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Abstract: Constructed wetlands (CWs) are extensively used as an economical and environmentally
friendly sewage treatment under ecological engineering technology. Knowledge of the oxygen
in the rhizosphere is of primary importance in understanding the function and regulation of
microbial communities and macrophytes. Numerous studies on radial oxygen loss (ROL) have
greatly elucidated the mechanism of contaminant removal in CWs. The main sources of oxygen in
CWs are atmospheric reoxygenation, macrophyte transmission, and artificial aeration. However,
artificial aeration is very expensive, and atmospheric reoxygenation is limited. Therefore, ROL by
macrophytes is an essential and economical approach for oxygen input in CWs. In this review,
we attempted to study the role of macrophytes in CWs. We described the mechanism of ROL and
summarized the methods for determining ROL. We also investigated the role of ROL in contaminant
removal in CWs. This review will provide considerable useful information on the oxygen input
of CWs.
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1. Applications and Mechanism of Constructed Wetlands

Constructed wetlands (CWs) are extensively used as an economical and environmentally
friendly wastewater treatment method under ecological engineering technology [1,2]. CWs are
artificial wastewater treatment systems that can be designed and controlled. It is a useful approach
for the removal of abundant contaminants because of the synergistic effects of soil, macrophyte,
and microorganism on the physical, chemical, and biological processes in the wetland system [3].
CWs are economical, highly efficient and environmentally friendly when used in wastewater treatment.

CWs are primarily composed of matrices, macrophytes, and microorganisms. Contaminants are
degraded or converted under the synergies of the physical, chemical and biological elements in
the system [1]. Physical action mainly consists of filtration and settlement. Filtration includes the
natural settlement of particulate contaminants and the settlement of colloidal particles to remove
some contaminants. Contaminants such as suspended solids can be settled within CWs, including the
blocking effect of macrophyte roots and the gravitational interception of solid objects between sand
and stone particles. Chemical action mainly consists of adsorption and degradation. Contaminants in
ionized states can be removed by adsorption, which describes a chemical bond involving substantial
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rearrangement of electron density occurring on the macrophyte root surface. Degradation refers to the
degradation of contaminants into more unstable compounds by redox reaction. Biological action refers
to the plant uptake, the coupling effects between plants and microorganisms, and the decomposition of
microorganisms. These processes are closely related to and affect one another. Oxygen is one of the key
factors in these biological systems [4,5]. Therefore, the source of oxygen in wetland systems should be
investigated. Moreover, CWs can generally be divided into three types, namely: free surface horizontal
flow (HF), subsurface HF, and subsurface vertical flow (VF). Each type of wetland has its distinct
source of oxygen. Oxygen sources can be divided into natural aeration (macrophyte transmission
and atmospheric reoxygenation) and artificial aeration [6]. In natural sources of oxygen, the main
oxygen reoxygenation method is atmospheric reoxygenation, because of the larger contact area of free
surface HF with air [7]. The surface of the water is lower than the surface of the matrices in subsurface
HF, and the oxygen inside the subsurface wetland is mainly from the wetland macrophyte roots.
The main approaches to increasing the artificial oxygen in wetlands consist of adding an oxygenator,
enhancing aeration, and adding an air compressor [8].

Adding oxygen to CWs can alter the distribution of microorganisms and increase their metabolic
efficiency. Thus, this process has a positive significance for the removal of contaminants in sewage [9].
The input of oxygen in wetlands (especially subsurface HF) is one of the key factors in improving the
removal of contaminants. However, the enhanced artificial oxygen will result in increasing operational
costs, greater difficulty in monitoring, and overgrowth of microorganisms. Thus, the effects of
macrophytes are being paid more attention. Augmenting oxygen in CWs by regulating macrophytes is
more economical and reasonable as an oxygen input. In this paper, CW oxygen input from macrophytes
and its influencing factors, determination, and effects on contaminant treatment are reviewed to better
understand the application of oxygen released by the macrophyte root system.

2. Role of Macrophytes in CWs

Macrophytes are essential components in the design of wetlands. The Root Zone Theory,
presented by Seidel and Kickuth in 1972, emphasized the role of macrophytes in the sewage treatment
system of wetlands [10] and greatly promoted the study and application of CWs. In general, the role
of macrophytes in CWs is divided into the following points.

2.1. Direct Functions

The contaminants can be absorbed directly by plant uptake. However, the removal efficiency
of phosphorus and nitrogen through direct absorption is less than 5% and 10%, respectively [11].
Heavy metals in CWs can be removed by macrophytes, called “hyperaccumulators”, through
immobilization and phytotransformation [12]. Heavy metal content in “hyperaccumulators” comprises
more than 0.1–1% of their dry weight [13,14]. Moreover, organic compounds such as phenols can
be transported into plant vacuoles and intercellular spaces or transformed into lignin and other
components [15].

2.2. Coupling Effects between Plants and Microorganisms

The stems, leaves, and roots of the macrophytes provide attachment sites for microorganisms.
More importantly, macrophytes can provide oxygen by ROL and a carbon source from root exudates
to the root zone for various processes (shown in Figure 1). Macrophytes transport oxygen obtained
from photosynthesis and the atmosphere to the roots by air pressure gradient and diffusion.
This phenomenon not only satisfies the respiration of the root, but also releases a part of the oxygen
into the rhizosphere. This process is also known as the ROL [14]. ROL provides different aerobic
environments for diverse microorganisms in the root system, and effectively plays a key role in
microorganisms. This process is highly essential to the removal of contaminants. Root exudates are
mainly acquired from the healthy tissues of macrophytes and the decomposition of aging tissue in
the root, such as low-molecular-weight organic matter released by the root cell, root products, sticky
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polymer formed by metabolism, and the decomposition residue of root hair [15]. These root exudates
can provide energy and electron donors for root biochemical reactions by releasing inorganic ions and
various organic substances [16,17], and carbon sources for heterotrophic microorganisms of roots to
promote microbial growth [18,19].
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Figure 1. Oxygen supply by ROL and carbon source from root exudates in the root zone of
the macrophyte.

In the wetland system, the macrophyte is the first producer, whereas the microorganism is the
executor of contaminant removal. Microorganisms convert organic nutrients into inorganic nutrients
for the absorption and utilization of macrophytes. Under the ground, the nitrogen-fixing bacteria in the
macrophyte roots can affect the migration and transformation of nitrogen elements in the wetland [11].
Moreover, microorganisms promote the growth of macrophytes to some extent. Some rhizosphere
microorganisms can live freely in the soil or attach to the roots, stems, and leaves of macrophytes to
promote the growth of macrophytes. The main benefits of this relationship depend on the increase of
the following: nitrogen content in roots, stems, leaves, and spikes; tiller number, root length, and root
area; chlorophyll content and seed germination rate; and improvement in the macrophyte uptake of
inorganic elements and water [20–22]. The interaction of macrophytes and microorganism holds or
dominates the basic functions of the wetland system [20].

2.3. Other Functions

The macrophyte roots in CWs can enhance the porosity, reduce the sealing ability, and improve
the permeability of the matrices. These characteristics strengthen and maintain the water transport in
the wetland [23]. Macrophytes are essential in the design of wetlands. On the one hand, energy can
be supplied by photosynthesis during sewage purification. On the other hand, macrophytes can
improve the landscape environment, maintain moisture, reduce contaminant migration, and perform
diffusion [10,24–26].

3. Role of ROL of Macrophytes

As an important part of CWs, macrophytes primarily transport oxygen to the roots through
well-developed aeration tissues to adapt to the long-term flooding environment. Oxygen in wetlands
is mainly derived from atmospheric reoxygenation, ROL, and influent reoxygenation. ROL is the main
method of oxygen input in subsurface CWs [27,28]. Macrophyte root oxygen secretion can affect the
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distribution of dissolved oxygen and microorganism in the root micro-environment. This process has
a positive effect on the removal of contaminants in CWs.

Macrophytes can be divided into emerging, floating, and submerged plants, depending on the
different depths of water in the growth environment. The ROL rates of different macrophytes are
shown in Table 1. Emerging plants, such as Phragmites australis, have an ROL rate of approximately
105.71–253.72 µmol O2 d−1 g−1 DWroot. Floating plants, such as the Arrowhead, have a maximum
ROL rate of approximately 126.64 µmol O2 d−1 g−1 DWroot. Submerged plants, such as Hornwort,
have an ROL rate of approximately 367.88 µmol O2 d−1 g−1 DWroot in the light saturated condition.
The oxygen contribution of the Phragmites australis root to CWs cannot be ignored, even during
harvest in winter [29]. Therefore, ROL has gradually become one of the hot spots in the study of the
decontamination mechanisms of CWs.

Table 1. ROL rate of different macrophytes.

Type Macrophytes ROL Rate (µmol O2 d−1 g−1 DWroot) 1 Ref.

Emerging plant

Bog rush 177.87 ± 10.02 [30]
Cattail 124.82 ± 26.97 [30]

Bamboo reed 84.13 ± 5.99 [30]
Zizania aquatica 50.98–95.89 [31,32]

Phragmites australis 105.71–253.72 [32]
Calamus 117.46 ± 17.35 [33]
Canna 120.54 ± 1.52 [30]

Floating plant
Arrowhead 126.64 [31]

Calla 103.05 [31]
Water hyacinth 19.8–67.15 [34]

Submerged plant 2

Eel grass 190.66 [35,36]
Hornwort 367.88 [35,36]
Black algae 320.96 [35,36]

Myriophyllum
verticillatum 263.26 [35,36]

Water caltrop 332.91 [35,36]
1 Presents the amount of O2 realised from plant per day per root biomass. 2 Measured in the light saturated condition.

3.1. Definition and Theory of ROL

Macrophytes deliver the oxygen by means of baric gradient and spread. This oxygen originates
from the atmosphere and photosynthesis to the root system to adapt to the anoxic environment
produced by water flooding [37]. The oxygen in the atmosphere can enter the interior of the macrophyte
by thermo-osmosis and humidity-induced convection through the stomata.

One part of the oxygen transported to the roots is used for respiration, while the other part is
released into the root micro-environment through root tips and lateral roots [38]. These parts have
essential effects on various physical and chemical reactions and biological processes. The specific
mechanism of this oxygen input is shown in Figure 2.

3.2. Factors that Affect ROL

3.2.1. Perspectives on the Input of Oxygen

The oxygen produced by photosynthesis is the main source of oxygen for ROL. Therefore,
the factors that influence photosynthesis will also influence ROL. Environmental factors and the
characteristics of macrophytes can affect photosynthesis [39]. Environmental factors, such as light
intensity, light time, and temperature, and the characteristics of macrophytes, such as leaf area, net
photosynthetic rate, and stomatal conductance, can indirectly influence the oxygen source of ROL
by affecting the photosynthesis intensity of the macrophytes [40]. With enhancing photosynthesis,
the concentration of dissolved oxygen in the root micro-environment and the rate of ROL increase [39].
The atmosphere is another source of oxygen. This oxygen mainly enters the pores of macrophytes
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through thermal infiltration and convection. Therefore, temperature and humidity are the two main
factors that affect the entry of oxygen to the macrophyte [41].Water 2018, 10, x FOR PEER REVIEW  5 of 11 
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3.2.2. Perspectives on the Transportation of Oxygen

Oxygen can be transported because of the presence of aerenchyma in macrophytes [39].
Aerenchyma is the main channel by which oxygen is delivered in macrophytes. Given the varied
proportions of aerenchyma in the different macrophytes, macrophytes also have distinct oxygen
delivery capacities. An obvious positive correlation is observed between the ROL and the structure
area of the root aeration tissue. The more developed the aerenchyma is, the more prosperous ROL will
be [42]. Oxygen is transported within the aerenchyma by spreading and baric gradient. The diffusion
of oxygen in the aerenchyma is affected by the metabolic activity of the root system. If the metabolic
activities of the root cells consume abundant oxygen, oxygen will be difficult to transport to the
rhizosphere [43,44]. Moreover, the respiration of macrophyte roots and oxygen content in the soil can
regulate the oxygen delivery in the macrophytes through the baric gradient. Thus, the transport of
oxygen in the aerenchyma should be further evaluated.
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3.2.3. Perspectives on the Release of Oxygen

Numerous factors, which may be internal or external, affect the release of oxygen in the root
system. From the source of oxygen, photosynthesis plays an important role in the root system
oxygen secretion [39,45]. Therefore, external factors, such as temperature, humidity, light intensity,
and atmospheric oxygen [40,46], can indirectly affect oxygen release by affecting photosynthesis.

Internal causes are mainly related to the metabolic rate of macrophytes and the physiological
characteristics of macrophyte roots. The oxygen release rate of macrophytes at the growth stage is
higher than that at other periods, and this is related to the concentration of oxygen that reaches the
root system [47]. Moreover, the release of oxygen is limited by the root barrier, which is affected by
the environment in which the root system is located [48]. When the oxygen is transported to the root,
the oxygen is first used for respiration, and the remaining oxygen is released through the intercellular
space of the root tip and the lateral root [49]. Therefore, during oxygen transport, the release rate of the
rhizosphere is affected by the presence of the rhizosphere pressure, which is essential in relation to the
number, length, and porosity of the root system [50,51]. To some extent, the more porous the root of the
macrophyte is, the less the shielding effect of the ROL will be, which is the same as for the length and
quantity of the root [46]. This phenomenon is found in the aeration of many different macrophytes.

4. Measurement of ROL

Several methods have been used to measure the ROL, and each method presents several
advantages and potential disadvantages (listed in Table 2). Soaking of the root solution is one of the
most common methods, in which the roots of the macrophytes are soaked in an oxygen-consuming
medium that is separated from the overlying water [52]. The ROL is measured by determining the
net absorption of oxygen. This method can be used to measure the whole root and to reduce root
damage. However, the measured value is low, because oxygen is easily absorbed in the solution,
and the macrophyte reabsorbs oxygen.

Table 2. The advantages and disadvantages of the methods of measuring ROL.

Measurement of ROL Advantages Disadvantages

The soaking method of root solution Measure whole macrophyte, low damage Low measured value

Titrimetric method Analogy the conditions of the redox
potential in the soil

Higher measurement of oxygen,
less accurate

Oxygen micro-electrode method Able to simulate soil conditions from the
day to night More expensive, fragile electrode

Sediment redox potential Actual time determination Easily influenced by environmental factors
Mathematical model method Provide a theoretical basis Easily limited by the data and assumptions

Measurement of rhizoplane Well studied the root/soil interface soil
conditions, easy to control

Different characteristics of the root system
compared with non-interfering soil
macrophytes

The titrimetric method is another method for measuring ROL. Utilizing the reducibility of
Ti3+ results in the oxidation of Ti by the oxygen in the rhizosphere, this process is recorded by a
spectrophotometer [53]. This method can show the conditions of the redox potential in the soil.
However, the oxygen concentration cannot be detected anymore when all of the Ti3+ is completely
oxidized. This method is not suitable for the overall measurement of macrophytes with high oxygen
release (Scirpus validus, Acorus calamus).

The oxygen micro-electrode method is also a common method for measuring ROL. In this process,
the oxygen released by the single root is measured by the anion and anode, and the natural environment
is simulated. However, this method has several shortcomings, such as fragile electrodes and high
cost [54].

Sediment redox potential is another method for measuring ROL. The amount of oxygen produced
by the root system is obtained indirectly by analyzing the degree of redox of the sediments [55].
The potential can be measured in real-time, and continuous data can be obtained. However, this method
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is vulnerable to environmental factors, such as oxygen in the atmosphere, soil pH and redox potential
(Eh) values, etc.

The mathematical model is not frequently used in the desired measurement. This process explains
the actual problems by calculating the results and accepts the actual test to establish the whole process
of the mathematical model. This technique facilitates a better understanding of the ROL by providing
a theoretical basis for this parameter. The scale of the model should be determined according to
the size of the measured sample. However, the establishment of the model is easily influenced by
environmental factors, which are difficult to measure accurately [55].

5. Role of ROL in Wastewater Treatment

5.1. Effects on Organic Matter Removal

ROL has direct and indirect effects on organic matter removal. The direct effect of ROL on
organic matter is that oxygen serves as the terminal electron acceptor during aerobic degradation [11].
The effect is achieved through the cation radicals of organic matter resulting from electron transfer
from the organic matter to oxygen on the excitation of the charge transfer [56]. This process causes the
alkalization of organic cations.

The indirect effect of ROL on organic matters is that it can form aerobic, facultative anaerobic,
and anaerobic regions in the rhizosphere, providing suitable habitats for different microorganisms [57,
58]. Aerobic microorganisms can consume oxygen to decompose organic matter to CO2 and H2O,
providing energy and cell substances for microorganisms [59]. Anaerobic bacteria can break down
organic matter to produce methane for energy and nutrition [60]. Rhizosphere oxygen plays an
essential role in the degradation of organism transformation and mineralized microorganisms.

5.2. Effects on Nitrogen Removal

Nitrification and denitrification are primary processes for removing nitrogen from wastewater.
These processes require aerobic and anoxic conditions, respectively [61]. Oxygen secretion in the
macrophyte roots could remarkably increase the number of aerobic and facultative aerobic bacteria in
the root micro-environment. According to the Root Zone Theory, ROL provides continuous aerobic,
anoxic, and anaerobic conditions in soil, allowing simultaneous nitrification and denitrification [62].
The nitrifying bacteria and ammonia-oxidizing bacteria can use oxygen produced by ROL to transform
ammonia into nitrate and nitrite, whereas denitrifying bacteria transform nitrate into nitrogen
in the anoxic zone far from the roots [63,64]. In addition, ROL exerts a positive effect on the
removal of nitrification-inhibiting substances, such as organic matter and heavy metals. Therefore,
nitrogen removal efficiency is usually higher in constructed wetlands compared with general sewage
treatment systems.

5.3. Effects on Heavy Metal Uptake

The ROL capacity of macrophytes is considered to be one of the most important biological
factors in controlling heavy metal uptake. ROL can directly affect some metal mobility-regulating
soil factors, such as Eh and pH. Previous studies showed that ROL increases Eh and decreases pH in
the rhizosphere, concurrently with reductive substance oxidization [65]. Reductive substances in the
rhizosphere, such as Fe2+ and Mn2+, are oxidized to form a red-brown film called Ferromanganese
oxide film, which is wrapped in the root system surface [66,67]. A thick Ferromanganese oxide film can
become a barrier and enriched library for heavy metals and metalloid contaminants, promoting their
migration and transformation in the medium [68]. In addition, H+ produced by ionic oxidization,
such as Fe2+, was consumed by carbonates. Thus, heavy metals in carbonate form dissolve [65],
and those in less available forms transform into a more easily available form.
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6. Concluding Remarks

In this review, the key role of macrophytes and the specific mechanisms, determination methods,
and functions of ROL in CWs were expounded in detail. The factors that affect ROL were summarized
according to input, transportation, and release. The release of oxygen from the root system is
influenced by many external and internal factors, regulated by environmental factors and macrophyte
physiological characteristics. Bearing in mind the importance of ROL, many studies on the effects of
the combination of environmental factors and physiological characteristics on the removal of pollutants
can be safely ignored. Measuring the real-time distribution oxygen concentration in the rhizosphere
enables the understanding of where and when the roots are active in respect to root respiration and
how the soil responds to this process. The techniques for ROL determination were also summarized in
this review. Numerous techniques, such as the titrimetric method, oxygen micro-electrode method,
and soaking method of root solution were applied in measuring the ROL. However, these methods
have several limitations in terms of cost, accuracy, and real-time determination. The interactions
between oxygen secretion and the microorganism are of great significance for contaminant removal.
Knowledge of oxygen concentration gradients is of primary importance in understanding the function
and regulation of microbial communities and macrophytes. However, the specific coupling mechanism
between the ROL and microorganism remains ambiguous. The mechanism of ROL and microorganism
interactions should be examined further. Broad investigations on the enhancement of ROL could lay a
foundation for optimizing CWs.
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