmers can apply the total crop-water requirements or more in the right period if water
is available. This practice is called full irrigation (FI). When water provisions are limited, or irrigation
expenses are great, FI may be substituted by deficit irrigation (DI) [25]. This is limited irrigation
scheduling in agriculture [26]. DI can be controlled or otherwise. Uncontrolled DI is equivalent to
rainfed agriculture. English [27] and English and Raja [28] defined controlled deficit irrigation (CDI)
as the concept of intentionally and systematically under-irrigating a crop. English [27] developed an
analytical framework to evaluate the profit when optimizing water use. Thus, he included implicitly
economic aspects in the definition. Later, Lecler [29] provided a more explicit definition: “CDI is
an optimization strategy by which net returns are maximized by lessening the volume of irrigation
water applied to a crop to a level that results in some yield loss caused by water stress”. Recently,
Fereres and Soriano [30] defined CDI as the application of water below full crop-water requirements
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or evapotranspiration. The objective of applying limited water is to cope with scarce water supplies
and improve productivity. Kögler and Söffker [31] reported that CDI practice contributes to saving up
to 20–40% irrigation water at yield reductions under 10%. It can contribute to increasing farmers’ net
income where water is scarce [27]. Thus, CDI is an irrigation management practice that contributes to
enhancing food security.

Many studies that applied the simulation-based approach to assess deficit irrigation
strategies failed to consider the variability of relevant climate factors—such as precipitation and
temperature—and soil properties [32,33]. Semenov [34] and Brumbelow and Georgakakos [35],
among others, analyzed possible impacts of climate variability and climate change on agriculture
using process-based simulation models. Most of these studies only look at rainfed or non-irrigated
sites or assumed full irrigation. Few researchers, including Schütze and Schmitz [36] and
Brumbelow and Georgakakos [35], assessed limited irrigation systems and the impact of climate
variability on crop-water production functions (CWPF). Brumbelow and Georgakakos [35] derived
probability distribution functions of CWPF (CWPF-PDs) using climate change scenarios data of the
Intergovernmental Panel on Climate Change (IPCC). Schütze and Schmitz [36] delved into the CWPF
concept and suggested a stochastic framework in the form of a decision support tool for Optimal
Climate Change Adaption Strategies in Irrigation (OCCASION) for deriving site-specific stochastic
CWPFs (SCWPFs). To perform such analyses, one needs to utilize crop models to simulate the potential
or expected crop yield for a given soil, climate, and management practice condition.

Several crop simulation models such as DSSAT [37], AquaCrop [38–40], DAISY [41], CropWat [42],
APSIM [43], and PILOTE [44] are available in the literature to simulate yield response to water. It is
important to recognize that most of these models show substantial complexities and require several
data to run. Most of these models require many parameters to run, and many are not readily available
in the field and need to be determined experimentally [45]. Exceptionally, the AquaCrop model uses
relatively few explicit and mostly intuitive parameters and input variables, requiring simple methods
for their derivation [46]. For instance, unlike AquaCrop, the DSSAT model requires input data about
crop genetics and pest management [37], while APSIM requires NO3 and NH4 content of the soil
layers [43].

Few studies have investigated irrigation management strategies on crops in the dry savannah area
of northern Togo [20]. Therefore, this study assessed the potential of deficit and supplemental irrigation
in northern Togo. Specifically, the study aimed at: (i) characterizing the climate of a water-scarce site in
northern Togo, West African region; and (ii) evaluating five irrigation management strategies, ranging
from no irrigation (NI) to CDI and FI for a maize crop (Zea mays L.) at a representative site in northern
Togo with pronounced dry and wet rainfall seasons.

2. Materials and Methods

2.1. Study Area

Togo is a small West African francophone country. It is bordered by the Bight of Benin and Burkina
Faso in the south and north, respectively. Togo is bound in the west by Ghana and in the east by Benin.
Geographically, it lies between latitudes 6◦ N and 11◦ N, and longitudes 0◦ E and 2◦ E. It covers a
surface of 56,600 km2 and has a long, narrow profile, stretching more than 550 km from north to south
but not exceeding 160 km in width [47]. Its population is estimated to be 6,191,155 [48].

We conducted this study in the Dapaong district, northern Togo (Figure 1). Dapaong belongs to the
Southern-Guinea-Savannah agro-ecological zone [49]. The principal rainfed crops grown include maize
(Zea mays), sorghum (Sorghum bicolor), and pearl millet (Pennisetum glaucum), mainly for subsistence,
while cash crops such as cotton (Gossypium hirsutum) are also cultivated. Some vegetables and legumes
such as okra (Abelmoschus esculentus), cowpea (Vigna unguiculata), and soybean (Glycine max) are grown
in association with the cereals mentioned above. The vegetation type is a woody savannah, with
noticeable agricultural farms. The primary tree species are Parkia biglobosa, Butyrospermum parkii, and
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Acacia sieberiana [50]. The Togolese Institute of Agricultural Research (ITRA) [51] and Didjeira et al. [52]
identified maize crop as the staple food in Togo, and it represents 60% of the cereals consumed by the
population. On the farms close to the houses, the main cropping system is intercropping (cereal–legume
mixtures), while on the farms far from the houses, farmers practice monoculture [53]. Since cotton is
grown with a high level of pesticides, intercropping is not possible on cotton farms. Hoes and cutlasses
are the primary tools of cultivation.
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Figure 1. Map of northern Togo indicating the study area (Dapaong district).

According to Köppen–Geiger’s climatic classification, the climate of Dapaong district is hot
semi-arid (BSh) [54]. The period from mid-April to mid-October is humid, while in the other months
dry conditions predominate in Dapaong. The months from June to September show high rainfall
(Figure 2). These high annual values of rainfall are sufficient for rainfed cereal crops in northern Togo.
The annual rainfall is, however, very unequally dispersed. From November to March (or sometimes
April), there is practically no rainfall in the area. From May to October, a substantial amount of rainfall
is recorded. Consequently, northern Togo is characterized by a single wet season in a year. This
explains why farmers adopt intercropping to obtain the range of crops they need. Introducing irrigated
crops in the dry season may help farmers to sustain their production. The mean annual temperature is
28.1 ◦C, and the annual total precipitation is 1050 mm. The mean daily maximum temperature of the
driest month is around 37 ◦C, whereas the mean daily minimum temperature of the wettest month
is 20 ◦C (Figure 2). In January and February, a robust dusty wind named harmattan, blowing in the
northeast direction from the Sahara Desert, increases the dryness of the weather in the area [16].
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Figure 2. Walter–Lieth [55] climate diagram for northern Togo based on data collected at Dapaong
Meteorological Station (Latitude: 10◦51′44.10′ ′ N, Longitude: 0◦12′27.43′ ′ E, Altitude: 330 m above sea
level). Rainfall and temperature data were measured between 1980 and 2016.

With a population density of 96 inhabitants per km2, over 88% of the population live under the
poverty line (US$ 2/day) [56,57]. Complicated communal land tenure favors men, and encourages
farm fragmentation. Women access only marginal lands characterized by reduced soil fertility. Most
farmers are smallholders with less than 1.5 ha of land under cultivation [53]. Crop yields are generally
low due to erratic rainfall, low soil fertility, low-quality seeds, and inappropriate land preparation
tools, among others. Farmers’ livelihood depends on small-scale farms with low input, and mixed
crop–livestock agriculture. Regarding poultry, most farmers have local hens, cocks, and guinea fowls
in their houses. Some families raise local dwarf goats and pigs [53].

2.2. Methods

2.2.1. Adapted Framework for the Evaluation of Irrigation Management Alternatives

In this study, we investigated five irrigation management strategies. These are NI, CDI for
supplemental irrigation, CDI for conventional irrigation, FI for supplemental irrigation, and FI for
conventional irrigation. The NI is equivalent to the rainfed system, the type of agriculture most farmers
are practicing in Dapaong. When rainfall is unevenly distributed throughout the wet season, farmers
have the option to apply an optimal amount of irrigation water to supplement the shortage (CDI for
SI) or use the fully required amount (FI for SI). On the other hand, in the dry season, farmers can
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deliberately apply an optimal amount of irrigation water (CDI for conventional irrigation) or fully
irrigate the plants (FI for conventional irrigation). When combining these strategies with dry and wet
seasons, we obtain the following: (i) NI for the wet season (WS-NI); (ii) CDI for supplemental irrigation
system in the wet season (WS-CDI); (iii) full irrigation for supplemental irrigation system in the wet
season (WS-FI); (iv) CDI for conventional irrigation system in the dry season (DS-CDI); and (v) full
irrigation for conventional irrigation system in the dry season (DS-FI). In this study, one should bear
in mind that we only dealt with the physiological and agronomical aspects of DI—crop response to
different irrigation regimes—without any economic evaluation. The summary can be seen in Table 1.

Table 1. Irrigation management strategies investigated.

Type of Irrigation System

Irrigation Management Strategies
Application Scenarios

Limited Supply Full Supply

Uncontrolled Controlled Controlled Wet Season (WS) Dry Season (DS)

No irrigation NI – – x –
Supplemental irrigation – CDI FI x –
Conventional irrigation – CDI FI – x

CDI, controlled deficit irrigation; FI, full irrigation; NI, no irrigation.

The OCCASION framework was adapted and used to assess the five irrigation management
strategies mentioned above (Figure 3). The adapted framework consists of: (i) a weather generator for
simulating long climate time series; (ii) the AquaCrop model, which was used to simulate the irrigation
system during the growing season and the yield response of maize to the considered irrigation
management strategies (Figure 3, Loop 1); and (iii) a problem-specific algorithm for optimal irrigation
scheduling with limited water supply (Figure 3, Loop 2). The latter is named Global Evolutionary
Technique for OPTimal Irrigation Scheduling (GET-OPTIS) (For more details, see [33]). A range of
given maximum volumes of water is then assigned; a complete CWPF can be derived. The produced
CWPF characterizes the maximum yields that can be attained with a given amount of water and is
designated the potential CWPF. Then, the crop simulation model was run for a long-term climate time
series data yielding a necessary amount of CWPFs. Also, optimized irrigation schedules are obtained.
Subsequently, the resulting CWPFs were analyzed, and the SCWPFs obtained through parameters of
descriptive statistics such as mean, median, and probability of exceedance, among others. SCWPFs
are empirical probability functions where, for every volume of applied irrigation water, the marginal
distribution function of the yield related to it can be derived. The probability of exceedance represents
the reliability that a specific yield can be achieved [32].

2.2.2. Processing of Climate Data and Set-Up of the LARS Weather Generator

Historical weather observations, including daily maximum temperature, daily minimum
temperature, daily rainfall, daily wind speed, daily minimum humidity, and daily maximum humidity
were obtained from the nearest meteorological station to the study site—courtesy of the National
Weather Service of Togo. These daily weather data available at the station range from 1983 to 2011. In
addition, the observed monthly rainfall and maximum and minimum temperatures data from 1980 to
2016 were provided. These monthly data were utilized to characterize the climate of northern Togo
with the climate diagram of Walter and Lieth [55]. The Dapaong meteorological station is located at
latitude 10◦51′44.10′ ′ N, longitude 0◦12′27.43′ ′ E, and altitude 330 m above sea level (Figure 1). The
solar radiation data, as well as sunshine hours data, were not available at Dapaong weather station. As
a substitute, the uncorrected gridded incident solar radiation from the Prediction of Worldwide Energy
Resource dataset from the National Aeronautics and Space Administration project NASA-POWER [58]
was utilized. Van Wart et al. [59] showed that NASA-POWER is a good source of climate data for crop
yields simulation studies. It is publicly accessible, shows acceptable general agreement with ground
data for incident solar radiation, and has been used by similar previous studies (See Section 2.2.4).
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Figure 3. General framework for generating stochastic crop water production functions (adapted from
Schütze and Schmitz [36]).

Since the 29-year period (1983–2011) of weather data is not long enough to be used in the
assessment of climate variability effect on crop yield, the Long Ashton Research Station Weather
Generator version 4.0 (LARS-WG)—a stochastic weather generator—was used to generate a 100-year
period of near future climate data. In this study, out of the existing weather generators, LARS-WG
was used for two reasons. Firstly, it uses more complex distributions for weather variables and has
been tested for diverse climates and found to be better than some other weather generators such as
WGEN [60] (Appendix A). Secondly, Semenov [61] recently tested LARS-WG at different locations
across the world and revealed its ability to model rainfall extremes with acceptable performance.
Similarly, Mehan et al. [62] provided insights into the suitability of LARS-WG for use with water
resource applications. Guo et al. [63] suggested performing more than a single realization when
generating weather data using LARS-WG for hydrologic and environmental applications. We assessed
the performance of the LARS-WG in simulating weather data of Dapaong by comparing the observed
and the simulated data with the Kolmogorov–Smirnov test (KS-test). We used the KS-test for the
comparison of the probability distributions for each month. The KS-test is a non-parametric and
distribution-free test that tries to determine if two datasets are extensively different and come from
different distributions. It is an alternative to the Chi-square goodness of fit test. The KS-test compares
the two empirical distribution functions as in Equation (1) [64].

D = |E1(i)− E2(i)| (1)

where E1 and E2 represent the empirical distribution functions of the two distributions, and D is the
absolute difference between them.

The KS-test examines for changes in distributions coming from the generated and observed
weather. The KS-test calculates a test statistic and an equivalent p-value [65]. It shows how likely it
is that the generated and observed data originate from the same distribution. If the p-value is very
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low and below the significance level, set to 0.01 or 0.05, the simulated climate is unlikely to be the
same as the “true” climate. Although a p-value of 0.05 is the standard significance level employed in
most statistics, the authors of the LARS-WG model recommended that a p-value of 0.01 should be
considered as the satisfactory significance level.

The calibrated LARS-WG for Dapaong was then used to forecast the 100-year daily rainfall and
temperature data mentioned above for a near future. For this, the outputs of the General Circulation
Models (GCMs) HADCM3 (Hadley Centre Coupled Model version 3) of the IPCC Special Report on
Emission Scenarios (SRES) A2 were inputted into LARS-WG. The HADCM3 is the product of the UK
Meteorological Office, gridded as 2.5◦ × 3.75◦. These long-term data were used to run the AquaCrop
model to assess the five irrigation management strategies.

2.2.3. Description and Set-Up of the Crop Simulation Model

AquaCrop, a water-driven crop simulation model, was developed in 2009 by the Food and
Agriculture Organization (FAO) of the United Nations [38–40]. The development of the AquaCrop
model is based on the algorithm of yield response to water in FAO Irrigation and Drainage Paper No.
33 [66]. AquaCrop evolves from the previous Doorenbos and Kassam [66] Ky approach (Equation (2)),
where relative evapotranspiration (ET) is pivotal in calculating yield.

(Yx − Ya)

Yx
= Ky

[
(ETx − ETa

ETx

]
(2)

where Yx and Ya are the maximum and actual yield, respectively; ETx and ETa are the maximum and
actual evapotranspirations, respectively; and Ky is the proportionality factor between relative yield
loss and relative reduction in evapotranspiration.

AquaCrop simulates crop yield in four steps: crop development, crop transpiration, biomass
formation, and yield formation [40]. Four water stress response coefficients are considered in the model.
These are related to canopy expansion, stomatal conductance, canopy senescence, and harvest index [67].

2.2.4. Soil Data and Calibration of the Crop Simulation Model

We retrieved the physical characteristics data of soils in Dapaong from Poss [68]. These measured
soil physical characteristics were used as input into the Soil Water Hydraulic Properties Calculator
(http://hydrolab.arsusda.gov/soilwater/Index.htm) to compute various soil hydraulic parameters
required to run AquaCrop. We used this soil water hydraulic properties calculator because it has been
employed in previous studies in the West African region (e.g., Akumaga et al. [69]). These include
volumetric soil water content at field capacity, permanent wilting point, saturation, and saturated hydraulic
conductivity (Table 2). Poss [68] classified the soil of Dapaong as sandy loam. According to the World
Reference Base for Soil Resources, the soil in northern Togo is characterized Dystric-Ferric Luvisols [70,71].

Table 2. The soil description and properties of Dapaong (See Poss [68]).

Soil Depth (cm)

Texture
OM
(%)

dB
(g/cm)

SAT
(Vol.%)

FC
(Vol.%)

PWP
(Vol.%)

Ksat
(mm/da) Textural ClassSand

(%)
Silt
(%)

Clay
(%)

0–20 72.5 20.5 7.0 1.5 1.5 42.7 13.3 5.3 1252.6 Sandy Loam
20–50 72.0 19.0 9.0 0.9 1.6 40.8 13.5 5.9 503.0 Sandy Loam
50–110 66.5 18.0 15.5 0.7 1.6 39.9 18.3 10.0 239.5 Sandy Loam

FC, field capacity; PWP, permanent wilting point; SAT, saturation (SAT); Ksat, saturated hydraulic conductivity; dB,
soil bulk density; OM, organic matter content in the soil.

Regarding the crop parameters, some of them were assumed to be conservative. The values
of conservative parameters used in our study are the same as values proposed by FAO [72] (not
presented here). The others, non-conservative or crop-specific, were estimated using measured data
retrieved from the ITRA [51], Didjeira et al. [52], and Worou and Saragoni [73] studies conducted in
northern Togo (Table 3). These data were used to fine-tune the maize parameters to the local agronomic

http://hydrolab.arsusda.gov/soilwater/Index.htm
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and management conditions of the study area before running the simulations in AquaCrop. These
parameters include information about sowing, canopy cover, canopy senescence, flowering, rooting
depth, harvest index, soil management, and the maize cultivar used. Regarding the calibration of
the canopy cover, we used the options in AquaCrop to estimate the initial canopy cover (CCo) from
sowing rate, seed weight, seed number and estimated germination rate. Subsequently, the canopy
expansion rates were automatically estimated by AquaCrop after we entered the phenological dates
such as dates of emergence, maximum canopy cover, senescence and maturity. The AquaCrop model
simulations were run in growing degree day (GDD) calculated from temperature data used as climate
input. Geerts et al. [74], Salemi et al. [75], and Silvestro et al. [76] reported on the most sensitive
parameters in AquaCrop obtained through sensitivity analysis testing. The essential crop-specific
parameters used to calibrate the AquaCrop model for simulating maize growth and productivity for
the study area are presented in Table 3. It should be noted that the calibration of AquaCrop model in
this study is preliminary, thus the conclusions that emanated from the simulations are qualitative. The
main idea was to compare the irrigation management strategies assessed in this study qualitatively.

Table 3. Non-conservative parameters adjusted and agronomic information for Dapaong, Togo.

Parameter Description Value Units or Meaning

Time from sowing to emergence 7 (135) DAP(GDD)
Time to maximum canopy cover 60 (1109) DAP(GDD)
Time from sowing to maximum rooting depth 67 (1257) DAP(GDD)
Time from sowing to start of canopy senescence 76 (1408) DAP(GDD)
Time from sowing to maturity 100 (1898) DAP(GDD)
Time from sowing to flowering 54 (1018) DAP(GDD)
Duration of flowering 10 (183) DAP(GDD)
Length of building up HI 42 (778) DAP(GDD)
Maximum effective rooting depth, Z 1 meter
Minimum effective rooting depth, Zn 0.3 meter
Reference harvest index, HI 50 %
Cultivar (TZEE-W) – TZEE-W
Planting method – Direct sowing
Planting density 62,500 Plants/ha
Soil fertility 65 Moderate (%)
Surface mulches 0 %
Curve number, CN 66 –
Readily Evaporable water, REW 2 mm

DAP, days after planting; GDD, growing degree days; HI, harvest index.

Table 4 summarizes the potential and selected sources of the input data used in this study and
reasons for selecting these specific sources.

Table 4. Input data sources.

Type of Data Possible Sources Selected Sources for the Study Reasons of Selecting Specific
Sources for the Study

Temperature, rainfall, wind
speed, and humidity

-Local meteorological station
-Observed data online (NOAA, etc.)
-Satellite data (NASA, etc.)

Local meteorological station Observed data with no
missing values

Solar radiation and
sunshine hours

-Observed data online (NOAA,
etc.)
-Satellite data (NASA, etc.)

Satellite data
(NASA-POWER project)

Publicly accessible, shows
acceptable general agreement

with ground data

Soil data

-Poss [68]
-National soil survey
-FAO Harmonized World Soil
Database
-ISRIC Soil Geographic Databases

Poss [68] Publicly accessible and with
good resolution (field)

Crop data:
conservative parameters AquaCrop manual AquaCrop manual In line with AquaCrop model

Crop data:
non-conservative parameters

-AquaCrop manual
-ITRA [51], Didjeira et al. [52], and
Worou and Saragoni [73]

ITRA [51], Didjeira et al. [52],
and Worou and Saragoni [73]

Specific to the maize variety
used in the study
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2.2.5. Optimal Irrigation Scheduling with Limited Water Supply

Matlab, AquaCrop interface, and Plugin-ACsaV40 (version 4; http://www.fao.org/aquacrop/
en/) were used to simulate multiple projects for successive years. The soil and crop phenological data
described in Tables 2 and 3, respectively, were used to calibrate AquaCrop. First, AquaCrop was run
for a given amount of irrigation water for the maize crop under a specific climate scenario during the
dry season of the Dapaong area. GET-OPTIS was employed as irrigation scheduling optimizer and
crop yield maximizer. Then, we iterated over a range of given water volumes. As a result, a complete
crop-water production function (CWPF) was derived. The 100-year maize crop simulations were run
for the wet season as well as the dry season to assess the irrigation management strategies described
above, in northern Togo.

3. Results and Discussion

3.1. Traits of the Climate in Dapaong

The temperature is high during the dry season reaching 37 ◦C and 26 ◦C maximum and minimum
temperatures, respectively, while, in the wet season, the maximum temperature is 30 ◦C and the minimum
temperature is close to 26 ◦C (Figure 4a). Due to these high temperatures, especially in the dry season, it
is likely that the evapotranspiration is relatively high in the area. This argument is corroborated by
Djaman and Ganyo [77] who found that the potential annual reference evapotranspiration—computed
using the FAO-56 Penman–Monteith method—in northern Togo is higher than 1800 mm on average.Water 2018, 10, x FOR PEER REVIEW 11 of 23 
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Figure 4. (a) Monthly mean temperature; and (b) mean total rainfall from November to April in
Dapaong, Togo (1980–2016).

Figure 4b depicts the mean total rainfall during the dry season (November–April) in Dapaong
district. The rainfall recorded during the dry season varies significantly from year to year. On average,
the total rain that falls within this period is lower than 85 mm. In some years, the volume of rain which
falls in the same period is up to 100 mm. The highest amount was reached in 2006/2007 (216 mm).
Globally, this rainfall occurs on an average of five days only. Thus, none of the main cereals grown
in the area such as maize, millet, and sorghum can survive under the dry season climatic conditions
without an additional water supply. These findings prove again the fact that farmers only grow crops
during the wet season. Overall, the climate of Dapaong in northern Togo is unfavorable to agricultural
activities throughout the year because of its vagaries and uncertainties compromising crop yield. These
results are in agreement with studies by Ogounde and Abotchi [16].

http://www.fao.org/aquacrop/en/
http://www.fao.org/aquacrop/en/
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3.2. Validation and Application of the LARS Weather Generator

The LARS-WG model showed robust compliance between observed and simulated data for
the maximum as well as minimum temperatures (Table 5). These findings showed no significant
differences between the observed and simulated temperatures for all months. All p-values were close
to one. It means that the observed and simulated data were from the same distribution. Therefore,
based on these results, we conclude that the performance of the LARS-WG model in simulating the
climatic variables such as minimum and maximum temperatures of Dapaong district is satisfactory.
Similar results were obtained by Semenov et al. [60] at 18 sites in the USA and Europe. However, the
standard deviations of the monthly mean simulated values are less than half of the standard deviations
of observed values for all months. This means that the extreme temperature values in the minimum
and maximum temperatures simulated are smaller than in the observed data.

The observed and simulated rainfall values for most of the months do not correlate significantly
(Table 5). This result agrees with studies by Osman et al. [78] in Iraq. However, there are significant
differences between December and January, when LARS-WG was incapable of reproducing the
observed rainfall, partly because these periods are the driest during the dry season. The standard
deviations of the monthly mean rainfall of observed and predicted values are similar for January,
February, and April (Table 5). These results imply that there are fewer extreme rainfall values in the dry
months, which are of our interest in this study. Overall, the performance of LARS-WG in predicting
the rainfall of the Dapaong area is at an acceptable level. It means that the quality of the long-term
data that were generated based on these calibration results is not affected.

3.3. Evaluation of Irrigation Management Strategies

3.3.1. Wet Season—Rainfed and Supplemental Irrigation Systems

â Maize Crop under Rainfed Conditions (WS-NI)

While Figure 5a shows the results of the expected maize crop yields that can be achieved during
the rainfed cropping system, Figure 5b portrays the rainfall statistics within the same period. The
volume of rainwater that falls within the cropping period of the wet season in Dapaong ranges from
450 mm to 1100 mm approximately. The frequency of the rainfall is high, between 600 mm and 900 mm
(Figure 5b). The distribution of the expected rainfed yields is moderately skewed left with a higher
coefficient in absolute values (1.91) (Figure 5a). The standard deviation of the expected yields obtained
under rainfed conditions is higher than in the case of irrigated maize, regardless of the volume of
water used, in northern Togo (See Section 3.3.2). These results show that the variability, as well as
the uncertainty, in the yields, are higher under the rainfed conditions (WS-NI) than under the dry
season CDI and FI. The high variability under rainfed conditions is likely due to inadequate rainfall
distribution and dry spells in the wet season [79]. On average, the expected maize crop yield achieved
in the wet season is 3.5 Mg/ha (Figure 5a). These results agree with the findings by Didjeira et al. [52]
who indicated the range of 3.5–5 Mg/ha as the expected yield for the maize variety used in this study.
Similarly, these results are in line with that of Fosu-Mensah [80] who reported that, in sub-humid
Ghana under projected climate change (2030–2050) for scenario A1B of IPCC, the rainfed maize grain
yield varies from 3.16 Mg/ha to 4.09 Mg/ha. Therefore, the calibrated AquaCrop model in this study
performs well. These results can be improved if data on more site-specific parameters are made
available. Akumaga et al. [69] suggested that the AquaCrop model can be utilized as a tool in the
study and modeling of maize productivity in West African region.
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Table 5. Kolmogorov–Smirnov test statistics for rainfall, maximum and minimum temperatures in Dapaong.

Month
RAINFALL MAXIMUM TEMPERATURE MINIMUM TEMPERATURE

SD of Observed Data SD of Simulated Data K-S p-Value SD of Observed Data SD of Simulated Data K-S p-Value SD of Observed Data SD of Simulated Data K-S p-Value

January 0.11 0.17 0.57 0.00 1.34 0.46 0.11 1.00 1.60 0.52 0.05 1.00
February 14.89 13.89 0.17 0.84 1.24 0.41 0.16 0.91 1.66 0.48 0.11 1.00

March 19.53 31.90 0.15 0.94 0.73 0.28 0.11 1.00 1.04 0.36 0.16 0.91
April 44.99 43.27 0.11 1.00 0.95 0.43 0.11 1.00 0.84 0.43 0.11 1.00
May 38.39 44.09 0.05 1.00 1.25 0.40 0.11 1.00 0.83 0.38 0.11 1.00
June 54.58 53.28 0.03 1.00 0.89 0.32 0.05 1.00 0.72 0.30 0.05 1.00
July 69.68 85.13 0.05 1.00 0.72 0.37 0.05 1.00 0.57 0.26 0.05 1.00

August 85.44 99.96 0.06 1.00 0.60 0.30 0.05 1.00 0.57 0.26 0.11 1.00
September 61.77 68.39 0.08 1.00 0.58 0.37 0.05 1.00 0.58 0.25 0.05 1.00

October 43.20 57.00 0.01 1.00 1.04 0.40 0.11 1.00 0.83 0.27 0.05 1.00
November 12.00 15.73 0.13 0.98 0.83 0.26 0.11 1.00 1.34 0.34 0.11 1.00
December 5.66 10.98 0.26 0.36 1.04 0.43 0.05 1.00 1.38 0.44 0.05 1.00

SD, standard deviation; K-S, Kolmogorov-Smirnov test coefficient.
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Figure 5. Histogram of distributions of: (a) expected yield of maize grown in a rainfed system (WS-NI); and (b) the rainfall during the wet season in Dapaong.
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â Maize under Supplemental Irrigation (WS-CDI and WS-FI)

To improve yield while reducing its variability at the same time, one may apply supplemental
irrigation during the rainfed cropping system whenever the crops are experiencing severe water
stress, and rainfall is not occurring. The stochastic crop-water production functions for supplemental
irrigation conditions are shown in Figure 6a. It can be hypothesized that, when more than 150 mm
supplemental irrigation water is applied, the variation in the resulting expected crop yield is likely
due to the variation of temperature and radiation in the area. These assumptions are supported by
the nearly symmetric distributions of the corresponding expected crop yields (Figure 6a). Besides,
at volumes of supplemental water lower than 150 mm, the variation in the expected crop yield can
result from the combined effects of the uneven distribution of rainfall and the climate parameters
mentioned above. The 90% of SCWPF exceedance probability of yield achievement seems to be
the best option for enhancing food security in northern Togo. This might be because it is the only
option which helps to achieve the highest level of crop yield improvement (15% or more) (Figure 6a).
Applying supplemental irrigation in northern Togo for maize crop cultivation will not only contribute
to improving crop grain yield and enhancing food security [81–83] but also help to improve farmers’
livelihood. Nevertheless, supplemental irrigation alone cannot improve the rainfed yields significantly;
it needs to be combined with other field management aspects such as soil preparation and fertility,
pests and diseases management, and the choice of suitable crop varieties. It can be concluded that
CWPF is a useful planning tool to assess water requirement for crops, especially in water-scarce regions.
Heng et al. [84] and Stricevic et al. [85] reported that, due to its sufficient degree of simulation accuracy,
the AquaCrop model is a valuable tool for estimating crop productivity under rainfed conditions,
deficit and supplemental irrigation, and on-farm water management strategies for improving the
efficiency of water use in agriculture.
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yields may be improved in northern Togo by applying supplemental irrigation assuming that water 
is available. 

Figure 6. Stochastic crop-water production function for: (a) rainfed and supplemental irrigated
systems in the wet season; and (b) optimized conventional irrigation system in the dry season for
maize in Dapaong.

Figure 7 shows the detailed results of the expected yields at various amounts of supplemental
irrigation water. With supplemental irrigation (WS-CDI), the rainfed yield increased from 3.48 Mg/ha
to 3.74 Mg/ha. The yield becomes constant when the volume of water applied is equal to or greater
than 150 mm. Then, the variability in the yields as well as the skewness decreases in absolute value.
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These results imply that supplemental irrigation is beneficial up to 150 mm. Above this value, the
advantages of supplemental irrigation (WS-FI) become insignificant. Therefore, rainfed maize crop
yields may be improved in northern Togo by applying supplemental irrigation assuming that water
is available.Water 2018, 10, x FOR PEER REVIEW 15 of 23 
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Figure 7. Histogram of distributions of expected yield using water for supplemental irrigation of maize
in the wet season in Dapaong: (a) 50 mm; (b) 100 mm; and (c) 150 mm (WS-CDI); and (d) 200 mm;
(e) 250 mm; and (f) 350 mm (WS-FI).

3.3.2. Dry Season—Conventional Irrigation System (DS-CDI and DS-FI)

Figure 6b shows the stochastic crop-water production functions (SCWPF) for optimized irrigated
maize crop in the dry season in northern Togo. The quantile percentage represents the probability
of exceedance. Since rainfall can be ruled out, it is believed that, when the optimal full irrigation
conditions are met, the variation of temperature and radiation can explain the variability in the
expected crop yield. These assumptions are corroborated by the nearly symmetric distributions of
the expected crop yields at full irrigation (Figure 8). These findings are supported by the results
presented by Schütze and Schmitz [36]. These two parameters are part of the yield defining factors,
as highlighted in the papers explaining the principles of ecology production [86]. In addition, for
volumes of water lower than full irrigation, the variation in the expected crop yield can result from
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the combined effects of drought stress on crops and the climate parameters mentioned above. The
maximum expected yields were 4.79 Mg/ha (90% quantile) and 4.89 Mg/ha (10% quantile) at near full
irrigation (600 mm) (Figure 6b). The controlled deficit irrigation ranges from 0 to 600 mm for maize
in northern Togo. The DS-CDI strategy seems to save water with an insignificant reduction in the
grain yield relative to full irrigation [87–92]. Overall, growing maize crop in the dry season in northern
Togo may be feasible under CDI if water is available. Irrigation is vital for improving crop yield and
stabilizing crop production [93] amidst the threats of climate change [94].
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Figure 8. Histogram of distributions of expected yield using water for irrigation of maize in the dry
season in Dapaong: (a) 150 mm; (b) 200 mm; (c) 400 mm; (d) 450 mm; and (e) 500 mm (DS-CDI); and
(f) 600 mm (DS-FI).

In Figure 8, detailed results of the expected yields at various amounts of irrigation water are given.
There is a change in the histogram distribution among the various volumes of irrigation water. The
average expected yields concerning the amount of irrigation water used range from 3.16 Mg/ha to
4.84 Mg/ha at 150 mm and 600 mm, respectively. With the increasing application of irrigation water
(DS-CDI), the yield increases to a level at which additional water supply fails to raise the crop yield
any further (around 600 mm). Thus, the latter volume of water is assumed to be near full irrigation.
The frequency distribution shows a positive sign for all the histograms. The coefficients of skewness
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of the expected yields for 150 mm, 200 mm, and 400 mm water volumes are 1.63, 2.85, and 3.18,
respectively. On the contrary, at 600 mm volume of water (DS-FI), the distributions of the expected
yields are symmetrical. In addition, the standard deviation is relatively low for the yields at these
volumes of water. Abedinpour et al. [95] reported that the AquaCrop model can predict maize yield
with acceptable accuracy under variable irrigation in a semi-arid environment.

3.4. Summary of the Discussion

The variability in rainfall during the wet season (WS-NI) was high, inducing a considerable
variability in the expected yield for rainfed conditions. The variability in the expected yield would
decrease significantly if supplemental irrigation (WS-CDI or WS-FI) were applied. At the same time,
supplemental irrigation would improve the expected yields and contribute to avoiding crop failure.
The dry season irrigation management strategies (DS-CDI and DS-FI) would increase yield potential
and decrease the variability of expected yield at the same time. Thus, the application of supplemental
or dry season irrigation management strategies investigated in this study would help to enhance food
availability in the West African region.

There are a few caveats that readers should keep in mind when interpreting the results of
this study: The AquaCrop model in this study was calibrated with crop and soil data retrieved
from previous studies conducted in the area. Thus, the conclusions derived from the outputs of
the model simulation are qualitative—ranking of the irrigation management strategies assessed
in the study. There are several uncertainties in the general circulation model outputs as well as
crop model simulations. The uncertainties related to crop yield exist because AquaCrop assumes a
disease- and pest-free environment and considers no effect of weed or extreme climate events such
as flooding. Another point worth considering is that, by concluding that there is potential for deficit
and supplemental irrigation for maize crop in northern Togo, we assumed that a proper soil fertility
management is guaranteed, and water is available for irrigation management. Finally, it is important
to note that substantial investments in irrigation infrastructure, as well as extension services to farmers,
would be necessary to enhance food security in northern Togo. The calibrated crop model needs to be
validated with experimental data to improve the accuracy of the resulting simulations.

4. Conclusions

The AquaCrop model was used to assess the potential of deficit and supplemental irrigation in
the dry savannah area of northern Togo under climate variability. For this, the climate of the study
area was characterized. The performance of the weather generator used to produce the long-term time
series climate data for the crop simulation was also evaluated. In summary, the climate of northern
Togo is unimodal with the dry season ranging from November to April. According to Köppen–Geiger’s
classification, the climate is hot semi-arid in northern Togo. During the dry season the mean maximum
and minimum temperatures are 35 ◦C and 25 ◦C, respectively, and the mean total rainfall is 85 mm. In
short, the performance of the LARS Weather Generator in predicting the climate of northern Togo was
found satisfactory. Overall, we found that the deficit irrigation water requirement ranges from 0 to
600 mm. The maximum expected maize grain yield that can be reached under irrigated conditions is
4.84 Mg/ha with TZEE-W local variety. The rainfed yield can be improved from 3.48 to 3.74 Mg/ha
with 150 mm of supplemental irrigation water. At the same time, the variability in the yield was
significantly reduced. Irrigation practice in agriculture helps to lower crop yield variability as well as
crop failure.

Thus, growing maize crop in the dry season in northern Togo may be feasible. In general,
irrigation can help to alleviate food insecurity, while supplemental irrigation is a climate-related
management practice for crop yield improvement. The latter also contributes to improving farmers’
livelihood. Further maize crop genetic improvements would be needed to fine-tune the seeds to the
dry season climate. Irrigation infrastructures would be needed to implement in northern Togo the
irrigation management strategies investigated in this study. In addition, realistic irrigation water
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pricing and cost recovery policies should be enforced and followed by all stakeholders to maintain
the irrigation infrastructures and ensure the viability of the system. Institutional reforms relevant
to the development and management of irrigation systems should be made. The complicated land
tenure issue in northern Togo needs to be addressed to incentivize investment in, and management of,
irrigation systems. Moreover, the institutional arrangement—market and connectivity among farmers
and other agents—should be improved.

To develop regional water management strategies, the adapted framework used in this study may
be applied to other sites in the West African region. Field experiments are needed to validate the results
of this study before the implementation of its recommendations. In addition, the framework can be
extended by adding a soil variability dimension to it. The analysis can be made more comprehensive
by considering farmers’ socioeconomic characteristics.
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Appendix A

List of Abbreviations
APSI Agricultural Production Systems Simulator
MCDI Controlled Deficit Irrigation
CWPF Crop-Water Production Functions
DAISY Danish simulation model for transformation and transport of energy and matter in the soil plant atmosphere system
DAP Days After Planting
DI Deficit Irrigation
DS Dry Season
DSSAT Decision Support System for Agrotechnology Transfer
FI Full Irrigation
GET-OPTIS Global Evolutionary Technique for OPTimal Irrigation Scheduling
GDD Growing Degree Days
HI Harvest index
ICID International Commission on Irrigation and Drainage
IPCC Intergovernmental Panel on Climate Change
ISRIC International Soil Reference and Information Centre
ITRA Togolese Institute of Agricultural Research
LARS-WG Long Ashton Research Station Weather Generator
MERF Togolese Ministry of the Environment and Forestry
NI No Irrigation
OCCASION Optimal Climate Change Adaption Strategies in Irrigation
PILOTE An operative crop model for soil water balance and yieldestimations under conventional tillage
REW Readily Evaporable Water
SCWPF Stochastic Crop-Water Production Functions
SI Supplemental Irrigation
SSA Sub-Saharan Africa
WGEN Weather Generator
WS Wet Season

References

1. UN DESA. World Population Prospects: The 2015 Revision, Key Findings and Advance Tables; UN DESA: New York,
NY, USA, 2015.



Water 2018, 10, 1803 18 of 22

2. UN DESA. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; UN DESA: New York,
NY, USA, 2017.

3. FAO. Climate-Smart Agriculture Sourcebook; FAO: Rome, Italy, 2013; ISBN 978-92-5-107720-7.
4. Liniger, H.; Mekdaschi Studer, R.; Hauert, C.; Gurtner, M. Sustainable Land Management in Practice: Guidelines

and Best Practices for Sub-Saharan Africa; TerrAfrica, World Overview of Conservation Approaches and
Technologies (WOCAT) and Food and Agriculture Organization of the United Nations (FAO): Rome, Italy,
2011; ISBN 9789250000000.

5. Elliott, J.; Deryng, D.; Müller, C.; Frieler, K.; Konzmann, M.; Gerten, D.; Glotter, M.; Flörke, M.; Wada, Y.;
Best, N.; et al. Constraints and potentials of future irrigation water availability on agricultural production
under climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3239–3244. [CrossRef] [PubMed]

6. Edgerton, M.D. Increasing Crop Productivity to Meet Global Needs for Feed, Food, and Fuel. Plant Physiol.
2009, 149, 7–13. [CrossRef] [PubMed]

7. World Bank. World Development Report 2008: Agriculture for Development; World Bank: Washington, DC, USA, 2008.
8. Rosegrant, M.W.; Paisner, M.S.; Siet, M.; Witcover, J. 2020 Global Food Outlook; International Food Policy

Research Institution: Washington, DC, USA, 2001; pp. 1–24.
9. van Ittersum, M.K.; van Bussel, L.G.J.; Wolf, J.; Grassini, P.; van Wart, J.; Guilpart, N.; Claessens, L.;

de Groot, H.; Wiebe, K.; Mason-D’Croz, D.; et al. Can sub-Saharan Africa feed itself? Proc. Natl. Acad.
Sci. USA 2016, 113, 14964–14969. [CrossRef] [PubMed]

10. Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012,
160, 1686–1697. [CrossRef] [PubMed]

11. Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and
impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [CrossRef]

12. Druyan, L.M. Studies of 21st-century precipitation trends over West Africa. Int. J. Climatol. 2011, 31,
1415–1424. [CrossRef]

13. Sarr, B. Present and future climate change in the semi-arid region of West Africa: A crucial input for practical
adaptation in agriculture. Atmos. Sci. Lett. 2012, 13, 108–112. [CrossRef]

14. Ministère de l’Environnement et des Ressources Forestières (MERF). Plan d’Action National d’Adaptation aux
Changements Climatiques (PANA); MERF: Lome, Togo, 2009. (In French)

15. Mcsweeney, C.; New, M.; Lizcano, G. UNDP Climate Change Country Profiles, Togo; School of Geography and
Environment, Oxford University: Oxford, UK, 2009.

16. Ogounde, L.; Abotchi, T. Quelques contraintes à la croissance Agricole dans la région des Savanes du Nord-Togo.
Bulletin de la société Neuchâteloise de Geographie; Société Neuchâteloise de Geographie: Neuchâtel, Switzerland,
2003. (In French)

17. Dobermann, A.; Nelson, R.; Beever, D.; Bergvinson, D.; Crowley, E.; Denning, G.; Griller, K.; d’Arros
Hughes, J.; Jahn, M.; Lynam, J.; et al. Solutions for Sustainable Agriculture and Food Systems—Technical Report
for the Post-2015 Development Agenda; The United Nations Sustainable Development Solutions Network
(UNSDSN): New York, NY, USA, 2013.

18. Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; De Clerck, F.;
Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global
sustainability. Ambio 2017, 46, 4–17. [CrossRef]

19. Godfray, H.C.J.; Garnett, T. Food security and sustainable intensification. Philos. Trans. R. Soc. Lond. B. Biol. Sci.
2014, 369, 1–10. [CrossRef]

20. Bolor, J.K. Analyse de l’état actuel de développement de l’irrigation au Togo. In Irrigation in West Africa:
Current Status and a View to the Future; Namara, R.E., Sally, H., Eds.; International Water Management Institute
(IWMI), Colombo, Sri Lanka: Ouagadougou, Burkina Faso, 2010; pp. 305–312.

21. Jalloh, A.; Nelson, G.C.; Thomas, T.S.; Zougmoré, R.; Roy-Macauley, H. West African Agriculture and
Climate Change: A Comprehensive Analysis; IFPRI Research Monograph; International Food Policy Research:
Washington, DC, USA, 2013.

22. International Commission on Irrigation and Drainage (ICID). Basic Introduction: Irrigation. Available online:
http://www.icid.org/res_irrigation.html (accessed on 10 September 2018).

23. Rockström, J.; Hatibu, N.; Oweis, T.; Wani, S.; Barron, J.; Bruggeman, A.; Qiang, Z.; Farahani, J.; Karlberg, L.
Managing Water in Rainfed Agriculture. In Water for Food, Water for Life: A Comprehensive Assessment of Water
Management in Agriculture; Molden, D., Ed.; Earthscan: London, UK, 2007; pp. 315–352.

http://dx.doi.org/10.1073/pnas.1222474110
http://www.ncbi.nlm.nih.gov/pubmed/24344283
http://dx.doi.org/10.1104/pp.108.130195
http://www.ncbi.nlm.nih.gov/pubmed/19126690
http://dx.doi.org/10.1073/pnas.1610359113
http://www.ncbi.nlm.nih.gov/pubmed/27956604
http://dx.doi.org/10.1104/pp.112.208298
http://www.ncbi.nlm.nih.gov/pubmed/23054565
http://dx.doi.org/10.1007/s10668-010-9278-0
http://dx.doi.org/10.1002/joc.2180
http://dx.doi.org/10.1002/asl.368
http://dx.doi.org/10.1007/s13280-016-0793-6
http://dx.doi.org/10.1098/rstb.2012.0273
http://www.icid.org/res_irrigation.html


Water 2018, 10, 1803 19 of 22

24. Pereira, L.S. Higher performance through combined improvements in irrigation methods and scheduling:
A discussion. Agric. Water Manag. 1999, 40, 153–169. [CrossRef]

25. English, M.J.; Nuss, G.S. Designing for Deficit Irrigation. J. Irrig. Drain. Div. 1982, 108, 91–106.
26. Djaman, K.; Irmak, S.; Rathje, W.R.; Martin, D.L.; Eisenhauer, D.E. Maize evapotranspiration, yield

production functions, biomass, grain yield, harvest index, and yield response factors under full and limited
irrigation. Am. Soc. Agric. Biol. Eng. 2013, 56, 273–293.

27. English, M. Deficit Irrigation. I: Analytical Framework. J. Irrig. Drain. Eng. 1990, 116, 399–412. [CrossRef]
28. English, M.; Raja, S.N. Perspectives on deficit irrigation. Agric. Water Manag. 1996, 32, 1–14. [CrossRef]
29. Lecler, N.L. Integrated methods and models for deficit irrigation planning. In Agricultural Systems Modeling

and Simulation; Lecler, N.L., Peart, R.M., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1998; pp. 283–299.
30. Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2006, 58, 147–159.

[CrossRef] [PubMed]
31. Kögler, F.; Söffker, D. Water (stress) models and deficit irrigation: System-theoretical description and causality

mapping. Ecol. Model. 2017, 361, 135–156. [CrossRef]
32. Kloss, S.; Pushpalatha, R.; Kamoyo, K.J.; Schütze, N. Evaluation of Crop Models for Simulating

and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability.
Water Resour. Manag. 2012, 26, 997–1014. [CrossRef]

33. Schütze, N.; De Paly, M.; Shamir, U. Novel simulation-based algorithms for optimal open-loop and
closed-loop scheduling of deficit irrigation systems. J. Hydroinformatics 2012, 14, 136–151. [CrossRef]

34. Semenov, M.A. Development of high-resolution UKCIP02-based climate change scenarios in the UK.
Agric. For. Meteorol. 2007, 144, 127–138. [CrossRef]

35. Brumbelow, K.; Georgakakos, A. Consideration of Climate Variability and Change in Agricultural Water
Resources Planning. J. Water Resour. Plan. Manag. 2007, 133, 275–285. [CrossRef]

36. Schütze, N.; Schmitz, G.H. OCCASION: New Planning Tool for Optimal Climate Change Adaption Strategies
in Irrigation. J. Irrig. Drain. Eng. 2010, 136, 836–846. [CrossRef]

37. Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.;
Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model J.W. Eur. J. Agron. 2003, 18, 235–263. [CrossRef]

38. Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. Aquacrop-The FAO crop model to
simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459.
[CrossRef]

39. Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Aquacrop-The FAO crop model to simulate yield response to
water: II. main algorithms and software description. Agron. J. 2009, 101, 438–447. [CrossRef]

40. Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. Aquacrop-the FAO crop model to simulate yield response to
water: I. concepts and underlying principles. Agron. J. 2009, 101, 426–437. [CrossRef]

41. Hansen, S.; Jensen, H.E.; Nielsen, N.E.; Svendsen, H. DAISY: A Soil Plant System Model. Danish simulation
Model for Transformation and Transport of Energy and Matter in the Soil Plant Atmosphere System; The National
Agency for Environmental Protection: Copenhagen, Denmark, 1990.

42. Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; Food and Agriculture
Organization of the United Nations, Ed.; FAO irrigation and drainage paper 46; ISBN1 9251031061. Food
and Agriculture Organization of the United Nations: Rome, Italy, 1992; ISBN2 9251031061.

43. Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.;
Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming
systems simulation. Eur. J. Agron. 2003, 18, 267–288. [CrossRef]

44. Mailhol, J.C.; Olufayo, A.A.; Ruelle, P. Sorghum and sunflower evapotranspiration and yield from simulated
leaf area index. Agric. Water Manag. 1997, 35, 167–182. [CrossRef]

45. Iqbal, M.A.; Shen, Y.; Stricevic, R.; Pei, H.; Sun, H.; Amiri, E.; Penas, A.; del Rio, S. Evaluation of the FAO
AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment
to regional yield simulation. Agric. Water Manag. 2014, 135, 61–72. [CrossRef]

46. Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Garcia Vila, M.; Mejias Moreno, P.
AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62,
351–360. [CrossRef]

47. Department of Immigration and Citizenship (DIC). Togolese Community Profile; Department of Immigration
and Citizenship, Commonwealth of Australia: Lomé, Togo, 2007.

http://dx.doi.org/10.1016/S0378-3774(98)00118-8
http://dx.doi.org/10.1061/(ASCE)0733-9437(1990)116:3(399)
http://dx.doi.org/10.1016/S0378-3774(96)01255-3
http://dx.doi.org/10.1093/jxb/erl165
http://www.ncbi.nlm.nih.gov/pubmed/17088360
http://dx.doi.org/10.1016/j.ecolmodel.2017.07.031
http://dx.doi.org/10.1007/s11269-011-9906-y
http://dx.doi.org/10.2166/hydro.2011.073
http://dx.doi.org/10.1016/j.agrformet.2007.02.003
http://dx.doi.org/10.1061/(ASCE)0733-9496(2007)133:3(275)
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000266
http://dx.doi.org/10.1016/S1161-0301(02)00107-7
http://dx.doi.org/10.2134/agronj2008.0218s
http://dx.doi.org/10.2134/agronj2008.0140s
http://dx.doi.org/10.2134/agronj2008.0139s
http://dx.doi.org/10.1016/S1161-0301(02)00108-9
http://dx.doi.org/10.1016/S0378-3774(97)00029-2
http://dx.doi.org/10.1016/j.agwat.2013.12.012
http://dx.doi.org/10.1016/j.envsoft.2014.08.005


Water 2018, 10, 1803 20 of 22

48. RGPH. Recensement Générale de la population et de l’habitat. Direction Générale de la Statistique et de la Comptabilité
Nationale; RGPH: Lomé, Togo, 2010.

49. Ali, E. A review of agricultural policies in independent Togo. Int. J. Agric. Policy Res. 2017, 5, 104–116.
[CrossRef]

50. Poch, R.M.; Ubalde, J.M. Diagnostic of degradation processes of soils from northern Togo (West Africa) as a
tool for soil and water management. In Proceedings of the Workshop for Alumni of the M.Sc. Programmes in Soil
Science, Eremology and Physical Land Resources; Langouche, D., Van Ranst, E., Eds.; Workshop IC-PLR: Ghent,
Belgium, 2006; pp. 187–194.

51. Institut Togolais de Recherche Agronomique (ITRA). Bien cultiver et conserver le maïs. Collection Brochures et
Fiches Techniques; ITRA: Lomé, Togo, 2008. (In French)

52. Didjeira, A.; Adourahim, A.A.; Sedzro, K. Situation de référence sur les principales céréales cultivées au Togo:
Maïs, Riz, Sorgho, Mil; ITRA: Lomé, Togo, 2007.

53. Desplat, A.; Rouillon, A. Diagnostic agraire dans la région des Savanes au Togo: Cantons de Nioukpourma,
Naki-Ouest et Tami; Master de Recherche, Institut des Sciences et Industries du Vivant et de L’environnement,
AgroParisTech: Paris, France, 2011.

54. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification
updated. Meteorol. Z. 2006, 15, 259–263. [CrossRef]

55. Walter, H.; Lieth, H.H.F. Klimadiagramm-Weltatlas; G. Fischer Verlag: Jena, Germany, 1967.
56. Institut National de la Statistique et des Etudes Economiques et Démographiques (INSEED). Profil de pauvreté:

Togo; INSEED: Lomé, Togo, 2016.
57. Institut National de la Statistique et des Etudes Economiques et Démographiques (INSEED). Statistiques

Nationales: Togo 2015. Available online: http://togo.opendataforafrica.org/# (accessed on 13 September 2018).
58. NASA POWER Project-Agroclimatology Data. Available online: https://power.larc.nasa.gov/data-access-

viewer/ (accessed on 10 September 2017).
59. Van Wart, J.; Grassini, P.; Yang, H.; Claessens, L.; Jarvis, A.; Cassman, K.G. Creating long-term weather data

from thin air for crop simulation modeling. Agric. For. Meteorol. 2015, 209–210, 49–58. [CrossRef]
60. Semenov, M.A.; Brooks, R.J.; Barrow, E.M.; Richardson, C.W. Comparison of the WGEN and LARS-WG

stochastic weather generators for diverse climates. Clim. Res. 1998, 10, 95–107. [CrossRef]
61. Semenov, M.A. Simulation of extreme weather events by a stochastic weather generator. Clim. Res. 2008, 35,

203–212. [CrossRef]
62. Mehan, S.; Guo, T.; Gitau, M.; Flanagan, D.C.; Mehan, S.; Guo, T.; Gitau, M.W.; Flanagan, D.C. Comparative

Study of Different Stochastic Weather Generators for Long-Term Climate Data Simulation. Climate 2017, 5,
26. [CrossRef]

63. Guo, T.; Mehan, S.; Gitau, M.W.; Wang, Q.; Kuczek, T.; Flanagan, D.C. Impact of number of realizations on
the suitability of simulated weather data for hydrologic and environmental applications. Stoch. Environ. Res.
Risk Assess. 2018, 32, 2405–2421. [CrossRef]

64. Chakravarti, I.M.; Laha, R.G.; Roy, J. Handbook of Methods of Applied Statistics; Wiley: New York, NY, USA, 1967.
65. Semenov, M.A.; Barrow, E.M. Use of a stochastic weather generator in the development of climate change

scenarios. Clim. Chang. 1997, 35, 397–414. [CrossRef]
66. Doorenbos, J.; Kassam, A.H. Yield Response to Water; FAO Irrigation and Drainage Paper No. 33; FAO: Rome,

Italy, 1979.
67. Greaves, G.E.; Wang, Y.-M. Assessment of FAO AquaCrop Model for Simulating Maize Growth and

Productivity under Deficit Irrigation in a Tropical Environment. Water 2016, 8, 557. [CrossRef]
68. Poss, R. Etude Morphopédologique du Nord du Togo à [au] 1/500,000; Institut français de recherche scientifique

pour le développement en coopération (ORSTOM): Lomé, Togo, 1996.
69. Akumaga, U.; Tarhule, A.; Yusuf, A.A. Validation and testing of the FAO AquaCrop model under different

levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agric. For. Meteorol. 2017, 232, 225–234.
[CrossRef]

70. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil
Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015.

71. Worou, K.S. Sols Dominants du Togo—Corrélation avec la Base de Référence Mondiale. Quatorzième Réunion du
Sous-Comité ouest et Centre Africain de Corrélation des sols. Rapport sur les Ressources en Sols du Monde 98; Food
and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2002. (In French)

http://dx.doi.org/10.15739/IJAPR.17.012
http://dx.doi.org/10.1127/0941-2948/2006/0130
http://togo.opendataforafrica.org/#
https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
http://dx.doi.org/10.1016/j.agrformet.2015.02.020
http://dx.doi.org/10.3354/cr010095
http://dx.doi.org/10.3354/cr00731
http://dx.doi.org/10.3390/cli5020026
http://dx.doi.org/10.1007/s00477-017-1498-5
http://dx.doi.org/10.1023/A:1005342632279
http://dx.doi.org/10.3390/w8120557
http://dx.doi.org/10.1016/j.agrformet.2016.08.011


Water 2018, 10, 1803 21 of 22

72. Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Chapter 2—Users guide. In Reference Manual: AquaCrop, Version
4.0; FAO, Land and Water Division: Rome, Italy, 2012; pp. 1–164.

73. Worou, S.; Saragoni, H. La Culture du Maïs de Contre Saison Est-elle Possible au Togo Meridional? Premières
Conclusions d’une Experimentation sur la Station de Recherche Agronomique d’ativémé; Institut français de
recherche scientifique pour le développement en coopération (ORSTOM): Lomé, Togo, 1988.

74. Geerts, S.; Raes, D.; Garcia, M.; Miranda, R.; Cusicanqui, J.A.; Taboada, C.; Mendoza, J.; Huanca, R.;
Mamani, A.; Condori, O.; et al. Simulating Yield Response of Quinoa to Water Availability with AquaCrop.
Agron. J. 2009, 101, 499–508. [CrossRef]

75. Salemi, H.; Amin, M.; Soom, M.; Lee, T.S.; Farhad Mousavi, S.; Ganji, A.; Kamilyusoff, M. Application of
AquaCrop model in deficit irrigation management of Winter wheat in arid region. Afr. J. Agric. Res. 2011,
610, 2204–2215. [CrossRef]

76. Silvestro, P.C.; Pignatti, S.; Yang, H.; Yang, G.; Pascucci, S.; Castaldi, F.; Casa, R. Sensitivity analysis of the
Aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale
applications. PLoS ONE 2017, 12, 1–30. [CrossRef] [PubMed]

77. Djaman, K.; Ganyo, K. Trend analysis in reference evapotranspiration and aridity index in the context of
climate change in Togo. J. Water Clim. Chang. 2015, 6, 848–864. [CrossRef]

78. Osman, Y.; Abdellatif, M.; Al-Ansari, N.; Knutsson, S.; Jawad, S. Climate Change and Future Precipitation in
Arid Environment of Middle East: Case study of Iraq. J. Environ. Hydrol. 2017, 25, 1–18.

79. Assefa, S.; Biazin, B.; Muluneh, A.; Yimer, F.; Haileslassie, A. Rainwater harvesting for supplemental
irrigation of onions in the southern dry lands of Ethiopia. Agric. Water Manag. 2016, 178, 325–334. [CrossRef]

80. Fosu-Mensah, B.Y. Modelling the Impact of Climate Change on Maize (Zea mays L.) YieLd under Rainfed Conditions
in Sub-Humid Ghana; United Nations University–Institute for Natural Resources in Africa (UNU-INRA):
Accra, Ghana, 2013.

81. Chauhan, C.P.S.; Singh, R.B.; Gupta, S.K. Supplemental irrigation of wheat with saline water. Agric. Water Manag.
2008, 95, 253–258. [CrossRef]

82. Fox, P.; Rockström, J. Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel.
Agric. Water Manag. 2003, 61, 29–50. [CrossRef]

83. Wakchaure, G.C.; Minhas, P.S.; Ratnakumar, P.; Choudhary, R.L. Optimising supplemental irrigation for
wheat (Triticum aestivum L.) and the impact of plant bio-regulators in a semi-arid region of Deccan Plateau in
India. Agric. Water Manag. 2016, 172, 9–17. [CrossRef]

84. Heng, L.K.; Hsiao, T.; Evett, S.; Howell, T.; Steduto, P. Validating the FAO AquaCrop Model for Irrigated and
Water Deficient Field Maize. Agron. J. 2009, 101, 488–498. [CrossRef]

85. Stricevic, R.; Cosic, M.; Djurovic, N.; Pejic, B.; Maksimovic, L. Assessment of the FAO AquaCrop model in
the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agric. Water Manag.
2011, 98, 1615–1621. [CrossRef]

86. Tittonell, P.; Giller, K.E. When yield gaps are poverty traps: The paradigm of ecological intensification in
African smallholder agriculture. Field Crops Res. 2013, 143, 76–90. [CrossRef]

87. Bell, J.M.; Schwartz, R.; McInnes, K.J.; Howell, T.; Morgan, C.L.S. Deficit irrigation effects on yield and yield
components of grain sorghum. Agric. Water Manag. 2018, 203, 289–296. [CrossRef]

88. Greaves, G.E.; Wang, Y.-M. Effect of regulated deficit irrigation scheduling on water use of corn in southern
Taiwan tropical environment. Agric. Water Manag. 2017, 188, 115–125. [CrossRef]

89. Hergert, G.W.; Margheim, J.F.; Pavlista, A.D.; Martin, D.L.; Isbell, T.A.; Supalla, R.J. Irrigation response
and water productivity of deficit to fully irrigated spring camelina. Agric. Water Manag. 2016, 177, 46–53.
[CrossRef]

90. Kifle, M.; Gebretsadikan, T.G. Yield and water use efficiency of furrow irrigated potato under regulated
deficit irrigation, Atsibi-Wemberta, North Ethiopia. Agric. Water Manag. 2016, 170, 133–139. [CrossRef]

91. Li, X.; Kang, S.; Zhang, X.; Li, F.; Lu, H. Deficit irrigation provokes more pronounced responses of maize
photosynthesis and water productivity to elevated CO2. Agric. Water Manag. 2018, 195, 71–83. [CrossRef]

92. Mustafa, S.M.T.; Vanuytrecht, E.; Huysmans, M. Combined deficit irrigation and soil fertility management
on different soil textures to improve wheat yield in drought-prone Bangladesh. Agric. Water Manag. 2017,
191, 124–137. [CrossRef]

93. Lee, S.O.; Jung, Y. Efficiency of water use and its implications for a water-food nexus in the Aral Sea Basin.
Agric. Water Manag. 2018, 207, 80–90. [CrossRef]

http://dx.doi.org/10.2134/agronj2008.0137s
http://dx.doi.org/10.5897/AJAR10.1009
http://dx.doi.org/10.1371/journal.pone.0187485
http://www.ncbi.nlm.nih.gov/pubmed/29107963
http://dx.doi.org/10.2166/wcc.2015.111
http://dx.doi.org/10.1016/j.agwat.2016.10.012
http://dx.doi.org/10.1016/j.agwat.2007.10.007
http://dx.doi.org/10.1016/S0378-3774(03)00008-8
http://dx.doi.org/10.1016/j.agwat.2016.04.004
http://dx.doi.org/10.2134/agronj2008.0029xs
http://dx.doi.org/10.1016/j.agwat.2011.05.011
http://dx.doi.org/10.1016/j.fcr.2012.10.007
http://dx.doi.org/10.1016/j.agwat.2018.03.002
http://dx.doi.org/10.1016/j.agwat.2017.04.008
http://dx.doi.org/10.1016/j.agwat.2016.06.009
http://dx.doi.org/10.1016/j.agwat.2016.01.003
http://dx.doi.org/10.1016/j.agwat.2017.09.017
http://dx.doi.org/10.1016/j.agwat.2017.06.011
http://dx.doi.org/10.1016/j.agwat.2018.05.014


Water 2018, 10, 1803 22 of 22

94. Gunn, K.M.; Baule, W.J.; Frankenberger, J.R.; Gamble, D.L.; Allred, B.J.; Andresen, J.A.; Brown, L.C. Modeled
climate change impacts on subirrigated maize relative yield in northwest Ohio. Agric. Water Manag. 2018,
206, 56–66. [CrossRef]

95. Abedinpour, M.; Sarangi, A.; Rajput, T.B.S.; Singh, M.; Pathak, H.; Ahmad, T. Performance evaluation
of AquaCrop model for maize crop in a semi-arid environment. Agric. Water Manag. 2012, 110, 55–66.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.agwat.2018.04.034
http://dx.doi.org/10.1016/j.agwat.2012.04.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Methods 
	Adapted Framework for the Evaluation of Irrigation Management Alternatives 
	Processing of Climate Data and Set-Up of the LARS Weather Generator 
	Description and Set-Up of the Crop Simulation Model 
	Soil Data and Calibration of the Crop Simulation Model 
	Optimal Irrigation Scheduling with Limited Water Supply 


	Results and Discussion 
	Traits of the Climate in Dapaong 
	Validation and Application of the LARS Weather Generator 
	Evaluation of Irrigation Management Strategies 
	Wet Season—Rainfed and Supplemental Irrigation Systems 
	Dry Season—Conventional Irrigation System (DS-CDI and DS-FI) 

	Summary of the Discussion 

	Conclusions 
	
	References

