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Abstract: Streamflow data are of prime importance to water-resources planning and management,
and the accuracy of their estimation is very important for decision making. The Soil and Water
Assessment Tool (SWAT) and Artificial Neural Network (ANN) models have been evaluated and
compared to find a method to improve streamflow estimation. For a more complete evaluation,
the accuracy and ability of these streamflow estimation models was also established separately based
on their performance during different periods of flows using regional flow duration curves (FDCs).
Specifically, the FDCs were divided into five sectors: very low, low, medium, high and very high flow.
This segmentation of flow allows analysis of the model performance for every important discharge
event precisely. In this study, the models were applied in two catchments in Peninsular Spain with
contrasting climatic conditions: Atlantic and Mediterranean climates. The results indicate that SWAT
and ANNs were generally good tools in daily streamflow modelling. However, SWAT was found
to be more successful in relation to better simulation of lower flows, while ANNs were superior at
estimating higher flows in all cases.

Keywords: Soil and Water Assessment Tool (SWAT); Artificial Neural Network (ANN);
data imputation; runoff simulation; hydrologic modelling

1. Introduction

Streamflow is one of the most important variables of the hydrological cycle. In a watershed,
streamflow data are necessary for many water resources issues such as management, planning and
hydraulic engineering design [1]. Hydrological models are used in science and practice to predict
extreme events in terms of flood and low-flow events for river management [2]. Therefore, a challenge
of hydrological models is to adequately represent all phases with the same model parameter set [3] to
avoid underestimating the very high flow and therefore the risk of flooding and to avoid overestimating
the very low flow and water supply problems. There are many hydrological models. Conceptual
hydrologic models that simulate streamflow in a watershed take into consideration various processes
of the hydrological cycle through mathematical formulation [4]. Numerous hydrologic models have
been developed to simulate the hydrologic processes and are important tools for estimating streamflow
values, capable of establishing rainfall-runoff relationships [5]. A sophisticated mathematical model is
the Soil and Water Assessment Tool (SWAT) [6]. SWAT is a conceptual semi-distributed model and
currently is one of the most popular hydrologic models for watershed scale [7]. It has been widely
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used to estimate the streamflow time series and requires a large amount of spatial and temporal
data and input parameters. In addition, the broad range of value parameters and their complex
interactions complicate the model parameterization and calibration process [4]. To facilitate this
process, SWAT-CUP (Calibration and Uncertainty Procedures) has been developed. It is a stand-alone
program developed for calibration of SWAT which contains five calibration procedures and includes
functionalities for validation and sensitivity analysis [8].

On the other hand, over the last decades with advances in computing, the estimation of hydrological
variables by machine learning has gained much attention among researchers. Recent studies about real-life
cases using soft computing techniques in hydrologic engineering consist of the following: Olyaie et al.,
(2015) [9] compared three artificial intelligence approaches, namely, artificial neural networks (ANNs),
adaptive neuro-fuzzy inference system (ANFIS) and coupled wavelet and neural network (WANN),
for estimating suspended sediment load (SSL) of river systems; Gholami et al., (2015) [10] modelled
of groundwater level fluctuations using dendrochronology (tree-rings) and an ANN; Chen and Chau
(2016) [11] developed a hybrid double feedforward neural network model for daily SSL estimation;
Jimeno-Sáez et al., (2017) [12] used different machine learning models, such as ANN and ANFIS for
instantaneous peak flow estimation based on maximum mean daily flow.

Specifically, ANNs, which have been introduced and widely applied to water resources system
problems, were found to be powerful tools for the estimation of streamflow time series [13,14].
The particular advantage of the ANN is that the network can be trained to learn these relationships
without requiring a priori knowledge of the physical characteristics of the process [15]. This feature
makes ANNs an effective tool for modelling complex hydrological processes [16]. ANNs are empirical
models which can be used as an alternative to simulate hydrological processes by connecting inputs
and outputs through mathematical functions without the need to know the relationship with the
catchment characteristics [17]. ANNs have been used in a considerable number of recent studies for
estimating the values of streamflow [4,12,18–20]. Therefore, SWAT and ANN have been widely used
for streamflow estimation. However, few studies have compared both models for daily streamflow
estimation [5,21–23].

Against this background, one of the goals of this work is to use SWAT and ANNs to build a
hydrologic model in basins with contrasting climatic conditions to simulate streamflow. These models
are assessed at basin scale and in daily time intervals. A comparison of performance of ANN
models with different input variables (e.g., daily precipitation, daily precipitation of previous days,
total precipitation of previous days, mean daily temperature) has been made to find the best and
most efficient network structure. Secondly, the selection of the most appropriate model for each of
the studied cases is analysed by comparing the performance of SWAT and ANN models. In addition,
their efficiency for the estimation of different ranges of flow (from very high to very low flow) is
determined based on the flow duration curve (FDC). Thus, the efficiency of these models has been
assessed in two watersheds: the Ladra River Basin (LRB) with an Atlantic climate and the headwaters
of the Segura River Basin (HSRB) with a Mediterranean climate. These basins were selected based on
the wide diversity of climate conditions that they represent, including some of the rainiest areas in
Europe in the northeast of Spain (LRB) and the driest areas in the southeast of Spain (HSRB). To ensure
the validity of the results, both basins are in natural regime. Selecting the appropriate model to
simulate the streamflow in a watershed is a key challenge, and analysing the performance of these
models in different climate basins could help researchers to apply the suitable model in each case.

2. Materials and Methods

2.1. Study Areas and Data Inputs

To compare the accuracy of SWAT and ANN models, two contrasting watersheds in Spain were
selected as case studies in this work. Figure 1 shows the location map and the digital elevation models
(DEMs) of the watersheds. Table 1 summarizes the characteristics of both watersheds. LRB is located in
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the north of the Miño-Sil Basin (NW Spain) and covers an area of 843 km2 with an elevation range from
392 to 872 m asl. The climate is typical Atlantic, with higher differences between extreme temperatures
in summer and winter. Annual precipitation ranges from 660 to 1632 mm. The streamflow data are
abundant and are produced by persistent Atlantic frontal systems from the west that generally occur
from autumn to spring; summer is the driest season [24]. The mean monthly flow varied from 48 m3/s
in winter to 4 m3/s in summer; this flow gradually decreases until summer and increases again during
autumn. The predominant soil type is Humic Cambisol (82% of the total area). This area has a low
permeability, and the importance of aquifers is much lower than superficial water resources [25].
The major land cover in the Ladra River watershed is forest land (35%) followed by land with scrub
and/or herbaceous vegetation (24%), heterogeneous agricultural areas (23%) and mixed mosaic (18%).
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Table 1. Characteristics of the watersheds.

Characteristic LRB 1 HSRB 2

Mean annual temperature (◦C) 11.2 13.2
Mean annual precipitation (mm) 1218 748

Mean annual flow (m3/s) 23.66 1.85
1 According to data from 1971 to 2007. 2 According to data from 1987 to 2007.

The other studied area is the headwaters of the Segura River Basin (SE Spain), which has an
area of 235 km2 and is characterized by steep terrain with an elevation range from 898 to 1912 m asl.
The climate is Mediterranean with very dry summers and a rainy season extending from October
to May, during which over 80% of annual precipitation occurs. The mean annual precipitation
ranged from 412 to 1234 mm. The main soil type is Rendzic Leptosol (88% of the total area) with
good drainage [26]. The catchment is characterized by conditions which allow the infiltration of a
large amount of water and which smooth the hydrological response, and groundwater is crucial in
surface hydrology [27]. During the summer months the rainfall is practically non-existent, and so the
streamflow in this period is mainly from groundwater sources [28]. The mean monthly flow varies
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between 0.96 m3/s in September and 2.97 m3/s in January. The HSRB is a mostly forest-dominated
area which covers about 61% of the basin, and 19% is covered by Mediterranean scrubland vegetation.

The SWAT and ANN models were constructed using freely available information. The daily
discharge data of LRB were collected from the Centre for Hydrographic Studies of CEDEX website [29]
and are available from 1971. The daily flow data for HSRB are available on the Hydrographic
Confederation of the Segura River website [30] from 1987. This work used the climatic database
SPAIN02 (see details in Herrera et al., (2012) [31]), which includes daily precipitation and temperature
data for 1950 to 2007 in a grid (20 × 20 km) for Spanish territory. This grid was developed by
considering a very dense network of quality-controlled stations. The grid was produced applying the
kriging method in a two-step process. First, the occurrence was interpolated using a binary kriging
and, in a second step, the amounts were interpolated by applying ordinary kriging to the occurrence
outcomes [31]. Distributed hydrological models require spatially long-term, distributed, continuous
data to simulate the hydrological response of a basin. However, conventional weather stations cannot
fully represent the climate conditions across a basin because they are often sparsely distributed,
particularly if large hydro climatic gradients exist [32]. In addition, weather station records often do
not cover the proposed simulation period or contain gaps. That is why we have used grid-based data.
DEMs were obtained from the National Geographic Institute of Spain [33], with a resolution of 25 m.
The soil data were obtained from the Harmonized World Soil Database (HWSD), assembled by the
Food and Agriculture Organization of the United Nations (FAO) [34]. Land cover maps were extracted
from reclassified Corine Land Cover (CLC) [35].

2.2. SWAT Model

SWAT is a semi-distributed and semi-physically based model. SWAT considers the heterogeneity
of a watershed by dividing it into sub-watersheds based on the river network and topography;
subsequently, sub-watersheds are divided into hydrologic response units (HRUs) which lump land
areas with unique soil, land cover and slope combinations. SWAT simulates the hydrologic cycle based
on water balance, which is controlled by climate inputs such as daily precipitation and maximum and
minimum air temperature. The water balance equation employed is [6]:

SWt = SWinit +
t

∑
i=1

(
Rday(i)− Qsur f (i)− Ea(i)− Wseep(i)− Qgw(i)

)
(1)

where SWt is the final soil water content (mm), SWinit is the initial soil water content (mm), t is the
time in days, Rday(i) is the precipitation on day i (mm), Qsurf(i) is the surface runoff (mm), Ea(i) is the
evapotranspiration (mm), Wseep(i) is the percolation (mm) and Ggw(i) is the amount of baseflow (mm).

2.2.1. Model Setup and Data Sets

The SWAT model requires physically based inputs, like hydro-meteorological data, topography,
soil properties, and land-use/land-cover in the catchment. Daily precipitation data (mm) and
maximum and minimum temperature (◦C) data from 1971 to 2007 in LRB and from 1987 to 2007 in
Segura Basin were used for the SWAT model simulation. Relative humidity, solar radiation and wind
speed were not available in the study areas. In this study, we simulated the potential evapotranspiration
using the Hargreaves method [36] because it only requires maximum and minimum daily temperatures.
Besides, according to Schneider et al., (2007) [37], the potential evapotranspiration method adopted
has a minor effect on the simulated discharge response. The DEMs, with a 25 m mesh size, were used
to determine the watershed and sub-watershed boundaries. Soil maps were used to characterize
each soil type from information on soil texture, hydraulic conductivity and available water content,
among others. Land cover is one of the most important factors that controls events such as runoff,
evapotranspiration, sediment deposition and soil erosion [38]. In SWAT, the combination of these three
data sets (DEM, soil maps and land cover maps) divided the watersheds into HRUs; three categories of
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slope were defined (0–8%, 8–30% and >30%) to characterize the variety of the surface, and a threshold
level of 10% was established to simplify model processing and remove minor slopes, soils and land
used for each sub-watershed. Finally, LRB has been divided into 11 sub-basins and 124 HRUs and
HSRB into 3 sub-basins and 21 HRUs.

2.2.2. Sensitivity Analysis, Calibration and Validation

Sensitivity analysis and calibration of parameters of the SWAT model were carried out
automatically in SWAT-CUP using the SUFI-2 algorithm [39]. Sensitivity analysis allowed us to
calculate the rate of change in model output with respect to changes in model parameters [40] and thus
we were able to identify the most influential parameters in governing streamflow [41]. The parameters
were calibrated using the observed daily discharge; the process consists in adjusting them so that the
daily simulations are as close as possible to the observations. Firstly, we performed 500 model runs to
obtain the sensitivities, and the most sensitive parameters were identified for each basin. Afterwards,
two iterations of 1500 simulations were run as recommended by Yang et al., (2008) [42], readjusting the
parameters after the second iteration. The input data series were divided into three phases: warm-up,
calibration and validation. In the LRB, the period from 1971 to 1989 was chosen for model calibration,
preceded by a five-year warming period (1966–1970). After calibration, the model was validated using
daily streamflow from 1990 to 2007. For HSRB, the periods of 1987–1997 and 1998–2007 were used for
model calibration and validations, respectively, also preceded by a five-year warm-up.

2.3. Artificial Neural Network

An ANN is a computing method with a mathematical structure which mimics the human brain
and nervous system. This network learns, memorizes and discloses the various relations found in
the data. It is capable of modelling complex nonlinear input/output time-series relationships of a
watershed without prior and explicit knowledge of the physical characteristics of that process [17,18].
ANNs are composed of neurons or processing units which are organized in layers and connected
through several links. There are many different architectures of ANNs: single-layer and multilayer
networks according to the number of layers and feed-forward, recurrent and self-organizing networks
according to the direction of information flow and processing. In this work, we have used the
multilayer feed-forward networks, which are the most widely applied to simulate hydrological
processes (e.g., [1,9,10,18]) and consist of a number of neurons organized in an input layer, one or more
hidden layers and an output layer [20]. The input layer includes neurons where input data are fed into
the network. In the hidden layers, the neurons receive signals only from neurons in the previous layer
and process data. Finally, the outputs are produced for the given inputs in the output layer. The nodes
are connected to nodes in the neighbouring layers by weighted synaptic connections; each link has
an associated weight that represents its connection strength. These weights store the knowledge of
the network, that is, they parameterize the mathematical relationships between the variable inputs of
the network; positive weight values reflect excitatory connections, negative values mean inhibition
connections, whereas the zero weights make the connection considered non-existent. The scheme of
operation of these networks is as follows: (i) The information is processed in the neurons, each neuron
receives an array of inputs or signals; (ii) these signals pass between neurons through connection links;
(iii) each neuron forms a linear combination of the signals’ inputs according to its weights and then
passes through an activation function to produce an output signal [43]. The mathematical operation of
a neuron is given as Equation (2):

yj = f

(
n

∑
i=1

xi·wi − bj

)
(2)

where y is the output of a neuron j, f is an activation function, xi is an input of the vector of inputs
(i = 1, 2, . . . , n), wi is the weight associated with the connection link through which the input xi arrives
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to current neuron j from a neuron in the preceding layer and bj is a bias associated with neuron j.
The activation function is usually a continuous and bounded nonlinear transfer function and controls
the amplitude of the output neuron. The logistic sigmoid and hyperbolic tangent functions are the
most commonly used in the hidden layers with a range of output from 0 to 1 and from −1 to 1,
respectively [5], while a linear activation function may be used in the output layer so that a limited
output interval has not been generated. The training process involves giving known input data and
targets to the network and adjusting internal parameters (weight and biases) based on the performance
measure and other parameters.

The ANN Modelling Approach

According to Govindaraju (2000) [43], there is no fixed method for determining the number of
input-output data that will be required. An optimal data set should be representative of the probable
occurrence of an input vector and should facilitate the mapping of the underlying nonlinear process.
Inclusion of unnecessary patterns could slow network learning. In contrast, an insufficient data set
could lead to poor learning. A typical ANN training requires three data sets: training, validation and
testing [21]. In this work, the calibration data sets (1971 to 1989 in LRB, and 1987 to 1997 in HSRB)
were divided into training sets (70% of data), validation data sets (15% of data) and testing data sets
(15% of data). We have used a backpropagation algorithm to train, in which the result of the network
(output of ANN model) is compared to the actual target (observed data), and then the network error is
calculated. The output errors are repeatedly propagated backwards through the network to adjust
its parameters until optimal values are obtained [1]. The training was finished when the error on the
validation data sets was near minimum. There are several backpropagation algorithms to network
training. The superiority of the Levenberg-Marquardt (LM) algorithm [44,45] over other algorithms for
better performance (lower estimated error) and higher convergence speed (when determining epoch
size) was clearly established in several studies (e.g., [46,47]). LM is often the fastest backpropagation
algorithm. Studies about streamflow forecasting [47,48] have shown that the LM algorithm has an
appropriate operation in training this type of network. Therefore, LM algorithm has been used to
reduce the mean squared error (MSE) (Equation (3)) iteratively in this study:

MSE =
∑n

i=1(Oi − Ei)
2

n
(3)

where Oi is the ANN target (observation), Ei is the ANN output (simulated value) and n is the total
number of observations. For use in finding optimal neural weights by backpropagation algorithms
based on a least-squared approach such as MSE, it is required that the transfer function be easily
differentiable, thus permitting the evaluation of increments of weights via the chain rule for partial
derivatives [49]. According to Dawson and Wilby (2001) [50], the logistic sigmoid is continuous and
relatively easy to compute (as is its derivative). Thus, we used a feed-forward neural network with
LM back-propagation learning and sigmoid transfer function, which is one of the best selections for
modeling hydrologic parameters [10].

Different types and numbers of inputs were employed in the ANNs to estimate daily flow.
Understanding the temporal relationships between climatic variables and streamflow is fundamental
for ANN development. Many studies use time-series correlation analysis to determine the dependency
between the observed streamflow and the antecedent climate variables [1,18,20]. In an attempt to
check any overfitting, a cross-validation was performed. We divided the data sets into five subsets:
four subsets were used to train, and the remaining subset was used to validate.

2.4. Evaluation Criteria for Model Comparison

In the cross-validation of the ANNs, we obtained the average performance for the five
cross-validation steps. The selected networks for each basin were the best performances in terms of
Nash-Sutcliffe efficiency coefficient (NSE), percent bias (PBIAS) and root mean squared error (RMSE).
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The results were evaluated statistically using the statistics defined in Table 2. We have evaluated
and compared SWAT and ANN results based on four statistics including NSE, PBIAS, RMSE and
coefficient of determination (R2), which are the most widely used in hydrology studies. These statistics
are defined in Table 2.

Table 2. Performance metrics.

Equation Range

NSE = 1 −
[

∑n
i=1(Oi − Ei)

2

∑n
i=1
(
Oi − O

)2

]
[−∞, 1]

R2 =

[
∑n

i=1
(
Oi − O

)
·(Ei − E)

]2[[
∑n

i=1
(
Oi − O

)2
]0.5

·
[
∑n

i=1
(
Ei − E

)2
]0.5
]2 [0, 1]

PBIAS =
∑n

i=1(Oi − Ei)·100
∑n

i=1(Oi)
[−∞, ∞]

RMSE =

√
∑n

i=1(Oi − Ei)
2

n
[0, ∞]

Oi is the ith observed data, O is the mean of the observed data, Ei is the ith estimated data, E is the mean of the
estimated data and n is the total number of observations.

NSE indicates how well the plot of observed versus simulated data fits the 1:1 line and
is recommended because it is very commonly used, which provides extensive information on
reported values [51]. R2 describe the degree of collinearity between simulated and measured data.
PBIAS measures the average tendency of the simulated data to be larger or smaller than their observed
counterparts and has the ability to clearly indicate poor model performance [52]. RMSE quantifies the
prediction error in terms of the units of the variable calculated by the model. The best performance for
NSE and R2 is 1, and for PBIAS and RMSE the best performance is 0. In addition, to evaluate models
we have used the criteria proposed by Kalin et al., (2010) [53], who adapted the monthly criteria of
Moriasi et al., (2007) [51] to a daily scale (Table 3). In this case, the study is an exploratory analysis of
the power of SWAT and ANN models for daily simulation of runoff, and this is an additional reason
to relax the performance ratings according to the American Society of Agricultural and Biological
Engineers (ASABE, 2017) [54].

Table 3. Evaluation model criteria for daily time scale.

Performance Rating NSE PBIAS (%)

Very good NSE ≥ 0.7 |PBIAS| ≤ 25
Good 0.5 ≤ NSE < 0.7 25 < |PBIAS| ≤ 50

Satisfactory 0.3 ≤ NSE < 0.5 50 < |PBIAS| ≤ 70
Unsatisfactory NSE < 0.3 |PBIAS| > 70

The results were also evaluated graphically using scatter plots. In addition to these goodness-of-fit
measures, we analysed the results based on the flow duration curves to help visualize graphically the
differences between observed and estimated streamflow. Pfannerstill et al., (2014) [2] presented an
approach to improve the models’ evaluation by subdividing the flow duration curve into different
segments. Their results showed that the segmentation of very low/high and low/high flow allows
analysis of the model performance for every important discharge event precisely. In addition,
they concluded that the additional segmentation of the flow duration curve into low and very low
flows is essential for taking into account long low flow periods events. In this study, to assess different
phases of the hydrograph, FDCs were divided into five segments as shown in Table 4 according to
Pfannerstill et al., (2014) [2], where Qp represents the flow with a probability of exceedance equal
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to p%. The RMSE, defined in Table 2, was used to compare the performance of models for each
hydrograph phase.

Table 4. Definition of five segments of different phases of the hydrograph.

Hydrograph Phase Definition

Very high flow Flows greater than Q5
High flow Flows between Q5 and Q20

Medium flow Flows between Q20 and Q70
Low flow Flows between Q70 and Q95

Very low flow Flows smaller than Q95

3. Results and Discussion

3.1. Sensitive Analysis, Calibration and Validation of the SWAT Model

A global sensitivity analysis was conducted to identify the most important influence parameters
for streamflow simulation, which were adjusted during calibration. A ranking of parameter sensitivities
was obtained after 500 model runs. The effect of the parameters on the simulated streamflow was
evaluated with p-value which determines the significance of the sensitivity and t-stat which provide
a measure of sensitivity. The ranking of most sensitive parameters observed in this study (Table 5)
was also supported by the findings of Raposo et al., (2013) [55] in the LRB and Senent-Aparicio et al.,
(2017) [26] in the HSRB. Some of the most sensitive parameters are common for both basins with a
similar order of sensitivity, as for example ALPHA_BF, CH_N1, CH_N2, SOL_K, CN2 and GWQMN.

Table 5. Sensitivity analysis of SWAT model parameters for LRB and HSRB.

Parameter Definition
LRB HSRB

t-Stat p-Value Rank t-Stat p-Value Rank

ALPHA_BF Baseflow alpha factor (days−1) 21.87 0.00 1 0.95 0.34 14

CH_N1 Manning’s “n” value for the tributary channels 12.73 0.00 2 9.23 0.00 1

OV_N Manning’s “n” value for overland flow 5.98 0.00 3 1.23 0.22 12

GW_DELAY Groundwater delay time (days) −5.45 0.00 4 −0.91 0.36 15

CH_N2 Manning’s “n” value for main channel 2.59 0.01 5 2.08 0.04 7

SOL_K Saturated hydraulic conductivity (mm/h) 2.48 0.01 6 2.09 0.04 6

CN2 SCS runoff curve number 2.42 0.02 7 −8.09 0.00 2

GWQMN Threshold depth of water in the shallow aquifer for return flow to occur (mm) 1.97 0.05 8 2.01 0.04 9

CH_K1 Effective hydraulic conductivity in tributary channel alluvium (mm/h) −1.78 0.08 9 3.90 0.00 4

RCHRG_DP Deep aquifer percolation fraction −1.77 0.08 10 −2.05 0.04 8

LAT_TTIME Lateral flow travel time (days) −1.49 0.14 11 −2.16 0.03 5

SOL_AWC Available water capacity of the soil layer (mm H2O/mm soil) 1.34 0.18 12 5.39 0.00 3

BIOMIX Biological mixing efficiency 1.23 0.22 13 0.80 0.42 16

SLSUBBSN Average slope length (m) 1.21 0.23 14 0.25 0.80 20

GW_REVAP Groundwater “revap” coefficient 1.11 0.27 15 1.41 0.16 10

SURLAG Surface runoff lag coefficient 1.01 0.31 16 0.37 0.71 19

REVAPMN Threshold depth of water in the shallow aquifer for “revap” or percolation to
the deep aquifer to occur (mm) 0.93 0.36 17 1.20 0.23 13

CANMX Maximum canopy storage (mm) 0.47 0.64 18 1.26 0.21 11

ESCO Soil evaporation compensation factor −0.20 0.84 19 −0.42 0.67 18

EPCO Plant uptake compensation factor 0.01 0.99 20 0.69 0.49 17

After performing a global sensitivity analysis, the most sensitive parameters were selected for
each studied basin, which are shown and defined in Table 6. All the selected parameters were also
selected as the most relevant in other research [23,26,41,55].
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Table 6. Parameters used in the SWAT model calibration in LRB and in HSRB.

Parameter Range
Fitted Value

LRB HSRB

GWQMN 0–5000 82.50 642.17
GW_DELAY 0–500 2.52 1.38
RCHRG_DP 0–1 0.01 0.70
ALPHA_BF 0–1 0.09 0.20
GW_REVAP 0.02–0.2 - 0.14
REVAPMN 0–1000 - 65.59

CH_K1 0–300 6.98 230.73
CH_N2 0.01–0.3 0.13 0.30
CH_N1 0.01–0.3 0.19 0.12

CN2 ±20% −1.35% −3.75%
SOL_K ±20% +12.01% −12.04%

SOL_AWC 0–1 −1.29% −5.51%
ESCO 0.1–1 0.77 0.39

SLSUBBSN ±20% −0.57% -
OV_N 0.01–0.8 0.69 -

LAT_TTIME 0–180 3.95 6.79
BIOMIX 0–1 0.94 -
CANMX 0–100 - 4.71

The fitted values of these parameters reflect the contrasting climatic characteristics of the
two basins. In HSRB, groundwater parameters (GWQMN, GW_DELAY, RCHRG_DP, ALPHA_BF
and GW_REVAP) were significant, as expected in Mediterranean basins where the aquifers are
relevant [41,56]. A high deep aquifer percolation fraction (RCHRG_DP) and very low delay time
(GW_DELAY) for aquifer recharge reflect the highly permeable geology of HSRB. In contrast,
no relevant aquifer is present in LRB, where RCHRG_DP was very low. In both basins, the low
values of ALPHA_BF indicate a slow response [57]. The low value of CH_K1 in LRB indicated a
moderate loss rate for soil with high silt-clay content, while a high value in HSRB reflected a very high
loss rate for very clean gravel and large sand [57]. Another big difference between the two basins is
the soil evaporation compensation factor (ESCO). The ESCO was higher in the LRB, with an Atlantic
climate, than in the HSRB, with a Mediterranean climate where evapotranspiration has a higher
relevance [26]. When the ESCO value decreases, the ability of the model to extract the evaporative
demand from lower soil layers increases [58]. Lateral flow travel time (LAT_TTIME) in the LRB was
very similar to that used by Raposo et al., (2013) [55] in nearby basins where a significant portion of
groundwater flows laterally as interflow [59]. The value of GWQMN was calibrated as 82.5 in LRB
similar to that obtained in a nearby study [55]. Besides, an automated digital filter programme (Base
Flow Filter Program) [60] was applied to determine the groundwater ratio. The results obtained are
similar to those simulated by our model.

3.2. Input Selection, Training and Validation of ANN Models

Determining the input variables has a significant influence on the simulated flow. The basin
rainfall and temperature data used by the ANNs were calculated using the Thiessen method, in
which the climate values were based on a weighted average of the contribution of the cell in the area.
After reviewing other research [22,23,48], we have selected the following variables as inputs to the
ANN models to estimate daily streamflow: daily precipitation (Pt), daily temperature (Tt), precipitation
of the previous n days (Pt−n), total rainfall of the preceding n days (Rn) and mean temperature over
the previous n days (Tmn). In this study, the most suitable delays of climate variables were determined
using cross-correlation analyses, so we determined the temporal relationships between these input
variables and streamflow. As shown in Figure 2a, the streamflow is highly positively correlated with
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daily precipitation of the current day t (Pt) and with daily precipitation of the previous days, until t-4
for LRB and until t-2 in HSRB.
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over the previous n days.

Streamflow is strongly correlated with accumulated daily rainfall; there is a greater correlation for
4 days in LRB and for 48 days in HSRB, reflecting the little and the great importance of groundwater,
respectively, in these basins. With respect to the daily temperature, there are moderate negative
correlations with the daily streamflow in both basins. Finally, a total of four input combinations have
been proposed for each basin in this study (Table 7).

Table 7. Estimation scenarios for each basin.

Basin Prediction Scenario Input Combinations Output

LRB

1 Pt, Pt−1, Pt−2, Pt−3, Pt−4,
Tt

Qt

2 Pt, R4, Tt, Tm30 Qt

3 Pt, Pt−1, Pt−2, Pt−3, Pt−4,
R4, Tt

Qt

4 Pt−1, Pt−2, Pt−3, Pt−4, R4 Qt

HSRB

1 Pt, Pt−1, Pt−2, Tt Qt
2 Pt, Pt−1, R48, Tt Qt
3 Pt, Pt−1, R48 Qt
4 Pt−1, R48, Tm30 Qt

For the network structure identification, we implemented and built the ANNs using MATLAB®

software (version 8.2.0.701 (R2013b), The Mathworks, Natick, MA, USA). A multilayer feed-forward
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network was used. The number of hidden layers and hidden neurons was established by trial-and-error
procedure; one or two hidden layers with a number of neurons between two and ten are considered.
The number of neurons in the input layer depends on the number of input variables in each scenario,
which varies from 3 to 7. Figure 3 shows the ANN structure used in this work.
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The different scenarios defined in Table 7 were tested for determining the type and number of
inputs to ANN models. Table 8 shows the best architecture of ANN and their performances for each
scenario trained and validated for the studied basins. These performance measures values are averages
obtained over the five rounds of cross-validation.

Table 8. Best network architectures and their average performance measures obtained in
cross-validation for each prediction scenario.

Basin Prediction Scenario ANN Architecture (I–H–O) 1
Training Validation

NSE PBIAS (%) RMSE NSE PBIAS (%) RMSE

LRB

1 6–2–1 0.63 1.17 22.51 0.59 12.52 23.02
2 4–2–1 0.52 0.62 24.75 0.52 1.67 24.85
3 7–2–1 0.62 2.91 22.64 0.58 12.07 23.52
4 5–2–1 0.56 0.71 24.45 0.53 7.26 24.65

HSRB

1 4–2–1 0.28 5.52 1.96 −0.15 29.85 1.90
2 4–4–1 0.55 2.16 1.54 0.26 13.53 1.66
3 3–4–1 0.56 6.85 1.51 0.32 12.02 1.57
4 3–3–3–1 0.47 1.29 1.69 0.10 21.15 1.81

1 I is the number of neurons in input layer; H is the number of neurons in hidden layer (one or two hidden layers);
O is the number of neurons in output layer.

The results shown in Table 8 indicate four effective ANN structures with good performances
for LRB. Scenario 1 for LRB with a combination of six cells in the input layer (the precipitation of
days t, t-1, t-2, t-3 and t-4, and the temperature of day t), one hidden layer with two neurons and
one neuron in the output layer (the streamflow of day t) had the highest NSE and the lowest RMSE
in the training and validation phase. Based on the criteria of Table 3, NSE and PBIAS of scenario 1
were good and very good, respectively. Therefore, scenario 1 was the selected architecture for LRB.
However, the performance levels of ANN models for HSRB were lower in general because modelling
the hydrological response of arid and semi-arid regions, where evapotranspiration rates are high and
precipitation is irregular and/or limited, is especially complex [61]. The selected model for HSRB was
scenario 3 where NSE and RMSE were better than those obtained in other proposed scenarios. In this
scenario, NSE was classified as satisfactory and PBIAS as very good. The rest of the scenarios were
classified as unsatisfactory based on NSE. Therefore, the ANN configuration selected for HSRB was
three cells in the input layer (the precipitation of days t and t-1, and total rainfall of the preceding
48 days), one hidden layer with four neurons and one neuron in the output layer (the streamflow of
day t). In conclusion, the structure selected for both basins was formed by three layers, similar to other
studies (e.g., [1,23]).
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3.3. Comparison of Model Performance

Calibration of SWAT models and training of the selected ANNs (scenario 1 for LRB and scenario 3
for HSRB) were done using the training data sets (1971–1989 for LRB and 1987–1997 for HSRB).
Then, we tested the models with the validation sets (1990–2007 for LRB and 1998–2007 for HSRB).
A comparison of flow estimation performance of the SWAT and ANN for LRB and HSRB is provided in
Table 9, which shows separately the performances for the calibration/training and validation periods.

Table 9. Performances of SWAT and ANN models.

Basin Model
Calibration/Training Validation

NSE PBIAS (%) RMSE R2 NSE PBIAS (%) RMSE R2

LRB
SWAT 0.59 2.55 22.11 0.59 0.57 7.18 25.78 0.58
ANN 0.64 2.03 20.81 0.63 0.59 12.94 25.39 0.61

HSRB
SWAT 0.52 4.37 1.76 0.53 0.48 8.74 1.45 0.49
ANN 0.54 9.03 1.73 0.57 0.49 5.28 1.51 0.52

The values of NSE for both models were classified as good according to the criteria listed in
Table 3 for the calibration/training phase in LRB and HSRB. For the validation phase, the NSE values
ranged between 0.5 and 0.7, and therefore, they were classified as good for both models of the LRB.
The NSE values were classified as satisfactory for both models of the HSRB. The PBIAS values were
less than 25%, so they were classified as very good in all cases. The values of RMSE for both models
were similar. The NSE and R2 values obtained by the ANN model were higher than those obtained
in SWAT in both basins, and those during training were higher than those during validation phases.
After analysing these results, it was concluded that both SWAT and ANN were suitable. The more arid
the catchment, the lower the performances obtained in the hydrological models, which is similar to the
experience reported by Pérez-Sánchez et al., (2017) [61].

For a better understanding of the difference between the models, Figure 4 shows the results of
SWAT and ANN models plotted against the observed values of streamflow for the calibration/training
and validation periods with their correlation coefficients.

SWAT models had a poor performance in estimating the large values of streamflow, whereas
ANN models were worse in estimating the small values. In every figure of Figure 4, the points which
are related to streamflow with large values are positioned at a greater distance to the 1:1 line when the
values have been estimated by SWAT. In contrast, the points related to the estimated streamflow by
ANN models are farther from the 1:1 line when it comes to the estimation of small values.

The hydrographs (Figure 5) show the fit obtained for simulated versus measured streamflow in
the studied basins during the validation period (from 1995 to 1997 for the LRB and from 2002 to 2004
for the HSRB). The models generally reproduce the streamflow fairly well. Although both models
tended to underestimate the peak-flow events during the validation phase, ANN models were more
sensitive to precipitation events than SWAT models, and their estimations always remain above those
obtained by SWAT.



Water 2018, 10, 192 13 of 19
Water 2018, 10, x FOR PEER REVIEW  13 of 19 

 

(a) (b) 

(c) (d)

 
Figure 4. Scatterplots for daily streamflow obtained with SWAT and ANN in (a) calibration/training 
period of LRB; (b) validation period of LRB; (c) calibration/training period of HSRB; (d) validation 
period of HSRB. 

 
(a) 

Figure 4. Scatterplots for daily streamflow obtained with SWAT and ANN in (a) calibration/training
period of LRB; (b) validation period of LRB; (c) calibration/training period of HSRB; (d) validation
period of HSRB.

Water 2018, 10, x FOR PEER REVIEW  13 of 19 

 

(a) (b) 

(c) (d)

 
Figure 4. Scatterplots for daily streamflow obtained with SWAT and ANN in (a) calibration/training 
period of LRB; (b) validation period of LRB; (c) calibration/training period of HSRB; (d) validation 
period of HSRB. 

 
(a) 

Figure 5. Cont.



Water 2018, 10, 192 14 of 19
Water 2018, 10, x FOR PEER REVIEW  14 of 19 

 

 
(b) 

Figure 5. Comparison of observed and simulated daily streamflow by SWAT and ANN in validation 
phase, while the bar graph at the top is the daily precipitation for (a) LRB; (b) HSRB. 

According to Chen and Chau (2016) [11], NSE and RMSE scale the mean squared error of 
estimation models, therefore they particularly reflect the performance on high values. Thus, the 
above discussions on evaluation criteria and plots of estimated data could not provide explicit 
performances on different intervals of values. To address this problem, different ranges of flow 
(from very high to very low flow) were determined. The reproduction of the streamflow was 
analysed by the FDC of LRB and HSRB for the validation periods (Figure 6). The FDC for LRB shows 
that the ANN performed generally better in the very high flow segment and SWAT was better in the 
very low flow segment. The values obtained by SWAT and by ANN were graphically similar for the 
rest of the flow segments in LRB. For HSRB, SWAT was better only in the very low flows.  

 
(a) (b) 

 
Figure 6. FDC of validation period of (a) LRB; (b) HSRB. 

An analysis of performance based on RMSE in each hydrograph phase was also done, as 
reflected in Table 10. The best results for each basin are highlighted in bold. As it was expected, high 
peaks are better simulated at the expense of low flows due to the fact that RMSE is biased towards 
high values. The RMSE values suggest that the SWAT model was better in the estimation of very low 
flows and ANN in the estimation of very high flows in all cases.  
  

Figure 5. Comparison of observed and simulated daily streamflow by SWAT and ANN in validation
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According to Chen and Chau (2016) [11], NSE and RMSE scale the mean squared error of
estimation models, therefore they particularly reflect the performance on high values. Thus, the above
discussions on evaluation criteria and plots of estimated data could not provide explicit performances
on different intervals of values. To address this problem, different ranges of flow (from very high to
very low flow) were determined. The reproduction of the streamflow was analysed by the FDC of LRB
and HSRB for the validation periods (Figure 6). The FDC for LRB shows that the ANN performed
generally better in the very high flow segment and SWAT was better in the very low flow segment.
The values obtained by SWAT and by ANN were graphically similar for the rest of the flow segments
in LRB. For HSRB, SWAT was better only in the very low flows.
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An analysis of performance based on RMSE in each hydrograph phase was also done, as reflected
in Table 10. The best results for each basin are highlighted in bold. As it was expected, high peaks are
better simulated at the expense of low flows due to the fact that RMSE is biased towards high values.
The RMSE values suggest that the SWAT model was better in the estimation of very low flows and
ANN in the estimation of very high flows in all cases.
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Table 10. RMSE values (m3/s) of SWAT and ANN models in each hydrograph phase.

Hydrograph Phase

Basin

LRB HSRB

Range of Flow (m3/s)
Calibration Validation

Range of Flow (m3/s)
Calibration Validation

SWAT ANN SWAT ANN SWAT ANN SWAT ANN

Very high flow [82.88, 478.29] 73.40 64.26 100.42 92.72 [4.52, 51.70] 6.64 5.80 5.98 5.81
High flow [30.37, 82.87] 26.71 26.06 21.85 26.43 [2.14, 4.51] 1.53 2.29 0.91 1.30

Medium flow [6.29, 30.32] 13.93 13.74 12.36 12.74 [1.03, 2.13] 0.99 0.84 0.73 0.64
Low flow [1.21, 6.28] 5.17 8.97 6.79 10.10 [0.61, 1.02] 0.54 0.58 0.53 0.48

Very low flow [0.48, 1.20] 1.50 7.80 1.00 7.41 [0, 0.60] 0.29 0.90 0.60 1.22

Similar results regarding peak-flow inefficiency of SWAT have been obtained in other studies
(e.g., [5,22,23]), which suggested that peak-flow inefficiency could be caused by the formulation.
The results obtained show that use of ANN models can help reduce the error in the estimation of
high streamflow values, although these were also underestimated. One of the reasons is that the
data of high values are scarce in the training data sets, the medium and low values being more
numerous as illustrated in the cloud of points in the scatterplots in Figure 4. This problem in the
application of neural network has also been reported in the works of Minns and Hall (1996) [15] and
Talebizadeh et al., (2010) [62]. On the other hand, SWAT models simulated the estimation of the low
flow values better than ANNs. In general, ANN models tended to overestimate the low values of
streamflow. This inability can be attributed to complex non-linear relationships governing the process
of low flow, often related to the base flow from groundwater. The performance of the ANN could
be deteriorated with the increase in non-linearity [15]. It is generally accepted that the processes of
streamflow generation are likely to be quite different during low, medium, and high flow periods.
The base flow mainly contributes to low flow events whereas intense storm rainfall gives rise to high
flow events [63]. Therefore, a single global ANN model could not predict the high and low runoff
events satisfactorily [15]. SWAT models may obtain satisfactory results for the estimation of low flows
but could not simulate very high streamflow with the same accuracy. In contrast to SWAT, a single
ANN can obtain better results for very high values but not for the lowest values; these results are
similar to those obtained by Kim et al., (2015) [23]. Therefore, the use of these models is suitable for
simulating the streamflow in a basin. In the case of studies of extreme hydrologic events (e.g., floods),
it is recommended to use an ANN model to simulate high-flow events. Otherwise, in studies of
hydrological management in which low-flow events are more interesting, applying the SWAT model
would be more desirable. In addition, it is important to take into account the disadvantages of each
model. In Spain, it is relatively easier to obtain the input data, such as the streamflow and precipitation
data, for the ANN model through the governmental online resources compared to data regarding the
physical characteristics of river basins, such as soil moisture, infiltration, soil classes, groundwater level
and evaporation, for the SWAT model. In addition, the time consumed in the setup and calibration
of SWAT is higher than that consumed in the implementation of an ANN model. However, an ANN
is a black box, and the water balance and its components are not obtained. The use of precipitation
and temperature as the only inputs of the models is, on the other hand, a limitation of the ANN
models used because the rainfall-runoff relation is impacted by different physical parameters too.
The non-consideration of land use or land management in the ANN model makes the SWAT model
more advantageous if a number of scenarios are to be made to investigate the response of the basin [1].

The results of this study suggest, however, that the ANN approach is very efficient to simulate a
hydrological process because it requires very few input variables and minimal resources to implement
and therefore, it is sufficiently promising to the development of other approaches such as the simulation
of water quality process, as it is reflected in some studies (e.g., [64–66]).



Water 2018, 10, 192 16 of 19

4. Conclusions

We proposed the use of SWAT, a semi-physically based model, and ANN, a machine learning
technique, to simulate the daily streamflow values and compare the results of both models in order
to analyse their capabilities. They were applied in two basins with contrasting climates to check the
validity of these models in basins with different climatic conditions. For determining the type and
number of inputs for ANN models, four scenarios were considered in each studied basin, and they
showed that the inclusion of daily precipitation, precipitation of previous days and total rainfall in
the previous days was important to estimate the daily streamflow. After calibrating SWAT models
for daily observed streamflow through the SUFI-2 algorithm, results indicated that SWAT has a better
performance in estimating very low values of streamflow, whereas ANN estimated very high values
with greater precision in all cases studied. Moreover, the results suggest that SWAT and ANN models
were better when the climate was more humid. When the basin has more arid weather and, therefore,
it is more complicated to model, ANN obtained better performance in more hydrograph phases.
One of the advantages of the ANN model is that it does not require any physical characteristics of the
watershed and, therefore, its implementation is easier. Nevertheless, in reverse, the totally implicit
and physically meaningless features are also the major criticisms. It is still necessary to develop
estimation models with conceptual ideas to reflect the characteristics of streamflow. ANN is a black
box, and to gain knowledge about the water balance and its components, the SWAT model is more
useful. Despite the advantages and disadvantages of each model, the results suggest that to simulate
values of streamflow time-series, the choice between the SWAT or ANN has an impact on the accuracy
of estimated flow. This idea for modelling streamflow can be extended to other machine learning
techniques, which we could explore in future works. In addition, the ANN model only considers the
inputs of precipitation and temperature. The influences of other inputs related to the streamflow can
be explored additionally to improve the current study.
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