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Abstract: Accurate and reliable estimations of reference evapotranspiration (ET0) are imperative in
irrigation scheduling and water resource planning. This study aims to analyze the spatiotemporal
trends of the monthly ET0 calculated by the Penman–Monteith FAO-56 (PMF-56) model in the
Huai River Basin (HRB), eastern China. However, the use of the PMF-56 model is limited by the
insufficiency of climatic input parameters in various sites, and the alternative is to employ simple
empirical models. In this study, the performances of 13 empirical models were evaluated against
the PMF-56 model by using three common statistical approaches: relative root-mean-square error
(RRMSE), mean absolute error (MAE), and the Nash–Sutcliffe coefficient (NS). Additionally, a linear
regression model was adopted to calibrate and validate the performances of the empirical models
during the 1961–2000 and 2001–2014 time periods, respectively. The results showed that the ETPMF
increased initially and then decreased on a monthly timescale. On a daily timescale, the Valiantzas3
(VA3) was the best alternative model for estimating the ET0, while the Penman (PEN), WMO,
Trabert (TRA), and Jensen-Haise (JH) models showed poor results with large errors. Before calibration,
the determination coefficients of the temperature-based, radiation-based, and combined models
showed the opposite changing trends compared to the mass transfer-based models. After calibration,
the performance of each empirical model in each month improved greatly except for the PEN model.
If the comprehensive climatic datasets were available, the VA3 would be the recommended model
because it had a simple computation procedure and was also very well correlated linearly to the
PMF-56 model. Given the data availability, the temperature-based, radiation-based, Valiantzas1 (VA1)
and Valiantzas2 (VA2) models were recommended during April–October in the HRB and other
similar regions, and also, the mass transfer-based models were applicable in other months.

Keywords: reference evapotranspiration; empirical models; performance evaluation; Huai River Basin

1. Introduction

Under the background of global warming, reference evapotranspiration (ET0) has become a crucial
agrometeorological variable for meteorological and hydrological process studies, as well as for
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irrigation scheduling and management, which plays a vital role in the atmosphere, hydrosphere,
and biosphere. From the agricultural perspective, its estimation is greatly significant in humid and
sub-humid regions like eastern China, where it is vital for determining high crop water requirements
and subsequently, for planning and managing irrigation practices [1]. Accurate and reliable estimations
of ET0 are essential for improving water resource planning and management [2,3], farm irrigation
demand, and also environmental assessment [4].

Numerous models based on climatic variables have already been employed to calculate the ET0

in many climatic and hydrogeographic settings [2,5]. For example, the Penman–Monteith FAO-56
(PMF-56) model recommended by the Food and Agricultural Organization (FAO) has been recognized
as the most accurate model for estimating the ET0 over the past few decades [6]. The PMF-56 model has
two advantages compared with other models [2,7]. Firstly, it is used globally without any calibrations
because of its biophysical basis. Secondly, this model has been well-documented in the existing
literature, in which it has been evaluated using a variety of conditions [5]. The main shortcoming of the
PMF-56 model is the requirement of large datasets, including the air mean, maximum and minimum
temperature, relative humidity, wind speed, and solar radiation. Records of these meteorological
input parameters are often with debatable quality or are unavailable for a specific site, especially in
some developing countries [1]. In addition, the installation and maintenance of meteorological station
instruments can be expensive and complicated [8]. Furthermore, some researchers or institutions
may not have access to complete meteorological datasets in some study areas. In the areas where the
observed large meteorological data are difficult to obtain, the PMF-56 model is not the best option.
To solve this problem, ET0 estimation models with a fewer errors and a simple computation procedure
are preferably applied. Therefore, there is an urgent need to find an accurate, suitable, and simple
alternative model to estimate the ET0 relative to the PMF-56 model when the meteorological datasets
are limited or missing.

During recent decades, the empirical models have been developed for estimating the ET0,
which required fewer meteorological parameters or simplified expressions. There are four main
climatic models: mass transfer-based, temperature-based, radiation-based, and the combined models.
Although a significant number of studies have been performed to evaluate these empirical models in
various climatic regions throughout China (e.g., Chen et al. [9]; Cai et al. [7]; Huo et al. [10]; Wen et al. [3];
Liu et al. [11]; and Feng et al. [12]), few such studies have been conducted in humid and sub-humid
climatic regions of eastern China [1,13]. Indeed, the performances of the empirical models may vary in
various environmental conditions, and local evaluation and calibration are needed [5]. Feng et al. [12]
calibrated the Hargreaves model using Bayesian theory in the Sichuan basin of southwestern China.
Liu et al. [11] determined the decisive meteorological variables using path analysis to establish the
specific models for estimating the ET0. The above studies mainly adopted temperature-based and
radiation-based models to estimate the ET0; however, the mass transfer-based and combined models
have rarely been used in China, and their applicability remains to be tested thoroughly. Hence, it is
imperative to carry out research evaluating the performance of the empirical models to determine the
best, or a relatively appropriate model for estimating the ET0 in a humid and sub-humid region.

Due to the simple operability of regression models, practitioners have widely used the simple
linear regression model in many studies, as can be found in Mallikarjuna et al. [14], Wen et al. [3],
Peng et al. [15], Cobaner et al. [16], Citakoglu et al. [17], and Huo et al. [10]. The regression model
expresses the dependence of a response parameter on many independent parameters and is used in
modeling a varied range of hydrologic process studies. In addition, Rahimikhoob et al. [4] adopted
the regression model to evaluate the performance and characteristics of four empirical models for
ET0 estimation in a subtropical climate in Iran and found that all the performances of the models
were improved after the calibration of regional specific coefficients. Similarly, we employ the linear
regression model in the present study to assess the performances of 13 empirical models for ET0

estimation as an alternative approach to the PMF-56.
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Owing to the complex relationship between the ET0 and climatic factors, many practitioners and
researchers have adopted computer algorithms to estimate the ET0 with higher accuracy. Huo et al. [10]
trained and tested the artificial neural network (ANN) model for estimating the ET0 in northwest
China and found that the maximum and minimum temperature and relative humidity were the
most crucial inputs for this model in arid and semi-arid areas. Tabari et al. [2] evaluated the
performance of the support vector machine (SVM), an adaptive neuro-fuzzy inference system (ANFIS),
multiple linear regression (MLR), and multiple non-linear regression (MNLR) for ET0 estimation
in a semi-arid highland environment in Iran. They found that the SVM and ANFIS models with
inputs of mean temperature, relative humidity, wind speed, and solar radiation showed the best
performance. After evaluation of the trained extreme learning machine (ELM), back propagation
neural networks optimized by the genetic algorithm (GANN), and wavelet neural networks (WNN),
two temperature-based and three radiation-based models were developed in a humid area of southwest
China by Feng et al. [18]. Feng et al. [18] recommended the ELM and GANN models as the best
alternatives with limited meteorological data. Mehdizadeh et al. [19] tested the performance of the
SVM and multivariate adaptive regression splines (MARS) and found that they were better than the
empirical models in Iran. Chauhan and Shrivastava [20] investigated the performance of reference
evapotranspiration in India using climate-based models and ANNs and found that the ANN models
performed better than the climatic-based models in all performance indices. Despite the higher
accuracy of the computer algorithms, these algorithms must be implemented through specific software,
and the models with particular inputs of climatic factors could not be expressed in straightforward
mathematical expressions like the empirical models [16]. Thus, the empirical model as an alternative
option to estimate the ET0 has been recommended in many other studies [20–24].

Except for the aforementioned examples, most of the previous studies have been carried out using
a low-precision timescale when there is a need for calibrating the empirical models. Furthermore,
Bourletsikas et al. [25] recommended that calibration at a seasonal or even monthly time-step could
obtain more accurate daily estimates. To the best of our knowledge, no comprehensive studies have
been undertaken to analyze the spatiotemporal trends of monthly ET0 and evaluate the performances
of empirical models in the HRB, eastern China, especially on a monthly timescale, which in itself is
the novelty of our research work. Although the performance of 10 empirical models were compared
for different sub-regions of mainland China [15], a thorough and detailed study for choosing the
best alternative empirical model for the PMF-56 model in the HRB has not been conducted. To fill
this research gap, in this study, we chose 13 extensively applied empirical models—including one
temperature-based model (Hargreaves–Samani), three mass transfer-based models (Penman, WMO,
and Trabert), six radiation-based models (Makkink, Priestly–Taylor, Jensen–Haise, Abtew, Irmak,
and Tabari), and three combined models (Valiantzas1, Valiantzas2, and Valiantzas3)—based on
their meteorological input parameters and applicability worldwide. Consequently, we propose two
hypotheses: (1) the different empirical models will produce significantly different results for the
estimation of reference evapotranspiration on a monthly timescale; and (2) the linear regression model
can effectively calibrate the 13 empirical models against the PMF-56 model in the HRB. Ultimately,
the main objectives of this study are (1) to analyze the spatiotemporal trends of the ETPMF in the HRB
during 1961–2014 on a monthly timescale; (2) to evaluate the performances of 13 empirical models
against the PMF-56 model for ET0 estimation on a daily timescale; (3) to calibrate the 13 empirical
models using the daily datasets from 1961–2000 by adopting the linear regression model on a monthly
timescale; and (4) to validate the calibrated empirical models by using three statistical approaches
during the period of 2001–2014 on a monthly timescale. The outcomes of the study will provide
meaningful guidance for agricultural production and hydrological planning and management in this
vital region, as well as other regions with the similar climates.
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2. Materials and Methods

2.1. Study Area and Datasets

The Huai River Basin (HRB) is located in a climate transition zone (111◦55′–121◦25′ E,
30◦55′–36◦36′ N) between northern and southern China, with a catchment area of about 270,000 km2.
The western, southwestern, and northeastern parts of the HRB are mainly mountainous and hilly areas,
with the remaining area occupied by broad plains for about two-thirds of the total basin area (Figure 1).
The annual average temperature ranges from 11 ◦C to 16 ◦C, increasing from north to south, as well as
from coast to island areas. The annual mean water surface evaporation ranges from 900 mm to 1500 mm,
and relative humidity ranges from 40 to 70%. Annual average precipitation is about 970 mm; more than
50% of rainfall is concentrated in the monsoon season from June to September. With an uneven
distribution pattern of precipitation and complex weather systems, the HRB is extremely vulnerable to
floods during the rainy season and drought during the dry season.

Daily meteorological data from 137 meteorological stations in the HRB during 1961–2014, including
mean temperature (T, ◦C), maximum temperature (Tmax, ◦C), minimum temperature (Tmin, ◦C), relative
humidity (RH, %), wind speed at 2 m height (u2, m·s−1), sunshine duration (SD, h), and precipitation
(Pr, mm), were obtained from the National Meteorological Information Center (NMIC) of the
China Meteorological Administration (CMA). Quality control had already been applied to the
meteorological datasets by the staff members of the NMIC. Detailed data descriptions can be found at
the website http://data.cma.cn/. Specific information for each station is listed in Table A1. All stations
were divided into two climate zones, namely humid and sub-humid regions. The subdivision of
these two climate zones is mainly according to the global aridity index (AI) adopted by the United
Nations Convention to Combat Desertification [26–28]. The AI is defined as the ratio of annual
average precipitation to reference evapotranspiration, and the classification standards of humid and
sub-humid regions are as follows: AI > 1 for humid regions and 0.5 < AI < 1 for sub-humid regions.
The demarcation line between humid and sub-humid regions is displayed in Figure 1. The description
of the main climatic factors in each region of the HRB during the study period is presented in Table 1.

Figure 1. Map showing the geographical location of the meteorological stations in the Huai River Basin
(HRB). Note: The red line is the boundary between the sub-humid (I) and humid (II) regions.

http://data.cma.cn/
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Table 1. Annual means of the main climatic factors in the sub-humid and humid regions and the whole
HRB during 1961–2014.

Region T (◦C) Tmax (◦C) Tmin (◦C) RH (%) u2 (m·s−1) Rs (MJ·m−2·d—1) Pr (mm·a—1) ET0 (mm·a—1)

Sub-humid (I) 14.45 19.93 9.84 70.29 1.86 15.08 783.05 981.23
Humid (II) 15.03 19.88 11.12 75.96 1.95 14.85 1049.63 936.89

Whole 14.60 19.92 10.18 71.78 1.88 15.02 853.10 969.57

Note: Rs is the solar radiation (MJ·m−2·d−1).

2.2. Penman–Monteith FAO-56 Model (PMF-56 Model)

Due to the absence of the observation of lysimeters, the Penman–Monteith FAO-56 model
(PMF-56), which was proposed by Allen et al. [6], was adopted as standard all over the world and is
considered the best model for estimating reference evapotranspiration [1,29–31]. The exact expression
is shown in the following Equation (1):

ETPMF =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ETPMF is the daily reference evapotranspiration (mm·d−1), ∆ is the slope of the vapor
pressure curve (kPa·◦C−1), Rn is the net solar radiation (MJ·m−2·d−1), G is the soil heat flux density
(MJ·m−2·d−1), γ is the psychrometric constant (kPa·◦C−1), T is the daily mean air temperature at 2 m
height (◦C), u2 is the wind speed at 2 m height (m·s−1), es is the saturation vapor pressure (kPa), and ea

is the actual vapor pressure (kPa). The detailed calculations of the parameters in Equation (1) can be
found in the literature [1,6].

2.3. Empirical Models

Our preliminary evaluation of the 13 empirical models was based on the acceptance of their
meteorological input parameters and the applicability of the models worldwide. These 13 empirical
ET0 models, which commonly performed well in various regions of the world [24,32–40], were selected
to compare to the PMF-56 model. The combined models included the three Valiantzas equations [41,42],
which were proposed to simplify the PMF-56 equation. The three Valiantzas [41,42] equations
were comparatively new, and their performances had not been validated in eastern China.
The Hargreaves–Samani equation (HS) was adopted in the present study because the PMF-56 manual
recommended the use of the HS as a less complex model mainly requiring data on temperature
and extraterrestrial radiation. Thus, the 13 empirical models employed in this study can be
divided into the following four categories: one temperature-based model (Hargreaves–Samani),
three mass transfer-based models (Penman, WMO, and Trabert), six radiation-based models (Makkink,
Priestly–Taylor, Jensen–Haise, Abtew, Irmak, and Tabari), and three combined models (Valiantzas1,
Valiantzas2, Valiantzas3). The specific calculation equations, main input variables, and references are
presented in Table 2.
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Table 2. Original forms of the 13 empirical models.

NO. Models Models Input Equations References

Temperature-based
1 Hargreaves–Samani T, Tmax, Tmin ETHS = 0.0023 · 0.408Ra(T + 17.8)(Tmax − Tmin)

0.5 [32]

Mass transfer-based
2 Penman u2, es − ea ETPEN = 0.35(1 + 0.98/100u2)(es − ea) [33]
3 WMO u2, es − ea ETWMO = (0.1298 + 0.0934u2)(es − ea) [34]
4 Trabert u2, es − ea ETTRA = 3.075u2

0.5(es − ea) [35]

Radiation-based
5 Makkink Rs, T ETMAK = 0.61 ∆

∆+γ
Rs
λ − 0.12 [36]

6 Priestley–Taylor Rn, T ETPT = 1.26 ∆
∆+γ

Rn−G
λ [37]

7 Jensen–Haise Rs, T ETJH = (0.025T + 0.08) Rs
λ

[38]
8 Abtew Rs, Tmax ETABT = 1

56
RsTmax

λ
[39]

9 Irmak Rs, T ETIRM = 0.149Rs + 0.079T − 0.611 [40]
10 Tabari Rs, Tmax, Tmin ETTAB = 0.156Rs − 0.0112Tmax + 0.0733Tmin − 0.478 [24]

Combined
11 Valiantzas1 Rs, T, RH ETVA1 = 0.0393Rs

√
T + 9.5− 0.19Rs

0.6φ0.15 + 0.078(T + 20)
(

1− RH
100

)
[41,42]

12 Valiantzas2 Rs, T, Tmin ETVA2 = 0.0393Rs
√

T + 9.5− 0.19Rs
0.6φ0.15 + 0.0061(T + 20)(1.12T − Tmin − 2)0.7 [41,42]

13 Valiantzas3 Rs, T, RH, u2 ETVA3 = 0.0393Rs
√

T + 9.5− 0.19Rs
0.6φ0.15 + 0.048(T + 20)

(
1− RH

100

)
u2

0.7 [41,42]

Note: Ra is the extraterrestrial radiation (MJ·m−2·d−1), Rs is the solar radiation (MJ·m−2·d−1), Rn is the net solar radiation (MJ·m−2·d−1), T, Tmax, and Tmin are mean, maximum,
and minimum temperature (◦C), respectively, u2 is the wind speed at 2 m height (The unit of u2 is in m·s−1 in all equations except the Penman model, where u2 is in miles·d−1), es and ea
are saturation and actual vapor pressure, respectively (The units of es and ea are in hPa in all equations except the Penman model, where es and ea are in mmHg.), RH is the relative
humidity (%), ∆ is the slope of the vapor pressure curve (kPa·◦C−1), γ is the psychrometric constant (kPa·◦C−1), λ is the latent heat of vaporization (≈2.45 MJ·kg−1), G is the soil heat flux
density (MJ·m−2·d−1), and ϕ is the latitude (rad). The abbreviations of the 13 empirical models are arranged in order that the models appear in Table 2: HS, PEN, WMO, TRA, MAK, PT,
JH, ABT, IRM, TAB, VA1, VA2, and VA3.
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2.4. Performance Evaluation Approaches

In this study, the performance of the 13 empirical models was evaluated by adopting three
statistical approaches: relative root-mean-square error (RRMSE), mean absolute error (MAE) and
the Nash–Sutcliffe coefficient (NS) [12,43]. The following Equations (2)–(4) are used to evaluate the
performances of the 13 empirical models:

RRMSE =
RMSE

ETPMF,mean
=

√
1
n ∑n

i=1
(
ETi

EMP − ETi
PMF

)2

ETPMF,mean
(2)

MAE =
∑n

i=1
∣∣ETi

EMP − ETi
PMF

∣∣
n

(3)

NS = 1− ∑n
i=1
(
ETi

EMP − ETi
PMF

)2

∑n
i=1
(
ETi

PMF − ETPMF,mean
)2 (4)

where ETi
PMF and ETi

EMP are daily reference evapotranspiration estimated by the PMF-56 model and
the 13 empirical models, respectively, n is number of the sample size, and ETPMF,mean is the mean
value of ETPMF. The RRMSE is dimensionless, with the value ranging from 0 to ∞. The MAE is in
mm·d−1. The closer the value of the RRMSE or the MAE to 0, the better the performance of empirical
equations. The NS is dimensionless, with the value ranging from 1 to −∞, the closer the value of the
NS to 1, the better the performance of empirical models.

2.5. Calibration and Validation of the Empirical Models

As recommended by Allen et al. [6], the linear regression model was employed to calibrate and
validate the empirical models against the PMF-56 model. The specific expression is shown in the below
Equation (5):

ETPMF = a · ETEMP + b (5)

where ETPMF and ETEMP represent the daily reference evapotranspiration estimated by the PMF-56
model and the 13 empirical models, respectively, and a and b are calibrated empirical coefficients.

2.6. Trend Test

The nonparametric Mann–Kendall (MK) test [44,45] was applied to identify the trend of the ET0.
The MK test statistic (Z) follows the standard normal distribution with a mean of 0 and variance of
1 under the null hypothesis of no trend in the ET0. The null hypothesis is rejected if |Z| ≥ Z1−β/2
at a significance level of β, where Z1−β/2 is the (1 − β/2)–quantile. If the Z value is positive (or
negative), then the ET0 has an increasing (or decreasing) trend. As β = 0.05, if |Z| > 1.96, the trend
is significant. In addition, Theil–Sen’s slope estimator (β) [46,47] is used to determine the extent of
a trend. This method has been usually used to detect the slope of a trend in a hydrometeorological time
series dataset, which can be found in the literature [1,13,48]. The spatial distributions of the monthly
ET0 and its trends are mapped by the inverse distance weighted (IDW) interpolation model in ArcGIS
(version 9.3) software.

3. Results and Discussion

3.1. Monthly Variations of the ETPMF

As shown in Figure 2, the ETPMF increased initially and then decreased on a monthly timescale,
with the highest value appearing in June and the lowest value in January. Meanwhile, the ETPMF also
revealed large regional differences in April, May, and June, which were especially obvious in June,
with the value ranging from 112 mm to 165 mm. Similar monthly trends of the ETPMF could also be
detected in other regions of China, such as the Yellow River Basin [49], northwest China [50], and the
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Sanjiang Plain in northeast China [51]. The spatial distribution of the ETPMF results showed a similar
tendency of temporal distribution in the HRB (Figure 3). From January to June, the highest-value region
of the ETPMF shifted from the northwest to the northern parts of the HRB, generally demonstrating
a gradually increasing trend from south to north. However, from July to December, the highest ETPMF
existed in the central and western parts of the HRB, then shifted to the southeastern parts in August,
September, and October, and then shifted back to the southern and northwestern parts in November
and December. Different distribution patterns of the ETPMF were found on a seasonal timescale in the
HRB [13]. The ETPMF represented an obvious spatial evolution pattern on a monthly timescale.

In this study, for a comprehensive understanding of the ETPMF trends on a monthly timescale in
the HRB, the MK test and Sen’s slope estimator were employed. As shown in Table 3 and Figure 4,
on a temporal scale, the ETPMF exhibited significant decreasing trends in January, June, July, and
August, with the values of −0.108 mm·a−2, −0.628 mm·a−2, −0.330 mm·a−2, and −0.460 mm·a−2,
respectively. However, in March and April, the ETPMF demonstrated slightly non-significant increasing
trends. Similar to the results in Figure 2, the magnitude of the ETPMF trends on a spatial scale were
higher in June. Particularly, in January, the ETPMF showed significant decreasing trends in the central
and northwestern parts of the HRB, while a non-significant increasing trend of the ETPMF was detected
in some parts of the southwest and southeast of the HRB. Similar trends were identified in September,
November, and December, while the magnitude of the ETPMF trends was much smaller than that
in January. In February and October, the stations with significant decreasing ETPMF trends mainly
existed in the northwest of the HRB, and the stations with increasing ETPMF trends were found in
the northeast and southeast of the HRB. In March, about 56% of stations exhibited increasing ETPMF
trends, with a few stations showing significant increasing trends distributed in the southwest and
southeast of the HRB. In April, about 62% of stations showed increasing ETPMF trends, with about 34%
of stations distributed in the southern parts of the HRB accounting for the significant increasing trends.
Meanwhile, only about 12% of stations located in the north of the HRB exhibited significant decreasing
trends in the ETPMF. However, in May, the proportion of stations with significant decreasing ETPMF
trends in the northern part of the HRB increased to 33%, while the proportion of stations with significant
increasing ETPMF trends decreased to 4% of all stations that were mainly distributed in the southeast
of the HRB. Unlike in other months, the ETPMF showed significant decreasing trends in almost the
whole HRB in June and August, accounting for about 89% and 91% of stations, respectively, except for
a few stations that exhibited non-significant decreasing trends in the southeast region. Nevertheless,
significant decreasing trends of the ETPMF in July were mainly distributed in the northwestern part of
the HRB, with about 54% of stations occupied.

Figure 2. Box plot showing the monthly ETPMF in the HRB. Boxes and whiskers represent the
interquartile range (between the 25th and 75th percentiles) and the maximum and minimum values;
the central red solid line represents the median, and the hollow circle represents the average value.
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Figure 3. Spatial distribution of monthly ETPMF in the HRB during 1961–2014. Note: Jan, Feb, Mar,
Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec are the abbreviations of January, February, March, May,
June, July, August, September, October, November, and December, respectively. (a–l) represent the
ETPMF from January to December respectively.

Table 3. Temporal trends of the ETPMF (mm·a−2) on a monthly timescale during 1961–2014 in the HRB.

Parameters Jan Feby Mar Apr May Jun Jul Aug Sep Oct Nov Dec

β −0.108 * −0.075 0.022 0.030 −0.252 −0.628 *** −0.330 ** −0.460 *** −0.155 −0.081 −0.082 −0.089
Z −2.074 −1.015 0.149 0.269 −1.701 −4.148 −2.716 −4.252 −1.925 −0.985 −1.343 −1.641

Note: *, **, and *** denote the significance levels of 0.05, 0.01, and 0.001, respectively. β is the estimated slope trend
of the ETPMF, and β > 0 and β < 0 signify an upward and a downward trend, respectively. Z is the Mann–Kendall
test statistic. Note: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec are the abbreviations of January,
February, March, May, June, July, August, September, October, November, and December, respectively.
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Figure 4. Spatial distribution of monthly ETPMF trends in the HRB during 1961–2014. Note: Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec are the abbreviations of January, February,
March, May, June, July, August, September, October, November, and December, respectively. The solid
rhombus and cross-shaped signs represent the decreasing and increasing trends with a significance
level of less than 0.05. (a–l) represent the trends of ETPMF from January to December respectively.

3.2. Performance Evaluation of the 13 Empirical Models in the HRB

Figure 5 shows the scatter plots of reference evapotranspiration estimated by the PMF-56 model
(ETPMF) and the 13 empirical models (ETEMP) in the HRB. As seen in Figure 5, climatic-based models,
such as the temperature-based model (HS), radiation-based models (MAK, PT, JH, ABT, IRM, and
TAB), and the combined models (VA1, VA2, and VA3) performed better than the mass transfer-based
models (PEN, WMO, and TRA), with all the scatters of the ETEMP distributed along the 1:1 line and
the R-squared greater than 0.9. Among the well-performing models, the HS, PT, JH, ABT, VA1, VA2,
and VA3 models overestimated the ET0 in the whole HRB, with the slope of the linear fit line greater
than 1, and the MAK, IRM, and TAB models underestimated the ET0, with the slope of the linear fit
line less than 1. However, the performance of the mass transfer-based models was not satisfactory,
with the values of the determination coefficients at less than 0.801. Furthermore, the scatters of the
mass transfer-based models are more dispersed, generally underestimating the ET0 with large errors.
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Figure 5. Comparative analysis of the daily reference evapotranspiration estimated by the standardized
PMF-56 model (ETPMF, x axis) against the 13 empirical models (ETEMP, y axis). The red dashed line
indicates the linear fit of the scatters; the solid line represents the 1:1 line. The sample size is 19,723.

For better evaluation of each empirical model, the statistical analysis, including the RRMSE,
the MAE, and the NS, are shown in Table 4. In the temperature-based model, the HS model
showed average performance, with the values of the RRMSE, the MAE, and the NS were 0.222,
0.475, and 0.853, respectively. The simulation accuracy is higher than that in the Sichuan Basin of
southwestern China [12] (where the cloud cover is relatively large, and the solar radiation is reduced,
ultimately influencing the estimation results of the ET0) and also different sub-regions of mainland
China [15]. Of the mass transfer-based models, the performance of each model followed the sequence
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of TRA > WMO > PEN. Considering the results of large errors shown in Figure 5 and values of
the RRMSE, the MAE, and the NS, these three models cannot be used as appropriate alternatives,
especially the PEN model (for which the values of the RRMSE, the MAE, and the NS were 0.580, 1.301,
and −0.006, respectively). Of the radiation-based models, all the models performed well except the JH,
for which the values of the RRMSE, the MAE, and the NS were 0.417, 0.870, and 0.419, respectively.
The overall performances followed the order of IRM > TAB > PT > ABT > MAK > JH. The poor
performance of JH agreed with the results of Ahooghalandari et al. [52] in Australia. In the combined
models, all the statistical parameters of each model performed better in estimating the ET0 than the
others, especially the VA3 model, for which the values of the RRMSE, the MAE, and the NS were
0.126, 0.267, and 0.953, respectively, followed closely by VA1 and VA2. Based on the aforementioned
discussion, on a daily timescale, the VA3 model is the best alternative model to the PMF-56 model for
estimating the ET0 in the HRB.

Table 4. Statistical analysis of the 13 empirical models versus the PMF-56 model for estimating daily
reference evapotranspiration in the HRB from 1961 to 2014.

Parameters ETHS ETPEN ETWMO ETTRA ETMAK ETPT ETJH ETABT ETIRM ETTAB ETVA1 ETVA2 ETVA3

RRMSE 0.222 0.580 0.500 0.364 0.217 0.195 0.417 0.195 0.161 0.190 0.147 0.160 0.126
MAE 0.475 1.301 1.079 0.723 0.440 0.411 0.870 0.427 0.347 0.350 0.309 0.340 0.267
NS 0.853 −0.006 0.250 0.604 0.859 0.886 0.479 0.886 0.923 0.892 0.935 0.924 0.953

In earlier studies, Mehdizadeh et al. [19] reported that the mass transfer-based models showed the
worst performance, while the combined models exhibited the best accuracy. The higher precision of the
combined models might be due to the combination of the most suitable and important meteorological
parameters incorporated therein (e.g., T from the temperature-based model, u2 and RH from the mass
transfer-based models, and Rs from the radiation-based models). Tabari et al. [24] also tested 10 mass
transfer-based models in the humid conditions of Iran and found that some of their performances were
poor and had underestimated the results. Our results are in good agreement with the findings of Tabari
et al. [24]. In this study, the VA3 model showed the best accuracy because of the combination of the T,
RH, u2, and Rs parameters, which play a vital role in ET0 estimation. Similar findings were also found
in Tanzania and southwestern Kenya in eastern Africa [53], India [20], and western Australia [54].
In addition, the better performance of the radiation-based models was mainly due to the important
role of the Rs parameter in ET0 estimation in humid climates [55].

3.3. Calibration of the Empirical Models

As seen in Figure 5 and Table 4, it has been found that each empirical model has more or less
errors when estimating reference evapotranspiration compared with that estimated by the PMF-56
model to some extent. In Figure 6, the monthly ETEMP calculated by the 13 empirical models were
compared with the ETPMF on a monthly timescale. Evidently, the mass transfer-based models (PEN,
WMO, and TRA) have different monthly change trends compared to other models, which might be
responsible for their poor performance. The underestimation of these three mass transfer-based models
was in accordance with the results of Tabari et al. [24] in Iran, although with similar humid conditions,
some differences also existed in the monthly average trend. Except for the mass transfer-based models,
despite the analogous monthly change trends between the other empirical models and the PMF-56
model, there was still some obvious overestimation (JH, HS, and PT) and underestimation (TAB and
MAK) on the monthly timescale. Taking JH model as an example, it overestimated the ET0 greatly from
April to October, while underestimating the ET0 in other months. Jensen et al. [56], Tabari et al. [24],
and Tegos et al. [57] also reported that the JH model tends to overestimate the ET0 in humid climate
conditions. This difference can also be confirmed in Table 4.
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Figure 6. Comparison of the monthly ETEMP and ETPMF in the HRB during 1961–2014.

Due to the large differences estimated by the empirical models on a monthly timescale, we decided
to calibrate the empirical models from month to month. In this study, the 13 empirical models were
calibrated using the meteorological datasets from 1961 to 2000 by establishing the linear regression
model between the ETPMF and the ETEMP. The specific calibration coefficients can be found in
Table 5. As seen in Table 5, we found that the determination coefficients of the temperature-based,
radiation-based, and combined models all presented change trends that increased primarily and then
decreased from January to December. The high values of the determination coefficients for these
models mainly existed between April and October, especially in July, August, and September, in which
the highest values were found. At this point, these models could be recommended as appropriate
alternatives for estimating the ET0 during these months. However, in other months, especially in
January and December, the performances of these models were poor, with the PT model showing the
worst performance (R2 = 0.114). According to the earlier study of Li et al. [13], the Rs parameter was the
most dominant factor influencing the ET0 trends in the growing season (April–October) and summer
(June–August) in the HRB, and it might be responsible for the good performance of the radiation-based
models in these periods. In addition, the determination coefficient of the VA3 model ranged from
0.882 in December to 0.993 in July, which indicated that it was the ideal alternative over the other
models. This phenomenon can also be verified in Figure 5 and Table 4. Despite the fact that the
VA3 model possessed a relatively simple calculation formula in comparison with the PMF-56 model,
its applicability still needed more consideration due to the numerous meteorological input parameters
(e.g., T, Rs, RH, and u2) required. On the contrary, the mass transfer-based models revealed an opposite
change trend that decreased initially and then increased from January to December, with the lowest
determination coefficient appearing in September. Despite the fact that the mass transfer-based models
showed the poorest performance in daily scatter plots fit (Figure 5 and Table 4), the performance of
these models in January, February, March, November, and December should gain more recognition,
with the values of the determination coefficients at greater than 0.8. Furthermore, especially in January
and December, the determination coefficients of the WMO and TRA models were greater than 0.9 and
also greater than that of the VA3 model; these results illustrated that these two mass transfer-based
models could be recommended as the best alternative to estimate the ET0 in the corresponding time
periods. The WMO and TRA models shared the same meteorological input parameter of u2. Then,
this phenomenon could reasonable be explained by the previous study, which found that u2 was the
dominant contributing factor to the ET0 trends in the HRB in these periods [13]. Together with the
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performances of the VA1, VA2, and VA3 models, the distinctive differences between VA1/VA2 and
VA3 indicated that the combination of these four meteorological parameters, namely Rs, T, RH, and u2,
could provide more accurate ET0 estimations in winter. These findings are in disagreement with the
results of Peng et al. [15]. Similar findings could also be verified by Tegos et al. [58], who proposed that
because of the absence of relative humidity and wind speed in the parametric model, the estimated
values of the parametric model deviated from the PMF-56 model estimation in some locations.

3.4. Validation of the Calibrated Empirical Models

In this study, in order to validate the calibrated empirical models, the meteorological datasets
from 2001 to 2014 were used. The radar charts of Figures 7–9 show the RRMSE, MAE and NS values
between the original reference evapotranspiration and the calibrated reference evapotranspiration
using the 13 empirical models in the HRB. In general, after the calibration, the performance of each
empirical models in each month has been improved greatly compared with that of original. After the
calibration, the RRMSE and MAE values are closer to 0 and the NS values are closer to 1. Moreover, the
RRMSE, MAE, and NS values became smaller and tended to be stable. As given in Figure 7, before the
calibration, the RRMSEs in January, February, and December were larger in each empirical model,
especially in the ABT and JH models and the PEN and WMO models in February. Even after the
calibration, the RRMSE values were still imperfect compared with those in other periods, except for
the WMO, TRA, and VA3 models. The performance of these three models was good, especially the
WMO and TRA models in January and December, which could also be confirmed in Table 4. However,
in other months, despite large RRMSE values that could be detected in the PEN, WMO, and JH models
before the calibration, the performances of these models have been greatly enhanced after calibration.
Similar results could also be verified from the MAE and NS values in Figures 8 and 9.

After the calibration, it must be emphasized that the temperature-based HS model showed
the simplest expression and only needed three easily acquired meteorological variables, namely T,
Tmax, and Tmin. However, the performance of the HS model was not very good compared with the
other types of models. Similar findings could also be found in Feng et al. [12], despite the fact that
the performance of the HS model was enhanced by adopting the Bayesian theory, the model still
overestimated the results. This might be due to the fact that no physical mechanism was taken into
account. Of the mass transfer-based models, the performances of the three models followed the order
of TRA > WMO > PEN from January to July and WMO > TRA > PEN from August to December except
for September. In September, the performances were in the sequence of PEN > TRA > WMO. Of the
radiation-based models, the performances of these six models (MAK, PT, JH, ABT, IRM, and TAB)
were good, and the differences between the groups were small from April to October. In other months,
distinctive differences could be found, with the IRM and TAB models showing the best performances
and the PT and JH models showing the worst performances. That the JH model performed the worst
in our study is consistent with the outcomes found in the humid climates of Serbia [59] and Florida,
USA [40]. In addition, of the combined models, the VA3 model showed the optimum performance,
followed closely by the VA1 and VA2 models, except in September and October, when the performance
of these three models followed the order of VA3 > VA2 > VA1.

To more specific, this study also compared the reference evapotranspiration before and after the
calibration on monthly and annual timescales using the 13 empirical models in comparison with the
PMF-56 model. As shown in Figure 10, after the calibration, the reference evapotranspiration estimated
by each of the 13 empirical models on monthly and annual timescales were very close to that estimated
by the PMF-56 model. Although the performance of the PEN model was improved after the calibration,
as shown in Figures 7–9, it still overestimated the ET0, especially from March to October (Figure 10b),
and ultimately lead to an overestimated ET0 on an annual timescale (Figure 10d) as well. This implied
that the linear regression model could not properly calibrate the PEN model, and thus, the PEN model
is not recommended for estimating the ET0 in the HRB when compared with other empirical models.
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Table 5. The calibration coefficients between the ETPMF and ETEMP in monthly timescale during 1961–2000.

Month Parameters ETHS ETPEN ETWMO ETTRA ETMAK ETPT ETJH ETABT ETIRM ETTAB ETVA1 ETVA2 ETVA3

January a 0.671 1.188 0.783 0.639 0.709 0.868 0.477 0.562 0.467 0.562 0.606 0.506 0.613
b 0.316 0.329 0.443 0.410 0.376 0.334 0.804 0.727 0.578 0.588 0.370 0.627 0.364

R2 0.350 0.814 0.943 0.958 0.428 0.114 0.207 0.354 0.430 0.394 0.703 0.402 0.899

February a 0.825 1.311 0.851 0.685 0.908 1.244 0.712 0.721 0.648 0.772 0.680 0.665 0.664
b 0.181 0.478 0.626 0.589 0.274 −0.149 0.834 0.797 0.466 0.455 0.381 0.614 0.394

R2 0.658 0.871 0.891 0.913 0.665 0.570 0.578 0.661 0.677 0.620 0.861 0.696 0.954

March a 0.902 1.443 0.826 0.687 0.995 1.098 0.763 0.785 0.830 0.983 0.761 0.748 0.721
b 0.000 0.747 1.034 0.953 0.301 −0.175 0.786 0.878 0.270 0.234 0.380 0.621 0.409

R2 0.743 0.880 0.834 0.868 0.779 0.723 0.779 0.795 0.783 0.754 0.911 0.796 0.975

April a 0.946 1.338 0.763 0.636 1.014 0.964 0.663 0.756 0.987 1.144 0.792 0.770 0.770
b −0.269 1.276 1.677 1.556 0.435 −0.035 0.915 1.026 −0.051 −0.065 0.480 0.701 0.465

R2 0.757 0.846 0.745 0.794 0.824 0.773 0.823 0.843 0.826 0.799 0.930 0.837 0.977

May a 1.072 1.113 0.710 0.567 1.129 1.045 0.694 0.798 1.213 1.398 0.828 0.855 0.806
b −1.007 1.846 2.241 2.146 0.254 −0.484 0.627 0.883 −0.810 −0.819 0.508 0.496 0.561

R2 0.837 0.847 0.782 0.811 0.875 0.837 0.897 0.905 0.885 0.854 0.955 0.897 0.985

June a 1.278 0.985 0.622 0.496 1.212 1.080 0.710 0.850 1.403 1.557 0.864 0.931 0.827
b −2.062 2.129 2.622 2.510 0.192 −0.669 0.402 0.693 −1.557 −1.383 0.534 0.318 0.671

R2 0.855 0.827 0.796 0.817 0.888 0.835 0.910 0.920 0.901 0.867 0.958 0.915 0.991

July a 1.417 1.265 0.750 0.607 1.151 0.920 0.628 0.807 1.330 1.431 0.885 0.902 0.864
b −2.517 2.018 2.680 2.556 0.175 −0.369 0.452 0.608 −1.598 −1.340 0.477 0.228 0.584

R2 0.814 0.785 0.676 0.707 0.942 0.942 0.965 0.965 0.955 0.947 0.977 0.958 0.993

August a 1.365 1.377 0.925 0.713 1.069 0.864 0.596 0.759 1.225 1.322 0.836 0.842 0.850
b −2.009 1.771 2.342 2.293 0.293 −0.144 0.524 0.672 −1.289 −1.061 0.542 0.337 0.556

R2 0.853 0.769 0.612 0.634 0.958 0.963 0.980 0.976 0.970 0.958 0.977 0.968 0.988

September a 0.997 1.086 0.774 0.605 0.892 0.830 0.564 0.663 0.969 1.090 0.700 0.697 0.746
b −0.531 1.398 1.768 1.719 0.628 0.208 0.722 0.901 −0.342 −0.240 0.703 0.682 0.633

R2 0.825 0.657 0.503 0.528 0.909 0.871 0.923 0.919 0.921 0.905 0.933 0.915 0.965

October a 0.797 0.984 0.736 0.572 0.806 0.888 0.573 0.613 0.796 0.952 0.623 0.612 0.667
b 0.107 0.913 1.119 1.091 0.552 0.251 0.658 0.819 0.061 0.076 0.558 0.651 0.508

R2 0.708 0.757 0.720 0.739 0.773 0.684 0.794 0.776 0.788 0.780 0.857 0.775 0.936

November a 0.625 0.960 0.712 0.563 0.692 0.802 0.510 0.531 0.551 0.683 0.567 0.498 0.623
b 0.386 0.551 0.641 0.615 0.500 0.469 0.718 0.760 0.473 0.483 0.429 0.649 0.354

R2 0.451 0.801 0.882 0.898 0.526 0.288 0.489 0.503 0.522 0.506 0.736 0.520 0.905

December a 0.589 1.078 0.740 0.595 0.667 0.477 0.466 0.499 0.453 0.579 0.575 0.449 0.606
b 0.376 0.320 0.421 0.394 0.406 0.661 0.734 0.698 0.557 0.561 0.343 0.617 0.314

R2 0.277 0.803 0.981 0.984 0.363 0.020 0.234 0.305 0.360 0.338 0.647 0.338 0.882
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Figure 7. Radar charts showing the comparison of the RRMSE values between the original reference
evapotranspiration and the calibrated reference evapotranspiration using the 13 empirical models in
the HRB from 2001 to 2014. Note: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec are the
abbreviations of January, February, March, May, June, July, August, September, October, November,
and December, respectively.

Figure 8. Radar charts showing the comparison of the MAE values between the original reference
evapotranspiration and the calibrated reference evapotranspiration using the 13 empirical models in
the HRB from 2001 to 2014. Note: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec are the
abbreviations of January, February, March, May, June, July, August, September, October, November,
and December, respectively.
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Figure 9. Radar charts showing the comparison of the NS values between the original reference
evapotranspiration and the calibrated reference evapotranspiration using the 13 empirical models in
the HRB from 2001 to 2014. Note: Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec are the
abbreviations of January, February, March, May, June, July, August, September, October, November,
and December, respectively.

Figure 10. Comparison of the original reference evapotranspiration and the calibrated reference
evapotranspiration on monthly and annual timescales. (a,b) are original and calibrated reference
evapotranpiration on monthly timescale respectively; (c,d) are original and calibrated reference
evapotranpiration on annual timescale respectively.
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Based on the above discussion, the VA3 model exhibited the best accuracy compared with the
other 12 empirical models in the HRB, eastern China. If the complete meteorological datasets were
accessible, the VA3 model would be the best alternative to the PMF-56 model because of its satisfactory
accuracy and simple algorithm. However, based on data availability, the temperature-based,
radiation-based, VA1, and VA2 models are recommended for use during April-October if the
corresponding meteorological input parameters in Table 2 are accessible in the HRB and other similar
regions, whereas the mass transfer-based models are preferable for other months.

Although the most accurate PMF-56 model was used as the benchmark in the current research
to evaluate the performance of the empirical models, the outcomes obtained from this study are
still inexplicable to some extent and further verification should be carried out for the experimental
ET0 data (e.g., by eddy covariance systems, lysimeters, etc.) if the conditions permit. In addition,
despite the fact that the linear regression model usually improved the performance of the empirical
models, large errors could still be found in certain months and models. More calibration is needed to
enhance the performance of the empirical models based on the mathematical and physical theories.
It is also necessary to evaluate the models used here in other climatic conditions for testing of similar
climate-type impacts.

4. Conclusions

Based on the daily climatic dataset collected from 137 meteorological stations during 1961–2014
across two sub-regions of the HRB, eastern China, this study aims to identify the spatiotemporal trends
of the ETPMF on a monthly timescale and to compare the performances of 13 original empirical models
with the PMF-56 model. The main results are summarized as follows:

(1) The ETPMF increased initially and then decreased on a monthly timescale, with the peak value
appearing in June and the lowest value appearing in January. The ETPMF exhibited significant
decreasing trends in January, June, July, and August; however, in March and April, the ETPMF
demonstrated slightly non-significant increasing trends.

(2) On a daily timescale, before the calibration, the VA3 model could be regarded as the best
alternative model for estimating reference evapotranspiration in the HRB. However, the PEN,
WMO, TRA, and JH models could not be considered appropriate alternative models, because of
large errors in their estimations. In particular, the PEN model performed the worst with values of
the RRMSE, the MAE, and the NS at 0.580, 1.301, and −0.006, respectively.

(3) During the calibration, the determination coefficients of the temperature-based, radiation-based,
and combined models presented change trends that increased primarily and then decreased
from January to December. High determination coefficients of these models mainly existed
between April and October. On the contrary, the mass transfer-based models revealed opposite
change trends from January to December. Despite the fact that the mass transfer-based models
showed poor performances in daily scatter plots, the performances of these models in January
and December were better, with the determination coefficients of the WMO and TRA models at
greater than 0.9 and also greater than that of the VA3 model.

(4) After the calibration, the reference evapotranspiration calculated by each of the 13 empirical
models on monthly and annual timescales were very close to that estimated by the PMF-56 model,
except for the PEN model, which overestimated the reference evapotranspiration from March to
October and also on an annual timescale.

(5) If the comprehensive meteorological datasets were available, the VA3 model would be the
best alternative empirical model for the PMF-56 model, because it had an easy computation
procedure and generated fewer errors compared to the other 12 empirical models, and it was
also highly correlated with the PMF-56 model. After accurate validation for the VA3 model
using Equation (5), the calibrated parameters of a and b for each site in the HRB were obtained.
Based on data availability, the temperature-based, radiation-based, VA1, and VA2 models are
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recommended during April–October if corresponding input parameters in Table 2 are accessible
in the HRB and other similar regions, whereas the mass transfer-based models are preferable in
other months.

This study is a crucial contribution to the estimation of the ET0 in the HRB, eastern China,
when the large requirements of climate data cannot be met fully. The outcomes of this study will
provide guidance to irrigation managers and agrometeorologists for the planning of water resources
and irrigation scheduling in the HRB and other regions with similar climates, because the more
accurate combination model will give an accurate and reliable estimation of the ET0 based on the
available comprehensive data.
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Appendix A

Table A1. Geospatial information of the meteorological stations in the Huai River Basin.

WMO
Number Stations Lon.

(◦E)
Lat.

(◦N) H (m) WMO
Number Stations Lon.

(◦E)
Lat.

(◦N) H (m)

54836 Yiyuan 118.15 36.18 301.6 58011 Shanxian 116.07 34.80 44.3
54906 Heze 115.43 35.25 50.8 58012 Fengxian 116.58 34.68 40.6
54908 Dongming 115.08 35.28 59.5 58013 Peixian 116.92 34.72 36.7
54910 Liangshan 116.08 35.80 40.8 58015 Dangshan 116.33 34.42 50.9
54913 Ningyang 116.80 35.75 61.2 58016 Xiaoxian 116.97 34.18 39.2
54914 Juye 116.10 35.42 41.1 58017 Xiayi 116.13 34.25 41
54915 Jining 116.58 35.43 45.2 58020 Weishan 117.13 34.85 40.5
54916 Yanzhou 116.85 35.57 53 58024 Zaozhuang 117.58 34.87 74.8
54917 Jinxiang 116.30 35.10 41.3 58026 Pizhou 117.85 34.30 24
54919 Zoucheng 117.00 35.42 78.9 58027 Xuzhou 117.15 34.28 41.9
54920 Sishui 117.27 35.65 110.4 58034 Tancheng 118.37 34.62 38.4
54923 Mengyin 117.92 35.72 202.9 58035 Xinyi 118.35 34.35 29.4
54925 Pingyi 117.62 35.50 167 58036 Donghai 118.73 34.52 35.2
54927 Tengzhou 117.13 35.12 65.9 58038 Shuyang 118.75 34.10 8.8
54929 Feixian 117.95 35.25 120.5 58040 Ganyu 119.12 34.83 9.8
54932 Yishui 118.67 35.80 160.6 58044 Lianyungang 119.17 34.58 4.1
54936 Juxian 118.83 35.58 108.6 58047 Guanyun 119.23 34.30 5
54938 Linyi 118.35 35.05 86.5 58048 Guannan 119.35 34.10 6
54939 Junan 118.83 35.25 113.1 58049 Binhai 119.82 34.03 4.5
54945 Rizhao 119.53 35.38 22.8 58100 Dancheng 115.18 33.63 42.4
57075 Ruzhou 112.83 34.18 214.2 58101 Luyi 115.48 33.88 41.2
57078 Ruyang 112.47 34.15 307.8 58102 Bozhou 115.77 33.87 41.8
57081 Xingyang 113.43 34.80 140.5 58104 Shenqiu 115.07 33.40 42
57083 Zhengzhou 113.65 34.72 111.3 58107 Linquan 115.38 33.07 36.5
57085 Xinmi 113.37 34.52 289.3 58108 Jieshou 115.35 33.27 38.7
57086 Xinzheng 113.73 34.40 111.9 58111 Yongcheng 116.38 33.93 32.7
57087 Changge 113.80 34.20 88.5 58114 Guoyang 116.20 33.50 31.2
57088 Yuzhou 113.50 34.15 117.2 58118 Mengcheng 116.53 33.28 27.5
57089 Xuchang 113.85 34.02 67.7 58122 Suzhou 116.98 33.63 36.7
57090 Zhongmu 114.02 34.72 82.1 58125 Lingbi 117.55 33.55 28.1
57091 Kaifeng 114.38 34.77 73.7 58126 Sixian 117.87 33.47 20.6
57093 Lankao 114.82 34.85 72.2 58129 Wuhe 117.88 33.13 21
57094 Weishi 114.20 34.40 67.5 58130 Suining 117.92 33.88 23.5
57095 Yanling 114.20 34.08 60.4 58131 Suyu 118.23 33.95 28.1
57096 Qixian 114.78 34.53 60.7 58132 Siyang 118.72 33.70 15.6
57098 Fugou 114.40 34.08 59.3 58135 Sihong 118.22 33.45 17
57099 Taikang 114.85 34.07 53.6 58138 Xuyi 118.52 32.98 36.3
57173 Lushan 112.88 33.75 146.9 58139 Hongze 118.85 33.30 19.6
57179 Fangcheng 113.00 33.28 161.5 58140 Lianshui 119.27 33.78 10.2
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Table A1. Cont.

WMO
Number Stations Lon.

(◦E)
Lat.

(◦N) H (m) WMO
Number Stations Lon.

(◦E)
Lat.

(◦N) H (m)

57180 Jiaxian 113.20 33.98 118.6 58143 Funing 119.80 33.80 3.1
57181 Baofeng 113.05 33.88 137.5 58145 Chuzhou 119.17 33.53 8.3
57182 Xiangcheng 113.50 33.85 81.4 58146 Jianhu 119.82 33.48 3.4
57183 Linying 113.92 33.80 60.8 58147 Jinhu 119.03 33.03 10.9
57184 Yexian 113.65 33.60 86.7 58148 Baoying 119.30 33.23 8.4
57185 Wuyang 113.58 33.45 92.3 58150 Sheyang 120.25 33.77 6.7
57186 Luohe 114.00 33.58 62.1 58158 Dafeng 120.48 33.20 7.3
57188 Xiping 114.00 33.38 60.6 58202 Funan 115.58 32.63 35.7
57192 Huaiyang 114.85 33.73 46.3 58203 Fuyang 115.82 32.92 38.6
57193 Xihua 114.52 33.78 53.5 58207 Huangchuan 115.03 32.15 42.9
57194 Shangcai 114.27 33.28 60.8 58208 Gushi 115.67 32.17 57.9
57195 Chuanhuiqu 114.62 33.62 47.6 58210 Yingshang 116.22 32.57 25.5
57196 Xiangcheng 114.88 33.45 44.4 58214 Huoqiu 116.28 32.33 36.9
57285 Tongbai 113.42 32.38 149.1 58215 Shouxian 116.78 32.55 23.5
57290 Zhumadian 114.02 33.00 83.3 58221 Bengbu 117.38 32.95 26
57292 Pingyu 114.63 32.95 44 58222 Fengyang 117.55 32.87 28
57293 Xincai 114.98 32.73 39.1 58223 Mingguang 117.98 32.78 35.6
57295 Zhengyang 114.35 32.62 79.7 58225 Dingyuan 117.67 32.53 76.7
57296 Xixian 114.73 32.35 50.1 58240 Tianchang 119.02 32.68 21
57297 Xinyang 114.05 32.13 115.1 58243 Xinghua 119.83 32.93 7.3
57298 Luoshan 114.55 32.22 56.1 58244 Jiangdu 119.57 32.45 10.3
57299 Guangshan 114.90 32.02 50.6 58245 Yangzhou 119.42 32.42 9.9
57390 Jigongshan 114.07 31.80 733.5 58251 Dongtai 120.32 32.87 5.1
57396 Xinxian 114.85 31.63 130.8 58254 Haian 120.45 32.53 5.2
58001 Suixian 115.10 34.43 57.1 58264 Rudong 121.18 32.33 3.4
58002 Caoxian 115.55 34.82 50 58301 Shangcheng 115.38 31.80 79.1
58004 Minquan 115.15 34.65 61 58306 Jinzhai 115.88 31.68 94
58005 Shangqiu 115.67 34.45 51 58311 Luan 116.50 31.75 60.4
58006 Yucheng 115.88 34.38 47.2

Note: The data period for each station is from 1961 to 2014.
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