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Abstract: Assessment of groundwater quality, contamination sources and geochemical processes
in the coastal aquifer of Tugela Catchment, South Africa were carried out by the geochemical and
statistical approach using major ion chemistry of 36 groundwater samples. Results suggest that
the spatial distribution pattern of EC, TDS, Na, Mg, Cl and SO4 are homogenous and elevated
concentrations are observed in the wells in the coastal region and few wells near the Tugela River.
Wells located far from the coast are enriched by Ca, HCO3 and CO3. Durov diagrams, Gibbs plots,
ionic ratios, chloro alkaline indices (CAI1 and CAI2) and correlation analysis imply that groundwater
chemistry in the coastal aquifer of Tugela Catchment is regulated by the ion exchange, mineral
dissolution, saline sources, and wastewater infiltration from domestic sewage; septic tank leakage and
irrigation return flow. Principle component analysis also ensured the role of saline and anthropogenic
sources and carbonates dissolution on water chemistry. Spatial distributions of factor score also
justify the above predictions. Groundwater suitability assessment indicates that around 80% and
90% of wells exceeded the drinking water standards recommended by the WHO and South African
drinking water standards (SAWQG), respectively. Based on SAR, RSC, PI, and MH classifications,
most of the wells are suitable for irrigation in the study region. USSL classification suggests that
groundwater is suitable for coarse-textured soils and salt-tolerant crops. The study recommends that
a proper management plan is required to protect this coastal aquifer efficiently.
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1. Introduction

Groundwater in the coastal aquifer is generally affected by the complex geochemical processes
and multiple contamination sources [1–3]. Increasing population rates, intense irrigation activities,
drainage patterns for industries and domestic sewage systems in the urban coastal areas resulted in
severe damages to the groundwater quality [4–6]. Identification of individual factors responsible for
groundwater contamination is often challenging [6]. Geochemical processes in the aquifer are strongly
related to geological formations, climatic conditions, groundwater flow, residence time, etc. [7,8].
In the arid and semi-arid climatic condition, evaporation, ion exchange reactions, oxidation-reduction
processes, dissolution and precipitation of minerals takes place in the aquifer, which alters groundwater
chemistry [9–11]. In the coastal aquifer, surface contamination sources play a major role on water
pollution due to shallow depth compared to natural processes. Intensive irrigation practices, domestic
sewage, septic tank effluents, dumping sites, etc. are reported as major root causes for groundwater
contamination worldwide [12,13]. Geochemistry and multivariate statistics are broadly used in
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groundwater contamination assessment and several researchers applied major ion chemistry and
multivariate statistics to assess the geochemical processes and groundwater contamination in the
aquifer [9,14–17]. Even though multivariate statistics do not directly identify the geochemical
characterization, it establishes data redundancy through key factors [18–20].

The present study was executed in the coastal aquifer of Tugela Catchment to evaluate the
contamination sources and geochemical processes responsible for water chemistry and water suitability
for drinking and irrigation uses. The coastal aquifer of Tugela river catchment is one of the largest
catchments where intensive irrigation is being practiced. This catchment is a significant one among
the 19 water catchments in this region. The surface water resources are depleting due to uneven
and infrequent rainfall. Consequently, the water allocation and management has seldom achieved
its goal. The approximate amount of groundwater consumption from the Tugela region is about
513 (million m3/a) and it can be utilized during normal and drought conditions [21]. However, several
developmental expansions and intensive irrigation practices have resulted over exploitation of this
aquifer, which caused severe damages to both groundwater quantity and quality [22,23]. These impose
a stress on the future water allocation and management if the proper management is not implemented
in the study area. Thus, detailed knowledge about the groundwater quality, contamination sources
and relevant geochemical processes in the coastal aquifer can help improve groundwater management
and planning in the study area.

Previous studies carried out in the various parts of the world including South Africa [24–33],
do not involve the detailed investigation of geochemical processes and contaminations sources in
the study area. Therefore, a comprehensive investigation in the coastal aquifer of Tugela Catchment
was carried out through an integrated approach with an intention to gain thorough knowledge about
the groundwater regime. The purpose of this study is to evaluate the groundwater chemistry and its
associated geochemical processes and to evaluate the contamination sources in this coastal aquifer.
In addition, groundwater suitability for drinking and irrigation purposes are also assessed using major
ion chemistry.

2. Materials and Methods

2.1. Description of Study Area

The River Tugela is one of the largest rivers in the country flowing 405 km long with the headwater
originating in the Mont-aux-Sources of the Drakensberg Mountains at 3109 m elevation near Bergville
flowing predominantly in the KwaZulu-Natal province and drains into the Indian Ocean approximately
85 km north of Durban [34]. The study area comprises the costal aquifers of the Tugela Catchment
and covers approximately 840 km2 from the confluence of Bushmans River and until it reaches the
river mouth at the Indian Ocean flowing through Mandini town and Isithebe industrial area (Figure 1).
Generally, areas around Drakensberg Mountains experience wet and cold climate while the areas
covering from Colenso down towards the coast experience dry to hot climate, however the climate
in the coastal areas does not vary with space predominantly exhibiting hot and humid conditions
at the coast. The average rainfall in the catchment ranges approximately 1500 mm/year in and
around the mountains and about 650 mm/year in the central parts of the catchment [35]. A slight
increase in rainfall can be observed towards the coast contributing 30% of total rainfall received in
which predominant rainfall (>80%) is received during the wet summer season between October and
March [36]. Runoff at Tugela River is generally substantial and estimated mean annual runoff is
reported to be 3900 × 106 m3 [37]. The mean annual discharge is between 184 and 226 m3/s with an
average discharge rate high in summer due to very high rainfall during the summer season.

The land use in the study region is under commercial dry land agriculture with high stock
rates [38]. According to the Tugela Water Management area report [39], the estimation of total irrigation
area is around 276 km2. Commercial timber, sugarcane and dry land maize cultivations are practiced
utilizing the water resources from the coastal Tugela Catchment. The SAPPI, which is the biggest
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paper industry, is situated in the region. Isithebe industrial area is located near to the coast. Geologic
formations identified in the catchment areas include Basaltic lava of the Drakensberg, Stormberg and
Beaufort beds, old granites and gneisses, sandstone, and rocks of Dwyka and Ecca series. Though the
geology of the entire Tugela Catchment is very complex, the coastal aquifer is underlain by hard rocks
of the basement complex and complicated sedimentary strata of the Natal Group Sandstone (NGS)
and Karoo super group. The aquifer system in the study area is composed of diverse rocks with high
porosity due to fracturing and weathering processes. All lithological units identified in the study area
are inter-granular and fractured aquifers. The groundwater occurs in these inter-granular, fractured
karst aquifers and some occur in quaternary alluvial sediments. Typical depths of the groundwater
level ranges from 10 to 30 m below ground level (BGL).
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Figure 1. Location of study with monitoring wells.

2.2. Methods

Groundwater samples were collected from 36 bore wells in the coastal aquifer on the either sides
of Tugela River (riverbed) starting from areas near the river mouth of Indian Ocean during the month
of March 2017. Before collecting the groundwater samples, stagnant groundwater in the bore well was
removed through pumping to ensure the fresh water representing aquifer. Electrical Conductivity
(EC), temperature, dissolved oxygen (DO), total dissolved solids (TDS), oxidation-reduction potential
(ORP) and pH were measured in the field using YSI multi-probe digital meter (Aquaprobe A-700).
Portable water level indicator was used to measure the groundwater level in the field. Samples were
filtered in the field using 0.45 µm Millipore membrane filter and stored in HDPE bottles. The collected
samples were transported to the University of Zululand for further analysis. The filtered samples were
analyzed for major cations (Ca, Mg, Na, K) and Si using Inductively Coupled Plasma (ICP-41) in the
Department of Agriculture and anions (Cl, CO3, HCO3 and SO4) by standard titration methods [40] in
the Department of Hydrology, University of Zululand.

The water quality data were utilized in various calculations and interpretations. All the
spatial maps were prepared using ArcGIS 10.1 with Ordinary kriging (OK) model. This model
is widely accepted and is employed in several pieces of research ([41–43]. The Geochemist’s
Workbench was employed to understand the hydrochemical facies in the groundwater. Statistical
analyses were carried out using SPSS V 21. The data were compared with national (SAWQG) and
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international standards (WHO) to assess the suitability of water for drinking. Likewise, the irrigational
suitability of groundwater in the study region is assessed using EC, sodium adsorption ratio, Kelley’s
ratio, sodium percentage, residual sodium carbonate, Magnesium hazard, Permeability Index and
USSL classifications.

3. Results

Descriptive statistics of analyzed parameters in the water samples are reported in Table 1.
Groundwater pH in the study area ranges from 6.5 to 7.89 with an average of 7.13. Around 68% of
samples are neutral to alkaline in nature (pH > 7) and 38% is acidic in nature (pH < 7) in Tugela
Catchment. EC of groundwater in this region varies from 408 to 29,240 µS/cm with an average value
of 2687 µS/cm. Likewise, TDS in groundwater ranges from 261 to 18,714 mg/L with an average of
1720 mg/L. The groundwater is fresh to brackish in nature (TDS > 1000 mg/L in 21 samples) [44].
High level of TDS in most samples is due to high levels of sodium, chloride and sulfate ions. In addition,
wells located near the coast (i.e., N28 and N29) have very high TDS due to the influences of saline sources.
In the study region, Na and Cl are dominant cation and anion, respectively found in the groundwater.
To understand the hydrochemical facies and related processes Piper and Durov [45,46] diagrams are
employed. Figure 2 depicts that all samples plotted in the NaCl zone and imply the water type as NaCl.
In addition, all samples have high Na + K and Cl as observed in the cation and anion triangles. Likewise,
in the Durov diagram, all samples clustered on the simple mixing line with high Na and Cl (Figure 3).

Table 1. Descriptive statics of analyzed parameters in the groundwater.

Parameters Min Max Mean STD

PH 6.5 7.9 7.1 0.3
ORP −8.3 −0.2 −3.0 1.6
DO 0.25 1.2 0.7 0.3
EC 408 29,240 2687 4681

TDS 261 18,714 1720 2996
TH 65 763 233 155
Na 48 6971 491 1126
K 2 10 5 2
Ca 13 147 49 28
Mg 8 112 27 22
Si 3.2 12 6.6 2.4
Cl 95 9926 753 1613

HCO3 49 311 159 63
CO3 0 45 10 11
SO4 5 1330 89 220
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3.1. Spatial Variation of Major Ion

Figures 4 and 5 illustrate the spatial distribution of Ca, Mg, Na, K, HCO3, CO3, Cl, and SO4 in
the study area. Spatial distribution maps indicate that high concentrations of Na, K, Cl and SO4 are
observed in the coastal wells. In the study area, sodium concentration ranges from 48 to 6971 mg/L
with an average of 491 mg/L. In addition to coastal wells, high sodium is observed in the wells located
along the river Tugela.

Potassium occurs naturally in groundwater and its concentration is generally lower than calcium,
magnesium, and sodium. In this study, it varies from 2 to 10 mg/L with a mean value of 5 mg/L.
Potassium is mostly high in the middle of the study area particularly near Tugela River and close to
the sea (Figure 4). Potassium is usually released by silicate weathering and/or clay-water interaction
and retain in the clay materials. Hence, it is lower in the groundwater system. Spatial distribution of
calcium indicates that low concentration is recorded all along the coast and from northeast to southeast
region (Figure 4). Reverse is true in the remaining area and high concentration is observed far from
coast. The concentration of calcium in the study area is between 13 and 147 mg/L with an average of
49 mg/L (Table 1). Likewise, the concentration of magnesium in the study area is from 8 to 112 mg/L
with a mean value of 27 mg/L. Spatial distribution indicates that only few pockets show high Mg
concentrations and extreme values is noted in the coastal wells.

The spatial distribution pattern of Na and Cl are comparable and high chloride is recorded at
coastal wells and the wells near Tugela River. Chloride is a dominant anion and it varies from 95 to
9926 mg/L with a mean value of 753 mg/L. The concentration of sulfate in the study area ranges from
5 to 1330 mg/L with an average of 89 mg/L. It is important to note that the standard deviations of Na,
Cl and SO4 are higher than the mean values, which suggests that these elements are likely originated
from multiple sources in the study area. The spatial distribution of SO4 also behaves similar to Cl and
wells near the coast and river Zinkwazi have high concentrations.

Spatial distribution of bicarbonate and carbonate apparently shows that wells in the center
and western part of the study area have high concentration compared to coastal wells (Figure 5).
Bicarbonate ranges from 49 to 311 mg/L with an average of 159 mg/L. Bicarbonate and carbonate
behave similar to calcium and low concentration is observed in the coastal region and from northeast
to southeast direction.
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3.2. Source of Contamination and Geochemical Processes

3.2.1. Geochemical Approach

The chemistry of groundwater is controlled by a variety of processes in the aquifer. To identify
these processes, groundwater quality data were plotted in the Gibbs diagrams to understand the
process regulates water chemistry in the coastal aquifer of Tugela Catchment [47]. Gibbs diagrams
show the relative importance of three natural mechanisms controlling water chemistry, namely rock
water interaction, precipitation, and evaporation. Figure 6 depicts that groundwater samples mostly
clustered on the rock-water interaction zone followed by the evaporation zone. Figure 6 also highlights
that well no N28 (EC = 29,240 µS/cm) is plotted close to seawater. In the Gibbs plots, wells affected by
the saline sources also plot in the evaporation zone with high TDS (Figure 6). In the study site, the
water chemistry is influenced by the ion exchange, rock-water interaction, and evaporation/saline
sources. Other researchers also reported similar processes in various countries [48–50]. However, wells
located far from the coastal region also have NaCl type water, which seems to be due to infiltration
of wastewater from domestic and irrigational activities. Spatial distribution pattern also implies that
wells located near or along the river Tugela have high concentrations of Na and Cl.Water 2018, 10, x FOR PEER REVIEW  8 of 23 
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Figure 6. Gibb’s plots—Mechanism controlling water chemistry.

Ionic ratios are commonly used to explain various processes in the aquifer. The ratio of
(Ca + Mg)/(HCO3 + CO3 + SO4) is equal or close to one if the water chemistry is solely regulated
by the dissolution of carbonates and sulfate minerals [16]. In this study, this ratio is greater than
one in 15 wells and <1 in 21 wells. Excess Ca + Mg is likely originated from reverse ion reactions
and balanced by Cl and other anions. Depletion of Ca + Mg over (HCO3 + CO3 + SO4) in 21 wells
indicates that water chemistry is largely affected by the cation exchange reaction and/or silicate
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weathering. The molar Na/Cl ratio is also useful to differentiate mineral dissolution, saline sources,
and ion exchange reactions. Dissolution of halite will approximately maintain mNa/Cl ratio equal
to one whereas higher or lower ratios suggest ion exchange reactions and silicate weathering [16,51].
In this study, few wells plotted on mNa/Cl = 1 line and most of them deviated from this ratio
(Figure 7). Around 20 wells, mNa/Cl is greater than one and suggests that high sodium is likely
originated from cation exchange or silicate weathering process. However, wells with mNa/Cl < 1
reveal that the water chemistry is affected by reverse ion exchange reactions. Likewise, molar Ca/Mg
ratio is employed to differentiate the influence of carbonate and silicate weathering on groundwater
chemistry [9,16,52,53]. If the mCa/Mg equal to one, dissolution of dolomite dominates in the water
chemistry whereas higher ratios (mCa/Mg > 2) suggest the impact of silicate weathering. Further,
dissolution of calcite will maintain this ratio between 1 and 2. In this study, it ranges from 0.61 to
2.43 with an average of 1.25. The mCa/Mg ratio is less than two except two wells, which eliminates
the major role of silicate weathering on water chemistry. Further, it is less than one in 9 samples and
2 < mCa/Mg > 1 in 25 samples, which suggests that the dissolution of calcite has major impact on
water chemistry compared to dolomite and silicate minerals in this aquifer. Further, plot of mCa + Mg
versus mHCO3 + CO3 also imply the contribution of carbonate mineral dissolution and most samples
plotted on or near to Y = 2X line (Figure 7) [16].
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Invading of saline water in the coastal aquifer is a serious issue in the coastal region due to the over
exploitation of groundwater resources. Well no N28 (EC = 29,240 µS/cm) and N29 (5690 µS/cm) are
good evident for this process in the study region and the water chemistry in these wells are modified
by the seawater intrusion. Total cation (Ca + Mg + Na + K in meq/L)/Cl ratio is useful tool to assess
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the impact of saline sources and mineral dissolution in the groundwater because this ratio eliminates
the influences of ion exchange reactions. TC/Cl ratio of well numbers N28 and N29 are 1.14 and 1.03,
which are close to seawater ratio (1.12) [54]. Figure 7 shows that except few wells, most of the wells
have high ratios that deviated from seawater ratio line. Higher ratios suggest that source of major ions
in groundwater is other than saline sources. In addition, few wells located far from coastal region also
have similar ratios (Well nos. N23 (1.03), N5 (1.05), N14 (1.13), N25 (1.14)) which likely affected by the
surface contamination sources.

Aforementioned ion exchange reactions modified the water chemistry in the study area.
Ion exchange reactions are broadly classified into cation and reverse ion exchange reactions. If the Ca
(Mg) in the water is replaced by the Na(K) in the aquifer material, called cation exchange {Na(K)-Clay
+ Ca2+(Mg2+)aq = 2Na + (K+)aq + Ca(Mg)-Clay}. The reverse process, Na(K) in the water being
replaced by the Ca(Mg) in the aquifer materials, is called reverse ion exchange (RIE) {Na + (K+)aq +
Ca(Mg)-Clay = Na(K)-Clay + Ca2+(Mg2+)aq}. Ion exchange reactions are explained by chloro alkaline
indices (CAI1 and CAI2) and calculated by the following equations [55].

CAI1 = [Cl − (Na + K)]/Cl (1)

CAI2 = [Cl − (Na + K)]/[Cl + HCO3 + SO4 + NO3] (2)

The negative and positive values of CAI1 and CAI2 explain cation exchange and RIE reactions,
respectively. Figure 7 illustrates that the water chemistry in this aquifer is controlled by both cation
exchange and RIE reactions. In this study, 20 wells show negative values (both CAI1 and 2) and
16 wells have positive values. Hence, cation exchange is predominant process compared to RIE.
Groundwater types (NaCl) also support the cation exchange process in this aquifer.

Although the chemistry of groundwater is affected by the natural processes and geology, the
land use patterns also have significant role in altering the geochemical composition. The relationship
between chloride and sulfate can be used to indicate the effect of surface contamination especially
domestic sewage water and irrigation return flows on the groundwater chemistry. The observed
average concentrations of chloride and sulfate are 753 ± 1613 mg/L (Mean ± STD) and 89 ± 220 mg/L,
respectively (Table 1). The standard deviation of Cl and SO4 indicates that these are originated from
multiple sources. In addition, Cl and SO4 have significant positive correlation and both ions are likely
derived from various sources namely dissolution of halite and gypsum/anhydrite, saline sources, and
surface contamination.

Dissolution of chloride and sulfate minerals may not be major sources in the study region since
these are highly under saturated in the groundwater. Saturation index of gypsum and anhydrite
vary from −4 to −1 and less than −1 in all samples. Likewise, the saturation index of halite ranges
from −7 to −3 and less than −3 in all samples. These observations ruled out the contribution of
geology. The saline sources affected the water quality only in the coastal region not in the interior
area. High concentrations of chloride and sulfate are also observed in the wells located far from the
coastal region (Figure 5). Hence, infiltration of contaminated wastewater through domestic sewage,
septic tank leakage and irrigation return flow from sugarcane field has modified the water chemistry.
Application of fertilizers in the sugarcane cultivation is very common and irrigation return flow seems
to be major sources of these ions in groundwater in the study region.

3.2.2. Statistical Approach

Inter elemental correlation analysis was carried out in this study to understand the association of
variables, possible sources, and their evolution pathways. Table 2 shows that there is a strong positive
correlation between EC and TDS (r = 1.0), TH (r = 0.74), Na (r = 1.0), Ca (r = 0.74), Mg (r = 0.69), Cl
(r = 1.0) and SO4 (r = 0.98). Likewise, TH expresses strong positive correlation with EC (r = 0.74), TDS
(r = 0.74), Na (r = 0.69), Ca (r = 0.96), Mg (r = 0.97), Cl (r = 0.73) and SO4 (r = 0.72) and significant
negative correlation with Si (r = −0.50). Dissolved silica indicates significant negative correlation with
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TH (r = −0.50) and Ca (r = −0.57). Variables namely Na, Ca, Mg, Cl, SO4, EC, TDS and TH have strong
positive correlation each other. In contrast, pH, DO, ORP, K and HCO3 is not correlating with other
variables. These results suggest that water is strongly affected by the saline and surface contamination
sources as well as mineral weathering.

Principle component analysis (PCA) was performed to explore these processes in detail.
Varimax rotation method with Kaiser Normalization was used. Three factors with Eigen values > 1
were selected for further interpretation (Table 3) [56]. Factor loading, % of variance and cumulative %
of variance are given in Table 3. All these three factors explain 78% of total variance. PC1 explains
49.7% of total variance and is highly loaded on EC, TDS, Na, Cl, SO4, Ca and Mg. High loading of these
variables justify that this factor is strongly related to saline contamination sources as well as surface
input of elements. PC2 explains 16.8% of total variance and has strong positive loading of bicarbonate
and moderate loading of Ca and Mg. In addition, this factor has significant negative loading of
silica. PC2 represents the influences of mineral weathering on water chemistry especially dissolution
of carbonates rather than silicates. Further, PC2 also suggests that Ca and Mg in groundwater are
derived from multiple sources. PC3 has strong positive loading of pH, moderate loading of Mg and
negative loading of ORP. As mentioned in the correlation analysis, pH and ORP are not correlating
with other variables. PC3 is also likely related to mineral dissolution in the reducing environment.
Spatial distribution of factor scores indicates that wells in the coastal are well affected by the PC1
(Figure 8). Wells located far from the coast and center of the study area are predominantly influenced
by the mineral dissolution and show positive scores in PC2. PC3 shows positive scores on the isolated
pockets and near Zinkwazi River. Some wells have positive scores of both PC2 and PC3. Overall, wells
with positive score in the PC2 and/or 3 exhibit that the mineral dissolution process is predominantly
influenced the water chemistry.

Table 2. Correlation among water quality parameters.

Parameter EC TDS TH Si Na Ca Mg Cl SO4

EC 1.00 1.00 0.74 −0.29 1.00 0.74 0.69 1.00 0.98
p value 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00

TDS 1.00 1.00 0.74 −0.29 1.00 0.74 0.69 1.00 0.98
p value 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00

TH 0.74 0.74 1.00 −0.50 0.69 0.96 0.97 0.73 0.72
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Si −0.29 −0.29 −0.50 1.00 −0.26 −0.57 −0.39 −0.27 −0.27
p value 0.09 0.09 0.00 0.13 0.00 0.02 0.11 0.11

Na 1.00 1.00 0.69 −0.26 1.00 0.70 0.64 1.00 0.98
p value 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00

Ca 0.74 0.74 0.96 −0.57 0.70 1.00 0.86 0.73 0.72
p value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Mg 0.69 0.69 0.97 −0.39 0.64 0.86 1.00 0.69 0.67
p value 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

Cl 1.00 1.00 0.73 −0.27 1.00 0.73 0.69 1.00 0.98
p value 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00

SO4 0.98 0.98 0.72 −0.27 0.98 0.72 0.67 0.98 1.00
p value 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00

n 36 36 36 36 36 36 36 36 36

Note: Significant correlation is marked in bold italic (r ≥ 0.5; p < 0.05).
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Table 3. Principle component analysis.

Variables
Component

PC1 PC2 PC3

Cl 0.99 0.09 0.07
Na 0.99 0.06 0.06
EC 0.99 0.11 0.07

TDS 0.99 0.11 0.07
SO4 0.98 0.05 0.08
Ca 0.70 0.59 0.19
Mg 0.66 0.40 0.41

HCO3 −0.10 0.86 −0.09
Si −0.21 −0.76 0.00

pH −0.01 −0.21 0.75
ORP −0.10 −0.13 −0.68

K 0.33 0.31 0.28
Eigen value 5.96 2.02 1.34

% of Variance 49.67 16.83 11.19
Cumulative % 49.67 66.5 77.69

Note: Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.
Bold—High loading (> 0.5).
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3.3. Groundwater Suitability Assessment

3.3.1. Suitability for Drinking Purposes

The DWAF [57] and WHO [58] have recommended standards for drinking water suitability for
the coastal aquifers and those standards were used to evaluate the suitability of groundwater in the
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study area for drinking purposes. Table 4 reveals that the groundwater pH in the study region is within
the recommended limit of WHO [58] and DWAF [54]. The average EC of groundwater is 2687 µS/cm
and all samples fall outside the desirable limit (EC < 700 µS/cm) prescribed by the SAWQG [57].
The average concentration of TDS in the groundwater is 1720 mg/L. According to SAWQG, 32 samples
are not palatable, which exceeded the recommended limit (TDS > 450 mg/L). Similarly, 21 samples
exceeded the drinking water limit (1000 mg/L) recommended by the WHO [58]. According to Davis
and DeWiest [59] classification, only 15 out of 36 samples come under desirable to permissible classes
for drinking and remaining are unsuitable (Table 5). Table 6 reveals that 42% of samples are fresh
while 55% is brackish in nature [44]. Hardness of water is an important parameter to decide the water
suitability for various uses. Table 4 suggests that 89% of samples exceeded the HDL (TH = 100 mg/L)
but most of the samples within the MAL recommended by the WHO for drinking uses. Sawyer
and McCarty [60] classified groundwater based on total hardness (TH). Table 7 indicates that 72%
of samples fall on moderately hard to hard classes and 25% of samples are very hard. Hard water
causes health issues such as urolithiosis, cardio-vascular disorder, anencephaly parental mortality and
cancer for consumers [61]. Calcium is one of the important elements for human body metabolism.
High calcium concentration in drinking water can cause hypercalcemia kidney malfunctioning and
malabsorption of iron, zinc, magnesium, and phosphorus [62]. In this study, the average concentration
of calcium is 49 mg/L and 67% of samples exceeded the SAWQG DL (32 mg/L). Further, 19% of
samples exceeded HDL (75 mg/L) recommended by the WHO for drinking water.

Generally, concentration of sodium is lesser in fresh water than calcium and magnesium. The mean
sodium content in the groundwater is 491 mg/L. The MAL of sodium is 200 mg/L as recommended
by WHO [58] and it reveals that 23 samples (64%) exceeded this threshold. An excess of Na can
cause hypertension, congenial diseases, kidney disorders and nervous disorders in human body [63].
The concentration of potassium in the groundwater is generally low and the maximum permissible
limit of K is 12 mg/L as assigned by WHO [58]. All the samples were found below this limit.
Chloride in groundwater originates from variety of sources such as mineral dissolutions, intrusion of
sea water, domestic and industrial waste discharges, municipal effluents, etc. [64,65]. In the study area,
chloride content is perceived as high. Apart from sample number 22, all samples exceeded the DL
(100 mg/L) specified by the SAWQG [66]. Around 81% and 31% of samples exceeded the HDL and
MDL, respectively, recommended by the WHO [58]. In overall, EC, TDS, TH, Na and Cl is enriched
in these wells and around 85 to 95% of samples exceeded the DL of these elements recommended by
the SAWQG (Table 4). Likewise, TDS, TH, Na and Cl in most of these samples exceeded the drinking
water limit recommended by the WHO.

Table 4. Groundwater suitability assessment.

Parameter

SAWQG [66] WHO [58] SAWQG [66] WHO [58]

Desirable
limit (DL)

Maximum
Allowable

Limit
(MAL)

Highest
Desirable

Limit
(HDL)

Maximum
Allowable

Limit
(MAL)

No. of
Samples (%)

Exceeded
DL

No. of
Samples (%)

Exceeded
MAL

No. of
Samples (%)

Exceeded
HDL

No. of
Samples (%)

Exceeded
MAL

PH 6.0 9.0 6.5 8.5 0 0 0 0
EC 700 1500 - - 32 (89) 23 (64) - -

TDS 450 1000 500 1000 32 (89) 21 (58) 30 (83) 21 (58)
TH 50 100 100 500 36 (100) 32 (89) 32 (89) 2 (6)
Na 100 200 - 200 31 (86) 23 (64) - 23 (64)
K - 50 - 12 - 0 - 0
Ca 32 80 75 200 24 (67) 4 (11) 7 (19) 0
Mg 30 100 50 150 8 (22) 1 (3) 2 (6) 0
Cl 100 600 200 600 35 (97) 11 (31) 29 (81) 11 (31)

SO4 200 400 200 400 2 (6) 1 (3) 2 (6) 1 (3)
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Table 5. Davis and De Wiest [59] Classification based on TDS.

TDS (mg/L) Classification Number of Samples (%)

<500 Desirable for drinking water 6 (17)
500–1000 Permissible for drinking water 9 (25)
1000–3000 Useful for irrigation water 21 (58)

>3000 Unfit for drinking and irrigation 2 (6)

Table 6. Water classification based on TDS [44].

TDS (mg/L) Classification No. of Samples (%)

<1000 Fresh water 15 (42)
1000–10,000 Brackish water type 20 (55)

10,000–100,000 Saline water type 1 (3)
>100,000 Brine water type 0

Table 7. Water classification based on TH [60].

TH (mg/L) Classification No. of Samples (%)

<75 Soft 1(3)
75–150 Moderately hard 12 (33)

150–300 Hard 14 (39)
>300 Very hard 9 (25)

3.3.2. Suitability for Irrigation Uses

Suitability of groundwater for irrigation is assessed using various parameters such as salinity
hazard, sodium percent (Na %), sodium adsorption ratio, residual sodium carbonate, Kelly’s ratio,
Permeability index and Magnesium ratio and results reported in Table 8.

Richards [67] classified the water for irrigation uses based on EC. According to this classification,
five samples have medium salinity and 20 samples (56%) are classified as high salinity classes (Table 8).
According to this classification, 30% of samples are not fit for irrigation. Sodium percentage (Na %)
is also widely used to assess quality of water for irrigation purposes. Na % is calculated using
Equation (3).

Na % =

(
Na+ + K+

)
× (100)(

Ca2+ + Mg2+ + Na+ + K+
) (3)

Table 8 suggests that most of the samples (94%) come under doubtful to unsuitable classes. Na %
varies from 55 to 95% with an average value of 74%. Wilcox [68] plot of Na % against EC was used to
assess the irrigation water suitability. Figure 9 indicates that most of the samples were plotted on the
permissible to doubtful and doubtful to unsuitable classes due to high Na.

The sodium adsorption ratio (SAR) focuses on the potential that water must induce sodic soils.
SAR is estimated using following relation.

SAR =

(
Na+

)√
(Ca2+ + Mg2+)/2

(4)

According to Richards [67], water samples with SAR < 10 is more desirable for irrigation. Table 8
indicates that 98% of samples fall low to medium sodium water and 56% of samples have SAR < 10,
which are suitable for irrigation.

Groundwater samples with high residual sodium carbonate (RSC) can indirectly affect water
quality and enhances carbonate precipitation followed by the Na enrichment in the water. RSC is
calculated using Equation (5).
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RSC = (HCO3
− + CO3

−) − (Ca2+ + Mg2+) (5)

RSC varies from −13 to 1 with an average value of −2. RSC in the groundwater is less than
1.25 meq/L and all samples are suitable for irrigation.

Kelly [69] proposed a ratio to assess the water suitability for irrigation. Kelly’s ratio is obtained
from Equation (6)

KR =

(
Na+

)(
Ca2+ + Mg2+

) (6)

Table 8 suggests that all samples in the study area have this ratio >1 and these are unsafe for
irrigation uses.

Permeability index (PI) is developed by the Doneen [70] to explain the impact of irrigation water
uses on soil permeability. Water with high bicarbonate and sodium causes permeability issues in soil.
PI is estimated using

PI =

(
Na+ +

√
HCO−

3

)
(

Ca2+ + Mg2+ + Na2+
) × 100 (7)

PI in the study area ranges from 71 to 95% and it falls within the class I and class II. Almost 93%
of samples are classified as class II, which are suitable for most soils (Figure 10).
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Groundwater with high magnesium results calcium deficiency and reduce the crop yield [71].
Magnesium hazard (MH) is calculated by the equation

MH =

(
Ma2+

)
× 100

Ca2+ + Mg2+ (8)
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Water with high magnesium content (MH > 50%) is considered unsuitable for irrigation because it
causes alkaline conditions in the soil and reduces infiltration capacity. According to this classification,
78% of samples are suitable for irrigation (Table 8).

U.S. Salinity laboratory [67] proposed a diagram to evaluate the irrigation water suitability using
EC and SAR. Figure 11 indicates that water samples fall on C3S2 > C2S1= C3S3 = C4S3 > C4S4 > C3S1=
C5S4 classes. Most of the samples clustered on C3, C4, S2 and S3 classes. C3 and C4 waters have high
and very high salinity and are suitable mostly for high-permeability soils and salt-tolerant crops such
as sugarcane, which is the major crop in the study area. Similarly, S2 (medium sodium) waters are
suitable only for coarse-textured soils with high permeability. High sodium (S4) water is not suitable
for regular irrigation. Irrigational water quality parameters such as SAR, RSC, PI, and MH recommend
that most of the wells are suitable for irrigation in the study region. In contrast, salinity hazard, Na %
and Kelly’s ratio suggest that water quality is permissible to unsuitable for irrigation.

Table 8. Classification of groundwater samples for irrigation.

Parameters Range Irrigation Suitability No. of Samples (%) References

Salinity hazard
(EC (µS/cm))

<250 C1—Excellent (Low) -

[67]
250–750 C2—Good (Medium) 5 (14)
750–2250 C3—Permissible (High) 20 (56)

>2250 C4—Unsuitable (V. High) 11 (30)

Na %

<20 Excellent -

[68]
20–40 Good -
40–60 Permissible 2 (6)
60–80 Doubtful 27 (75)
>80 Unsuitable 7 (19)

SAR

<10 S1—Low 20 (56)

[67]
18–10 S2—Medium 15 (42)
18–26 S3—High -
>26 S4—Very High 1 (2)

RSC (meq/L)
<1.25 Safe 36 (100)

[72]1.25–2.5 Moderate -
>2.5 Unsuitable -

Kelly’s ratio <1 Safe -
[69]>1 Unsafe 36 (100)

PI
Class I Good 3 (7)

[70]Class II Permissible 33 (93)
Class III Unsuitable -

MH (%)
<50 Suitable 28 (78)

[71]>50 Unsuitable 8 (22)
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4. Discussion

Groundwater quality in the study area is fresh to brackish and mostly neutral to alkaline in nature.
Spatial distribution patterns of major ions indicate that wells in the coastal region are affected by the
saline water intrusion. Spatial distribution maps suggest that distribution pattern of EC, TDS, Na, Mg,
Cl and SO4 are homogenous and high concentrations are noticed in the coastal wells as well as few
wells near to Tugela River. Likewise, spatial distributions of Ca, HCO3 and CO3 are comparable and
wells located far from the coast have elevated concentrations in the groundwater.

Durov diagram, Gibbs plots, ionic ratios and chloro alkaline indices (CAI1 and CAI2) were
employed to understand hydrogeochemical processes regulate water chemistry in the coastal aquifer
of Tugela Catchment. Gibbs plots indicate that rock-water interactions followed by the evaporation
are dominant processes in the study region. Ionic ratios such as (Ca + Mg)/(HCO3 + CO3 + SO4),
mNa/Cl, mCa/Mg, and plot of mCa + Mg versus mHCO3 + CO3 imply that mineral dissolution, ion
exchange reactions and saline sources are predominant processes in this aquifer. The mCa/Mg ratio
and mCa + Mg vs mHCO3 + CO3 suggest that carbonate mineral dissolution is a dominate process
compared to silicate weathering. mNa/Cl and chloro alkaline indices (CAI1 and CAI2) reveal that
reverse ion exchange reactions are dominating over cation exchange in the study area. In addition,
NaCl water types are noticed far from the coast, which indicates the impact of wastewater infiltration
from domestic and irrigational activities (domestic sewage, septic tank leakage and irrigation return
flow). Spatial distribution patterns also suggest that wells existing near or along the river Tugela have
high concentrations of Na and Cl.

Inter-elemental correlation analysis implies that water is strongly affected by the saline and
surface contamination sources as well as mineral weathering. Principle component analysis resulted
three factors. PC1 is highly loaded on EC, TDS, Na, Cl, SO4, Ca and Mg and is strongly related to
saline contamination sources as well as input of surface elements. PC2 has strong positive loading of
bicarbonate, moderate loading of Ca and Mg and significant negative loading of silica and represents
the influences of mineral weathering on water chemistry especially dissolution of carbonates rather
than silicates. PC3 has strong positive loading of pH, moderate loading of Mg and negative loading of
ORP, and related to mineral dissolution in the reducing environment. Spatial distributions of factor
scores depict that wells in the coastal region is well affected by PC1 and wells located far from the
coast and center of the study area are predominantly influenced by the mineral dissolution (PC2, PC3).

Groundwater suitability assessment suggests that the concentration of TDS, TH, Na, Ca, and
Cl in 80% and 90% of wells exceeded the drinking water standards recommended by the WHO and
South African drinking water standards (SAWQG), respectively. Irrigation suitability assessment
suggests that most of the wells are suitable for irrigation in the study region based on SAR, RSC, PI,
and MH. In contrast, salinity hazard, Na % and Kelly’s ratio reveal that water quality is permissible to
unsuitable for irrigation. USSL classification shows that water samples fall on C3S2 > C2S1 = C3S3
= C4S3 > C4S4 > C3S1 = C5S4 classes. C3 and C4 waters have high and very high salinity and are
suitable mostly for high-permeability soils and salt-tolerant crops. Similarly, S2 (medium sodium)
waters are suitable only for coarse-textured soils with high permeability. Figure 12 depicts the wells
suitable for drinking as well as irrigation in the study area. In addition, the map demarked the zones
suitable for groundwater development in future through installation of new bore wells and dug wells
for water supply. Figure 12 also suggests that groundwater in the study region is suitable for irrigation
rather than drinking due to quality degradation, which imply a requirement of proper management
plan to protect the valuable groundwater resources.
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5. Conclusions

Groundwater quality, source of contamination and geochemical processes were evaluated in
the coastal aquifer of Tugela Catchment, South Africa using geochemical and statistical approach.
Wells in the coastal region as well as near Tugela River are affected by the saline water intrusion.
Durov diagrams, Gibbs plots, ionic ratios and chloro alkaline indices (CAI1 and CAI2) imply that
the groundwater chemistry in the coastal aquifer of Tugela Catchment is regulated by the ion
exchange (Cation exchange >> Reverse ion exchange), mineral dissolution (Carbonate >>> Silicate),
evaporation/saline sources and wastewater infiltration from domestic sewage, septic tank leakage
and irrigation return flow. Pearson correlation analysis and principle component analysis also suggest
that saline contamination sources, anthropogenic activities, and mineral weathering control the water
chemistry in the study region. Spatial distribution maps of factor scores illustrate that wells in the
coastal region are well affected by saline sources (PC1) and wells in the interior region and center of
the study area are predominantly influenced by the mineral dissolution (PC2, PC3). Groundwater
suitability assessment suggests that 80% to 90% of wells exceeded the drinking water standards (WHO
and South African drinking water standards (SAWQG)). Based on SAR, RSC, PI, and MH, most of the
wells are suitable for irrigation in the study region. According to USSL classification, groundwater
is mostly suitable for high-permeability soils and salt-tolerant crops. The study concludes that the
groundwater quality in the coastal aquifer of Tugela Catchment is degraded. The Tugela Catchment
itself is one among the 9 water management areas in South Africa, therefore, the study insists on further
monitoring and improvement plans to manage and protect the groundwater quality in the region.
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