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Abstract: Frequent flooding events in recent years have been linked with the changing climate.
Comprehending flooding events and their risks is the first step in flood defense and can help to
mitigate flood risk. Floodplain mapping is the first step towards flood risk analysis and management.
Additionally, understanding the changing pattern of flooding events would help us to develop flood
mitigation strategies for the future. This study analyzes the change in streamflow under different
future carbon emission scenarios and evaluates the spatial extent of floodplain for future streamflow.
The study will help facility managers, design engineers, and stakeholders to mitigate future flood risks.
Variable Infiltration Capacity (VIC) forcing-generated Coupled Model Intercomparison Project phase
5 (CMIP5) streamflow data were utilized for the future streamflow analysis. The study was done on
the Carson River near Carson City, an agricultural area in the desert of Nevada. Kolmogorov–Smirnov
and Pearson Chi-square tests were utilized to obtain the best statistical distribution that represents the
routed streamflow of the Carson River near Carson City. Altogether, 97 projections from 31 models
with four emission scenarios were used to predict the future flood flow over 100 years using a best
fit distribution. A delta change factor was used to predict future flows, and the flow routing was
done with the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) model to obtain
a flood inundation map. A majority of the climate projections indicated an increase in the flood
level 100 years into the future. The developed floodplain map for the future streamflow indicated a
larger inundation area compared with the current Federal Emergency Management Agency’s flood
inundation map, highlighting the importance of climate data in floodplain management studies.
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1. Introduction

A rise in the mean surface temperature around the globe has been observed in recent climatic
records with some warming hole exceptions. The global mean surface temperature in the past three
decades has been higher than that of previous decades [1]. This global warming has induced a rise
in the evaporation of surface water and evapotranspiration over the land surface, which in turn has
increased the average global amount of precipitation. Additionally, the wind and ocean current pattern
affects local precipitation trends, which eventually causes fluctuations in the streamflow. Different
regions around the globe have already shown signs of adverse effects on water availability due to
climate change. The peak streamflow is expected to increase in some parts of the globe [2–7]. At the
same time, low flow is also expected to decrease with a greater number of drought days across the
globe [8–10]. The occurrence of both high and low flows as a result of climate change is generally
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placed on the same footing. However, there might be differences in the statistical significance at which
low and high flows show variability resulting from climate change [11]. Overall, extreme weather
phenomena occur more frequently these days, and this is anticipated to continue in the future.

Flooding is one of the major natural hazards in the U.S., along with tropical cyclones and
drought/heatwaves [12]. A reduction in carbon emissions could result in a huge monetary benefit
in the long term, as the difference in future flow by the end of the 21st century from a higher
emissions pathway to a lower emissions pathway will be billions of dollars per year [13]. Despite these
benefits, climate change and its impact on the community have intensified in recent years [14,15].
Flood prevention practice along with a proper understanding of a flooding event can mitigate the risks
of this hazard, and floodplain mapping is one of the widely used techniques to quantify the severity of
flooding [16].

The Coupled Model Intercomparison Project (CMIP), which is a framework for analyzing and
quantifying the results of the Atmosphere–Ocean Coupled General Circulation Model (AOGCM),
was first started in 1995. World Climate Research Programme (WCRP) projections through CMIP5
represent future climate projections from new-generation global climate models and advancements
in recent climate science [17]. These CMIP5 projections are based on updated global greenhouse gas
emission scenarios represented as representative concentration pathways (RCPs). The CMIP5 model,
which is large in scale and comprises major climate models from different groups, incorporates a
simulation of the 20th century’s climate for projecting the climatic scenario of the 21st century [18].
Recently, earth system models have combined conventional Earth system models (ESM) and the
AOGCM under an experimental design, where ESM and AOGCM observations were compared.
Recent decades were initialized based on the observations and its use for future climate prediction
provides the CMIP5 models with enhanced capability [18].

The CMIP5 hydrology projection was released in 2015, and was based on a total of 234
CMIP5 climate projections. These projections were downscaled to the contiguous U.S. utilizing
the Bias-Corrected Statistically Downscaled (BCSD) technique [19]. The results of the BCSD projection
from phase 3 and phase 5 are known as BCSD3 and BCSD5, respectively. The model results from the
BCSD5 hydrology projections were based on a common gridded daily historical meteorology forced
simulation [20]. The Constructed Analog (CA) method was applied to spatially downscale a General
Circulation Model (GCM) day by matching the same grid-coarsened set of observed days [21]. Projected
precipitation changes at spatial and temporal scales show the climate’s impact on peak streamflow.
The projections from the GCMs need to be translated into similar locally relevant precipitation data
before any further use at local scales. This includes, but is not limited to, the selection of an appropriate
GCM for a given study area [22], removing biases, and downscaling the GCM to a local resolution [23].
Gangopadhyay et al. [24] translated a downscaled projection into hydrologic projections over a portion
of the western U.S., making the projections consistent and making more easy an analysis of climate
change’s hydrologic impact. Due to the practical limitation on the scope of the hydrologic modeling,
only 97 BCSD5 climate projections from 31 CMIP5 climate models with four emission scenarios
were available.

Over a long period of time, runoff is equivalent to the tradeoff between precipitation and
evapotranspiration. Hence, it is equal to the horizontal water flux that converges at a particular
location [25]. For the simulation of hydrology in the future, the Variable Infiltration Capacity (VIC) [26]
hydrologic model was utilized. The VIC model is a semi-distributed model in which key aspects
of large-scale land surface models are coupled with GCMs [27]. A VIC forcing modeling code and
generation process were evaluated before obtaining the VIC forcing results through the modeling code.
During the production of the VIC results, we ensured that the forcing generation and VIC simulation
process were error-free. For more details on the VIC model, readers are referred to Liang et al. [28]
and Nijssen et al. [29]. The correct size and number of output files were produced. After obtaining the
output files, BCSD climate monthly data were compared with monthly derived data by aggregating
the daily forcing data to check whether any error occurred during the VIC forcing generation process.
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There was exact matching in most of the cases [30]. BCSD5 features a larger range compared to BCSD3,
as CMIP5 uses a variety of scenarios that mimic the larger range of future greenhouse emissions as
compared to CMIP3 [31]. The main difference between BCSD3 and BCSD5 climate projections is in
the driving emission scenarios and climate model change, making the projections of temperature
and precipitation somewhat different. However, other differences were from model updates on VIC
to generate projections with BCSD5 that provide a complete representation of the range of possible
future climate and hydrology scenarios. CMIP5 meteorological parameters along with soil parameters,
land cover, and vegetation root depth are the main input parameters for the VIC model. Thus,
CMIP5 model output from AOGCM was used in a prebuild VIC model to obtain the streamflow data.
VIC-generated streamflow is utilized in the current study to predict future streamflow at different
recurrence intervals.

The occurrence of extreme events can be estimated from historical flow records by fitting different
probability distribution functions [32–36]. Using only the historic flow may not truly reflect the
probable future scenario due to climate change. Since, in the stationary approach, the conventional
way to predict extreme events in the future is to use historical data only, it is not the best way to
deal with the nonstationary climate. To overcome the shortcomings in the design based on the
nonstationarity of the climate, climate models and projections are useful. Various climate models
based on the Intergovernmental Panel on Climate Change (IPCC)’s fifth assessment report and Special
Report on Emission Scenarios (SRES) representing future climate scenarios are available for research
and use. Besides the available data, the selection of the distribution method significantly impacts
the design value. In most cases, governmental agencies select Generalized Extreme Value (GEV)
distribution along with Gumbel and log-Pearson type III distribution. The GEV is mostly used to fit
the streamflow distribution and has been shown to be efficient [37]. Further, the streamflow of dry,
arid, and semi-arid regions follows the GEV distribution [33,34,38,39]. However, the GEV does not
always best fit the annual peak flood. Similarly, studies have utilized other distributions to define
a streamflow’s behavior [35,36]. Thus, it is worth examining the given sets of yearly flood data and
choosing those distributions that produce reliable estimates. Twenty-seven prospective statistical
distributions for a semi-arid region are tested in the current study to evaluate which distribution best
fits the streamflow. An empirical goodness of fit is one of the criteria for the selection of appropriate
distributions. At the same time, the theoretical assumptions associated with all statistical distributions
should be taken into account [40]. The selection of the distribution that best fits the peak annual
streamflow of Carson River is one of the objectives of this study.

Climate change, which alters the magnitude and frequency of precipitation, ultimately changes
the design flood. The comprehension of the changing pattern of the design flood is necessary for
flood risk management in the current scenario of a changing climate. This paper uses the VIC-forced
CMIP5 streamflow to find the underlying best-fit probability distribution of an area among 27 different
statistical distributions. The best-fit distribution was then employed to predict the future streamflow.
Finally, a comparison among the existing design parameters was made and the change in hydraulic
parameters, such as velocity, top width, and flow area of the river, was estimated. This study will
add to the current literature by answering the following research questions regarding variability in
streamflow. (1) Is it valid to assume stationarity in streamflow data and to design future structures
based on this assumption? (2) What type of statistical distribution does the streamflow follow? (3) By
what factor should the occurrence of future flooding events be anticipated to be lesser/greater than
that of current flooding events? This paper further presents floodplain mapping for the future design
flood that was identified assuming nonstationarity in the climate. The study also evaluates whether,
under the changing and nonstationary nature of the climate, the extent of future flooding will be
greater than that of the past at the study area. The floodplain map will help us to understand the extent
of inundation for the evaluated future flooding events corresponding to different return periods.
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1.1. Study Area

The southwestern United States not only experiences extreme heat but is also vulnerable to
extreme flooding due to climate change [41]. Carson City, NV has had, since 1852, a historical record of
flood, and is currently experiencing some flooding due to extreme storm events. Carson Valley, which
lies 4700–5000 feet above the mean sea level, is the rain shadow of the Sierra Nevada. The highest point
of the catchment lies on the Sierra Nevada, and is 11,462 feet above the mean sea level. The climate of
the area ranges from semi-arid over the valley plain to humid or super humid over the peaks of the
catchment. The catchment receives precipitation mostly as rain at the lower altitude and as snow at the
higher altitude. Runoff reaches its yearly peak mainly in May. In this study, the downstream end of
Carson River at Carson City is examined for future floods. The selected reach was flooded in 2007, and
is susceptible to similar events in the future. The spatial location of the Carson River reach at Carson
City selected for the current study is shown in Figure 1. Figure 1 also shows the digital elevation map
(DEM) that represents the altitude along the river reach that was considered for hydraulic modeling.
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1.2. Data

The latest daily average runoff from 31 AOGCMs participating in the CMIP5 was used to analyze
the change in the extreme runoff for Carson River. These CMIP5-AOGCMs have produced the
Bias-Corrected Spatially Downscaled (BCSD) streamflow for different streams in the United States
from 1950 to 2099. The data produced by these AOGCMs were routed over a historic period of 1950
to 1999. Thus, in this study, the same period of 1950–1999 is considered to be the historic period.
The farthest 50-year period i.e., 2050–2099, is considered to be the future period. The VIC-enforced
streamflow for 195 different locations is available, among which 152 locations are co-located with the
United States Geological Survey (USGS)’s Hydroclimatic Data Network (HCDN), and 43 locations
are co-located with West Wide Climate Risk Assessment spatially downscaled locations. Streamflow
data for East Fork Carson River near Gardnerville from total 97 projections that were derived through
31 models and four RCPs were used to estimate the change in streamflow due to climate change.
The location of the streamflow is at Latitude 38.844◦ N and Longitude 119.702◦ W, which is co-located
with the ’East Fork Carson River near Gardnerville’ HCDN station (station ID 0071). The projections
were used for the future streamflow analysis, while the HCDN station was used for the historic record.
The details of the climate model and the relevant institutions are summarized in Table 1.
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Table 1. The Coupled Model Intercomparison Project phase 5 (CMIP5) Atmosphere–Ocean Coupled
General Circulation Models (AOGCMs) adopted in the study (a total of 31 models with 97 projections).

Modeling Center Institution Model
Used Concentration

Path (RCP)

2.6 4.5 6.0 8.5

CSIRO-BOM
CSIRO (Commonwealth Scientific and Industrial Research
Organisation, Australia) and BOM (Bureau of Meteorology,

Australia)
ACCESS1.0

√ √

BCC Beijing Climate Center, China Meteorological Administration BCC-CSM1.1
√ √ √ √

BCC-CSM1.1(m)
√ √

CCCma Canadian Centre for Climate Modelling and Analysis CanESM2
√ √ √

NCAR National Center for Atmospheric Research CCSM4
√ √ √ √

NSF-DOE-NCAR
National Science Foundation, Department of Energy, and

National Center for Atmospheric Research
CESM1(BGC)

√ √

CESM1(CAM5)
√ √ √ √

CMCC Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC-CM
√ √

CNRM-CERFACS
Centre National de Recherches Meteorologiques/Centre
Europeen de Recherche et Formation Avancees en Calcul

Scientifique
CNRM-CM5

√ √

CSIRO-QCCCE
Commonwealth Scientific and Industrial Research

Organisation in collaboration with the Queensland Climate
Change Centre of Excellence

CSIRO-Mk3.6.0
√ √ √ √

LASG-CESS LASG, Institute of Atmospheric Physics, Chinese Academy
of Sciences; and CESS, Tsinghua University FGOALS-g2

√ √ √

FIO The First Institute of Oceanography, State Oceanic
Administration, Beijing, China FIO-ESM

√ √ √ √

NOAA GFDL Geophysical Fluid Dynamics Laboratory
GFDL-CM3

√ √ √ √

GFDL-ESM2G
√ √ √ √

GFDL-ESM2M
√ √ √ √

NASA GISS NASA Goddard Institute for Space Studies
GISS-E2-H-CC

√

GISS-E2-R
√ √ √ √

GISS-E2-R-CC
√

MOHC (additional
realizations by INPE)

Met Office Hadley Centre (additional HadGEM2-ES
realizations contributed by Instituto Nacional de Pesquisas

Espaciais)

HadGEM2-A
√ √ √ √

HadGEM2-CC
√ √

HadGEM2-ES
√ √ √ √

INM Institute for Numerical Mathematics INM-CM4
√ √

IPSL Institute Pierre-Simon Laplace IPSL-CM5A-MR
√ √ √ √

IPSL-CM5B-LR
√ √

MIROC
Atmosphere and Ocean Research Institute (The University of

Tokyo), National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology

MIROC5
√ √ √ √

MIROC
Japan Agency for Marine-Earth Science and Technology,

Atmosphere and Ocean Research Institute (The University of
Tokyo), and National Institute for Environmental Studies

MIROC-ESM
√ √ √ √

MIROC-ESM-CHEM
√ √ √ √

MPI-M Max Planck Institute for Meteorology (MPI-M)
MPI-ESM-LR

√ √ √

MPI-ESM-MR
√ √ √

MRI Meteorological Research Institute MRI-CGCM3
√ √ √

NCC Norwegian Climate Centre NorESM1-M
√ √ √ √

The DEM required for the river terrain was obtained from the USGS National Map viewer. Models
using fine-resolution DEM products are more stable and accurate as compared to models that use
DEM products of a coarser resolution. Additionally, it is recommended to adopt Light Detecting
and Ranging using Remote-Sensing-based products to model a riverine system of higher depths.
Due to the limitations of data availability in the study area, the current study utilizes a 1/3 arc-second
DEM product for producing the river profile and cross-sections. The river cross-section locations
were considered at and in between the Federal Emergency Management Agency (FEMA)’s adopted
cross-sections for a comparison purpose. The levee and other existing structures were not adopted
in the prepared model as the details of the structures are not readily available. Manning’s roughness
values were adopted from the Flood Insurance Study (FIS) for the area [42]. Figure 2 represents
the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) geometric model with the
river sections. Eighteen of these cross-sections match with the cross-sections in the FEMA-developed
flood map.
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2. Method

The method section is subdivided into three subsections: (i) Frequency analysis and best fit,
(ii) Future flow prediction, and (iii) flow routing.

(i) Frequency analysis and best fit: The streamflow projections, along with the nearby real gauge
station, were analyzed with a frequency distribution to find the best-fit frequency distribution for
the study area. From the 97 streamflow projections for the historic and future periods, a total of
194 projection datasets, each containing 50 years of yearly peak flow, were prepared. These datasets,
along with one Carson River gauge dataset, for a total of 195 datasets, were fitted with 27 different
distribution methods to obtain the best-fit distribution. The 27 different distributions that were applied
to the datasets are listed in Table 2. The data were tested for goodness of fit with Kolmogorov–Smirnov
and Pearson Chi-square tests. The tests were implemented over the 195 datasets for the historic
and future periods of the model and the historic gauge data. Each best-fit test returns a significance
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level as an attained value, which is represented as αattained [43]. The significant level for the Pearson
Chi-square test and the Kolmogorov–Smirnov test is given, respectively, by

αattained = 1− χ2 (m = k− r− 1, q) (1)

αattained = 1− χ2 (m, q) (2)

where, m is the degree of freedom, k is the class interval, r is the number of parameters of the
distribution, and q is the computed Pearson parameter, which is given by

q =
k
n

k

∑
j=1

n2
j − n (3)

where n is the size of the sample.
These analyses were performed utilizing the statistical Hydrognomon software developed by the

National Technical University of Athens [43]. Hydrognomon is a robust tool for performing different
time-series analyses: regularization of data, interpolation, regression, fitting a distribution function
to a time series, statistical predictions, and homogeneity testing. This tool can handle time-series
data at different time scales: daily, monthly, and annual. The current study only uses the capabilities
of the Hydrognomon tool to fit a distribution function to a hydrologic time series. Hydrognomon
includes 27 different functions that were utilized in the current study to fit the historical records
with the help of the Pearson Chi-square and Kolmogorov–Smirnov tests. Hydrognomon utilizes
the Monte-Carlo algorithm to determine the confidence interval of any fitted distribution function.
The best-fit distribution based on the Hydrognomon tool was selected to generate the future streamflow.
All 27 distribution functions included in the Hydrognomon tool are summarized in Table 2.

Table 2. The 27 different distributions used in the best-fit analysis.

Distribution Methods

Normal, Normal(L-Moments), Log Normal, Galton, Exponential, Exponential (L-Moments), Gamma, Pearson
III, Log Pearson III, EV1-Max (Gumbel), EV2-Max, EV1-Min (Gumbel), EV3-Min (Weibull), GEV-Max,
GEV-Min, Pareto, GEV-Max (L-Moments), GEV-Min (L-Moments), EV2-Max (L-Moments), EV1-Min (Gumbel,
L-Moments), EV3-Min (Weibull, L-Moments), Pareto (L-Moments), GEV-Max (Kappa Specified), GEV-Min
(Kappa Specified), GEV-Max (Kappa Specified, L-Moments), GEV-Min (Kappa Specified, L-Moments)

(ii) Future flow prediction: Based on the best-fitted distribution method, 100-year flood (the
design flood) was calculated for the historic and projected streamflow datasets. The Delta Change
Factor (DCF) was used to calculate the future flow at the stream station. The future flow that was
estimated using the FEMA and delta change methods depicts a flood under a stationary condition
and a flood under climate change conditions in the future, respectively. Among the range of delta
change factor future flows, the peak one was selected to represent the maximum increase in the future
design flood’s condition. In this study, it was assumed that the ratio of the downstream peak flow to
the upstream peak flow remains same in the future.

Delta change factor =
Future model daily peak

Historic model daily peak
(3)

(iii) Flow routing: A HEC-RAS model was prepared from the available DEM model. Eighteen
cross-sections from the Flood Insurance Rate Map (FIRM) and 58 intermediate cross-sections were
prepared for the HEC-RAS model using ArcGIS (Version 10.4, Environmental Systems Research
Institute (Esri), Redlands, CA, USA). A total of 76 cross-sections were assigned using the FIS-suggested
Manning’s roughness coefficient. The existing 100-year return period’s flow (the design flow) was
routed to the prepared model and compared with the existing FIRM map. Finally, the prepared model
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was routed to the future peak flood, and the hydraulic parameters were compared with the existing
design condition of the FEMA map. The aforementioned steps involved in flow routing and flood
plain delineation is summarized as the flowchart in Figure 3.
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3. Results

The daily streamflow series that was derived from the climate model projections shows a clear
trend of an increasing future peak streamflow in Carson River and, at the same time, a decreasing
yearly peak minimum, as shown in Figure 4. This signifies the occurrence of both more intense
high flows and low flows as shown by the spread time series in Figure 4, which increases along the
positive abscissa. The maximum and minimum yearly flow plotted in Figure 4 were obtained from
97 streamflow projections of 31 models and four RCPs. In this study, only the probable maximum
flow was analyzed, as the study area is subject to a greater flood risk as a result of the high flows as
compared to the low flows.
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GEV-Max (L-moments) was found to be the best distribution method and selected to analyze future 
floods in the study area. 

 
Figure 5. The best fit analysis for the 27 different distributions using Pearson Chi-square and 
Kolmogorov–Smirnov tests. 

Figure 4. The spread of the band of yearly peak flow from the 97 climate projections, indicating the
variability in the future streamflow.

Yearly maximum streamflow data from the 97 climate projections from 1950 to 2099 were selected
and analyzed using Pearson Chi-square and Kolmogorov–Smirnov tests. The best fit from both models
is presented in Figure 5. The bars in Figure 5 represent the number of projections that was best-fitted
with a specific distribution method from the two different tests. From Figure 5, GEV-Max (L-Moments)
was selected as the best-fit distribution from the Pearson Chi-square and Kolmogorov–Smirnov tests,
with a count of 24 and 53, respectively, out of 97 total projections. Thus, GEV-Max (L-moments) was
found to be the best distribution method and selected to analyze future floods in the study area.
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The best-fit distribution method, GEV-Max (L-Moments), was used to calculate the peak flow
over 100 years (the design flow) for the historic and future period. The selected distribution method
was used to calculate the Delta Change Factor. The delta change factor is the ratio of the future to the
historic design flow. It was calculated from each climate model, and the values of the delta change
factor are summarized in Figure 6a. The inclined lines DCF1, DCF2, and DCF4 represent the delta
change factors 1, 2, and 4, respectively, which represent that the future design flood would be the
same, two times, and four times the historic period, respectively. In the figure, each emission scenario
projection is represented with a different color so that they can be easily distinguished. Figure 6b
represents the boxplot of the DCFs corresponding to each RCP. The red-colored horizontal lines in the
boxplots represent the median and horizontal edges of the boxes, which represent the 25th and 75th
percentiles, respectively, of the DCFs corresponding to each RCP. Similarly, the whiskers in the boxplots
represent the 5th and 95th percentiles, and the red data point corresponding to RCP2.6 boxplot is the
outlier. From Figure 6a, RCP2.6 has the lowest delta change factor, and RCP8.5 has the highest delta
change factor. Figure 6b represents that, with an increase in greenhouse gases, the future extremes of
streamflow are expected to increase. Although the two lower RCPs have only a few models with a
delta change factor of less than one, the higher RCPs have a DCF that is greater than one. For the flood
mapping, the maximum delta change factor of 5.086, which was obtained from the CNRM-CM5 model
with RCP8.5, is considered.
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Table 3 shows a hydrological summary of USGS gauge site 1031000 in Carson City, for which
a flood analysis has been carried out that developed estimates of flood chance for different return
periods. For this study’s purpose, only the 1% chance and the 0.2% chance of an annual occurrence, i.e.,
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the 100-year and 500-year return periods, were used. FEMA has developed estimates of the 100-year
and 500-year return period flows for the selected study area. A FIRM map with the panel numbers
3200010227E, 3200010112E, and 3200010114F covers the study area.

Table 3. A hydrological summary of flow at USGS gauge site 1031000 (flow in m3/s) as per the FEMA
Flood Insurance Study (FIS).

Flooding
Source Location Drainage Area

(Square Miles)
10% Annual

Chance
2% Annual

Chance
1% Annual

Chance

0.2%
Annual
Chance

Carson River
5 km Upstream of

Lloyds Bridge
(USGS 1031000)

2269 238 674 1020 2560

The calibration of the HEC-RAS two-dimensional (2D) model was performed with 100 years
of historic streamflow data that was obtained from the gauge site. The calibration was done by
comparing the HEC-RAS-generated floodplain map for the past 100 years with FEMA’s 100-year flood
boundary estimation. A perfect model would result in the same HEC-RAS-generated floodplain map
as compared to the FEMA 100-year flood boundary estimation. This result is shown in Figure 7a.
Some discrepancy may be attributed to the errors associated with the Manning’s roughness coefficient
of the reach, which is a function of how a river meanders and channel bed roughness. The robustness
of the HEC-RAS model was established with its conformity to the simulated water surface elevation
and the observed gauge height at USGS gage station 10311400, which is located downstream of the
selected river reach. The Nash–Sutcliffe efficiency coefficient (NSE), the correlation coefficient (R2), and
the percent bias (P-Bias) were computed with the simulated water surface elevation resulting from the
observed streamflow that was recorded at USGS gauge station 10311400 corresponding to the observed
gauge height. Based on the observed and simulated data, the NSE, R2, and P-Bias were evaluated as
0.79, 0.98, and −0.008, respectively. These statistical parameters demonstrate the robustness of the
calibrated HEC-RAS model, and the water surface elevation predicted by the model can be utilized to
generate a future floodplain map with the estimated future streamflow.

The delta change factor that was calculated for the study was used to calculate the future design
flood (the flood flow over 100 years). The future design flood flow comes to be 5185 m3/s, which
is more than the current 500-year flood flow. Thus, the climate-generated future design flood flow
may be greater than the recent 500-year flood flow. The developed HEC-RAS model routed for the
three different flood flows, that is, the existing 100-year, the existing 500-year, and the future 100-year
flows, a discharge of 1020 m3/s, 2560 m3/s, and 5185 m3/s, respectively. The flood area developed
using HEC-RAS and ArcGIS is presented in Figure 7b. The floodplain for the present design flood
flow, the present 500-year flood flow, and the future design flood flow was plotted. The area covered
by these three conditions is 3,915,290 m2, 4,762,168 m2, and 5,947,893 m2, respectively, while the
FEMA 100-year flood flow covers 4,882,183 m2. The floodplain for each of these three conditions was
compared, and it was observed that the extreme future 100-year floodplain could cover more than
1.5 times the area covered by the present 100-year floodplain.
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Figure 7. (a) A comparison of the Flood Insurance Rate Map (FIRM)’s 100-year flood area versus
the baseline scenario (the 100-year flood area obtained from the HEC-RAS model). (b) The three
layers of flood area for the 100-year historic, 500-year historic, and 100-year future floodplains (from a
smaller to a larger area, respectively). Sources: Esri, HERE, DeLorme, USGS, Intermap, INCREMENT P,
NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), MapmyIndia, NGCC,
® OpenStreetMap contributors, and the GIS User Community.

Further, the channel velocity, flow area, and top width were compared between the historic
100-year, the historic 500-year, and the future 100-year floods. The FIRM map has 18 cross-sections
within the reach length. Hydraulic parameters, such as channel velocity, flow area, and top width, were
compared within this reach length and the FIRM map cross sections, and are presented in Figure 8.
The calibration of the HEC-RAS model can also be verified from Figure 7a, which shows a similar
floodplain for 100-year event as compared to the 100-year event from the FIRM map. The generated
floodplain maps shows that there will be more flooding on the left bank of the river than the right due
to its topography. In addition, the city nearby the river might be affected due to this change in future
flow. The low-lying agricultural land on the Carson floodplain will be vulnerable to flooding events in
the future, as our results suggest that these events will be more intense than in the past.
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flood scenarios.

Channel velocity, flow area, and top width are the key hydraulic parameters of floods, and were
compared under different flow conditions. The future 100-year flood has the highest channel velocity
(around 8 m/s). The channel flow area will more than double at most of the cross-sections, and there
will be a significant increase in the top width along sections N, O, and P.

4. Discussion

Floodplain management should reduce flood damage in the future with efficient mitigation
measures at minimal expense. A flood protection decision can endure for more than a century; thus,
it is worth considering long-term changes in environmental conditions. A decision on floodplain
management would likely affect the long-term performance of infrastructure [44]. As human beings
have evolved, societies have started to inhabit places close to freshwater to ensure water for drinking
and agricultural and livestock use. Major civilizations of the past settled very close to rivers with an
adequate supply of fresh water. More than half of the total global population resides within 3 km
from freshwater bodies, mostly near a river [45]. This population is more vulnerable to changes in
streamflow in the future. In this study, such a case is analyzed using CMIP5 hydrologic projections.
The CMIP5 data helped to predict the nature of future streamflow without assuming stationarity in the
hydro-climatic data. Further, CMIP5 models consider different carbon emission scenarios, allowing us
to comprehend a wide range of future streamflow conditions.

As different probability distributions result in different flood frequencies, selecting an appropriate
flood distribution method is crucial in flood frequency analysis. To select the best-fit distribution,
two different tests—the Pearson Chi-Square and the Kolmogorov–Smirnov—were implemented.
The selected distribution was used to predict the design flood for present and future datasets of
climate projections. Further, the performance of different distribution methods varies spatially. Thus,
one distribution that performs well for a given dataset of an area may not represent another distribution.
Thus, it is always recommended to analyze the results that are obtained with different distributions,
and the best distribution should be selected with a different approach. It is good to test a variety
of statistical distributions; however, at the same time, it is impractical to test all of the possible
distributions. In the current study, the selected distributions were based on a previous study that was
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pertinent to the climatic conditions of the selected study region. Testing other distributions over a
wide variety of watersheds is recommended for future studies. Both the Pearson Chi-Square test and
the Kolmogorov–Smirnov test showed that GEV-max (L-moment) was the best distribution. Previous
studies suggest that GEV is to likely to fit the streamflow across semi-arid regions, which was also
established in the current findings [32–34,38,39].

From the 97 total models/selections, the Pearson Chi-square test and the Kolmogorov–Smirnov
test selected GEV-max (L-moment) 24 and 53 times, respectively. GEV-max (L-moment) was then used
to calculate the design flow for the present and future periods. Among the 97 models, 86 models had a
DCF greater than one, suggesting that the design flow for the future period should be more than that
for the present period. This suggests that there is a higher possibility that the design flow on the river
would be higher in the future. Among the 97 models, 39 (more than 40% of the models) indicated that
the design flow in the future will be more than 2 times the present design flow. The DCF results also
show that the higher the emission or RCP, the higher the delta change factor will be, which represents
an increase in the design flow in the future. The delta change method was adopted to predict the
flow of future floods, which was routed on a HEC-RAS one-dimensional (1D) model to compare the
floodplain and hydraulic parameters.

The maximum increase in future design flow resulted from the CNRM-CM5 model with the
RCP8.5 scenario and the maximum DCF. The CNRM-CM5 model with RCP8.5 scenario was also
considered for the flood mapping of the Carson River near Carson City, Nevada as it would represent
the most extreme flooding scenario. The model indicates that a 5.086-fold increase in the design flow
of the river will occur. This suggests that the future 100-year flood flow will be more than that of the
current 500-year flow, while the future 100-year flood flow will be more than 1.5 times the current
100-year flood flow. The floodplain map showed an increase in the extent of the flooding in the future
as compared to that of current flooding events. Most of the GCMs suggested an increase in the future
design flow when compared to present conditions, which can be attributed to the nonstationary nature
of the climate. Further, the floodplain variability in the future may also be affected by other factors,
such as a change in land use [46]. An increase in the streamflow in a semi-arid region as a result of
climate change has also been documented by previous studies. For example, an increase in streamflow
has been projected for the city of Las Vegas [47], and a positive streamflow trend has been documented
in the Colorado River basin [48].

The population of Carson City is settled on the left bank of the Carson River. The topography of
the river shows that the river has more floodplain on left side than on the right side. The floodplain
contains fertile agricultural land that is crucial, as Carson City lies in the desert of Nevada. Due to
the predicted increase in the design flood flow in the future, more area than expected might be
flooded. Future flooding will not only affect the agricultural supply but also people residing near the
river. Thus, a proper analysis of future streamflow will help to minimize the flood risk. The current
study’s evaluation of the best-fit distribution, and use of a climate distribution, to evaluate the future
streamflow frequency suggested that the streamflow data has a nonstationary nature as a result of
climate variability and change. Thus, future design streamflow may not be same as the current design
streamflow. This should be considered by planners and engineers when planning and building new
hydraulic structures to minimize the flood risks associated with the changing climate.

5. Conclusions

The risk of hydrologic extremes as a result of the changing climate is one of the main global
challenges of the 21st century. This risk has been increasing in recent years, as limited effort has
been made to curb the emission of greenhouse gases. Most governmental agencies apply stationary
approaches to flood management. Due to this, the effect of climate change cannot be incorporated into
flood flow predictions. Thus, this study suggests the possible approach of applying a nonstationary
approach to future streamflow prediction in those regions vulnerable to flooding events. As most
flood management structures are constructed for a lifespan of several decades to more than a
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century, forecasting streamflow while considering the effects of climate change can contribute to
the optimization of hydraulic structures. Hence, this study’s contribution is to present guidelines to
planners, designers, engineers, and policy-makers for incorporating climate change into flood risk
management. The current study was focused on the Carson River at Carson City at a regional scale; so,
the results may not be similar to those obtained from other watersheds, whilst the proposed algorithm
can be utilized elsewhere.

The key findings of the current study are as follows:

1. The best-fit distribution was evaluated utilizing both Pearson Chi-square and Kolmogorov
Smirnov tests for the considered study area.

2. A majority of the climate models indicated an increase in the future streamflow in the study
region, while 40 percent of the models suggested that the future 100-year streamflow would be
more than 2 times the present 100-year streamflow in the selected study area.

3. A higher increase in the future 100-year streamflow was observed for a higher RCP, suggesting
that the streamflow in the study region will increase as carbon emissions increase.

4. A majority of climate models depicted DCFs higher than 1, suggesting that the streamflow in the
Carson River exhibits nonstationary behavior and that the future streamflow is likely to exceed
that of the past.

5. The CNRM-CM5 model with the RCP8.5 scenario showed the maximum increase in future runoff
for the Carson River.

6. The future flow, depth of flow, and inundation comparison gave an explicit image of the extent of
future flooding due to climate change for the Carson River at Carson City.

7. The extent of flooding of the future 100-year streamflow for the Carson River at Carson City was
evaluated to be higher than that of the past 500-year streamflow, highlighting the likelihood of an
increase in the extent of future flooding.

To summarize, hydraulic structures are conventionally designed for different return periods
assuming the stationarity in the streamflow. The current research highlights the utilization of climate
information for evaluating the future streamflow in different recurrence intervals. This future
streamflow is then used to evaluate future floodplain maps and design the streamflow. We also
recommend testing the application of other statistical distributions to a variety of watersheds with a
higher resolution dataset in the future to extend the current study.
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AOGCM Atmosphere-Ocean Coupled General Circulation Model
BCSD Bias Corrected Statistically Downscaled
CMIP Coupled Model Intercomparison Project
DCF Delta Change Factor
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DEM Digital Elevation Model
FEMA Federal Emergency Management Agency
FIRM Flood Insurance Rate Map
FIS Flood Insurance Study
GCM General Circulation Model
GEV Generalized Extreme Value
RCP Representative Concentration Pathways
VIC Variable Infiltration Capacity
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