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Abstract: The Muskingum flood routing model is a representative flood routing model. The field
applicability of the Muskingum flood routing model is known to be good, and the structure of input
data is simple. However, accurate flood routing cannot be conducted using current Muskingum
flooding routing models due to the structural limitation of equations. The advanced nonlinear
Muskingum flood routing model is suggested for improving accuracy, considering continuous
flow using weighted inflow. Continuous flow means the past continuous inflows, including first
and secondary inflow over time. Five flood data were selected for a comparison between the results
of this study and previous ones. The sum of squares, root mean square errors, and Nash-Sutcliffe
efficiency are applied in order to calculate the error values. The vision correction algorithm was
used to estimate parameters in the new model. Generally, the new method yields better results than
those described in previous studies, though it shows similar results with the most recent methods
(NLMM-L) in some flood data. Finally, the new method and NLMM-L are applied for the prediction
of Daechung flood data in Korea. The new method is useful in the prediction of outflows, because it
shows better results than NLMM-L.

Keywords: advanced nonlinear Muskingum model; flood routing; continuous flow; vision
correction algorithm

1. Introduction

The fundamental purpose of flooding routing is the estimation of the discharge flowing at
river sites of interest. The results of flood routing models can be used for the design of various
hydraulic structures in streams and rivers. Dams, levees, and flood barriers have been constructed
in order to prevent flood disasters. Flood routing methods can be classified into hydraulic flood
routing and hydrologic flood routing. Hydraulic flood routing is based on computation considering
boundary conditions, including the initial condition using the continuity and momentum equations,
which govern equations of unsteady, non-uniform flow in upstream and downstream directions.
It can exhibit high accuracy, but requires large amounts of data and complex calculations, because
it has to set the change of water level, roughness, and cross section over time in a grid of streams
and rivers. Hydrologic flood routing generates approximate results using the storage equation based
on the continuous equation. Specific information, such as water level, roughness, and cross section
is not available inside streams and rivers. Hydraulic flood routing is a microscopic routing method,
whereas hydrologic flood routing is a macroscopic one [1]. In hydraulic flood routing, it is essential
to check the changes of water level, roughness, and cross section, according to the time and space in
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the internal section (grid). In hydrologic flood routing, it is impossible to know specific information in
the internal section (grid).

There are two kinds of representative hydrologic flood routing methods: storage function
and Muskingum [2,3]. The Muskingum flood routing model with three parameters was suggested
because the lateral flow cannot be considered in these two methods [4]. A study on river flooding
routing using a nonlinear Muskingum method instead of linear Muskingum method was proposed,
considering the nonlinear relationship between storage and discharge [5]. The outflow prediction
errors subject to the satisfaction of the streamflow routing equations was minimized for an inflow
hydrograph [6]. The Broyden–Fletcher–Goldfarb–Shanno technique based on mathematical gradients
was applied to the parameter estimation in the nonlinear Muskingum model [7]. A nonlinear
Muskingum flood routing model incorporating lateral flow (NLMM-L) was proposed considering a
weighted average of inflow with additional parameters [8].

In this study, an advanced nonlinear Muskingum flood routing model considering continuous
flow (ANLMM-L) is suggested for the estimation of outflow based on continuous inflow with six
parameters. The new nonlinear Muskingum flood routing model, considering continuous flow, was
applied to five flood data including Wilson flood data, flood data by Wang, flood data in the River
Wye, UK, Sutculer flood data, and flood data for River Wyre October in 1982 [9–13]. A metaheuristic
optimization algorithm inspired by a vision correction procedure was used for the calibration of
the ANLMM-L. This metaheuristic optimization algorithm is called vision correction algorithm (VCA)
and it was not applied to hydrologic problems in previous studies. The results of the ANLMM-L with
VCA were compared with those of previous studies. The results in this study showed a minimum
error for all the flood data and these results show that more accurate flood routing is possible using
the proposed method. This study is suggested for the accurate prediction of outflows in various areas.
The ANLMM-L will be used for flood management plan based on the flood in a downstream.

2. Materials and Methods

2.1. Overview

There are two procedures for the metaheuristic optimization algorithm (VCA) and new
Muskingum flood routing model (ANLMM-L). In this process, the error metrics are the objective
functions in optimization algorithms. This means that the error between observed and simulated flood
data is minimized by the selected optimization algorithm. This is the method to code the computation
process of ANLMM-L and to minimize the error using VCA. Initial solutions for parameters of
ANLMM-L are generated and one initial solution is selected in the process of VCA. Then, the weighted
inflow, amount of storage, and outflow are continuously calculated. The error between observed
and calculated outflows using the sum of squares (SSQ) is estimated until total time.

If all initial solutions are calculated by the process of ANLMM-L, the error of initial solutions is
determined and those are sorted by the error of initial solutions. It is determined whether to produce
a new solution by global search, or select one of the initial solutions according to the division rate
1 (DR1). The global search direction is determined according to the division rate 2 (DR2). A new
solution is generated and it is modified by modulation transfer function (MTF), compression factor
(CF), astigmatic rate (AR).

Then, the process of ANLMM-L for a new solution is applied. The weighted inflow, amount of
storage, and outflow are continuously calculated to estimate error between observed and calculated
outflows using SSQ until total time. If the error of the new solution is smaller than it of the current
worst solution, the new solution is replaced with the current worst solution and DR1/DR2 are changed.
All this process is repeated until total iteration. The flowchart for the calculation of ANLMM-L
and VCA is shown in Figure 1.
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Figure 1. Flowchart for the calculation of ANLMM-L and VCA. Figure 1. Flowchart for the calculation of ANLMM-L and VCA.
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2.2. Advanced Nonlinear Muskingum Model Considering Continuous Flow

The initial flood routing procedure of NLMM-L was suggested by considering the current time
inflow. Equation (1) was suggested for the calculation of outflow [5,7].

Ot =

(
1

1 − χ

)(
St

K

)1/m
−
(
(1 + β)χ

1 − χ

)
It (1)

where Ot is the amount of outflow (m3/s) and χ is a weighting factor. St is the amount of storage
(m3/s) and m is a parameter accounting for the nonlinearity of flood wave behavior. K is the storage
factor, β is the factor for lateral flow, and It is the amount of inflow (m3/s). The current inflow with four
parameters (K, χ, m, β) is included in this equation. Additionally, a method for considering the lateral
flow with the previous inflow was proposed. The current inflow and the previous inflow are weighted
to calculate the inflow. The calculation of weighted inflow is shown in Equation (2).

Wt = [θ It + (1 − θ)It−1] (2)

where Wt is the weighted inflow (m3/s), θ is the weighted factor, and It−1 is the amount of previous
inflow (m3/s). The weighted inflow considering the current and previous inflows has five parameters
(K, χ, m, β, θ) for the calculation of outflow. Equation (3) was suggested for the calculation of outflow
using the current and previous inflows [14].

Ot =

(
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K
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−
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1 − χ

)
Wt (3)

where K is the coefficient of storage (days). The time interval of the recorded measurements and the
length of the investigated reach (that is linked to the wave travel time from the upstream section
to the downstream section) are very important for the effect of the inflow at each time. The time
interval of the recorded measurements is considered during the calculation of St (amount of storage)
because the calculation of St includes the time interval. Equation (4) shows the equation of state using
the continuity equations.

St+1 = St + [(1 + β)It − Ot]dt (4)

where St+1 is the amount of storage when the time is t + 1 (m3/s·day) and St is the amount of storage
when the time is t (m3/s·day). It is the amount of inflow (m3/s) and Ot is the amount of outflow
(m3/s). The length of the investigated reach is considered by the parameters of the weighted inflow.
If the length of the investigated reach is long, the effects of inflows at previous time will be decreased.
Conversely, if the length of the investigated reach is short, the effects of inflows at previous time will
be increased.

This Muskingum routing method was applied to five flood data (Wilson flood data, flood data by
Wang et al. [10], flood in the River Wye December, Sutculer flood, flood in River Wyre October). Four
out of five results show that parameter θ is 0 (Wilson flood data, flood in the River Wye December,
flood in River Wyre October) or 1 (Sutculer flood). This indicates that the previous and current inflows
are only considered when θ is 0 and 1, respectively. A new method is required to overcome this
phenomenon because these results show that both previous and current inflows is not fully applied
to NLMM-L.

ANLMM-L in this study is suggested to improve NLMM-L by considering three types of inflows:
first previous, second previous, and current inflows. Equation (5) shows the calculation of the new
weighted inflow.

Wt = [(1 − θ1 − θ2)It + θ1 It−1 + θ2 It−2] (5)

where θ1 is the weighted factor of the first previous inflow, θ2 is the weighted factor of the second
previous inflow, and It−2 is the amount of second previous inflow (m3/s). The weighted inflow
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including first previous, second previous, and current inflows has six parameters (K, χ, m, β, θ1,
θ2) for the calculation of outflow. Equation (3) in NLMM-L is also used for the calculation of
outflow of ANLMM-L. The original Muskingum flood routing model perfectly preserves mass balance.
Conversely, the Muskingum-Cunge (MC) contains a loss of mass because it increases with the flatness
of the bed slope, reaching values of 8 to 10% at slopes of 10−4 [15]. The concept of ANLMM-L perfectly
contains the mass conservations because it is based on Muskingum flood routing model.

2.3. Numerical Method for Parameter Estimation

The range of parameters is an important factor in the Muskingum flood routing model. The range
of most parameters in ANLMM-L is equal to that in NLMM-L because ANLMM-L is a modified
version of NLMM-L. The ranges of six parameters for ANLMM-L are given in Table 1.

Table 1. Definition of parameters in ANLMM-L.

Ranges of Parameters in ANLMM-L K χ m β θ1 θ2

Wilson flood data 0.01–1.00 −0.50–0.50 1.00–3.00 −0.10–0.10 0.00–1.00 0.00–1.00
Flood data by Wang et al. [10] 0.01–1.00 −1.50–1.50 1.00–3.00 −3.00–3.00 0.00–1.00 0.00–1.00

Flood data for River Wye December in 1960 0.01–1.00 −0.50–0.50 1.00–3.00 −0.10–0.10 0.00–1.00 0.00–1.00
Sutculer flood data 0.01–1.00 −0.50–0.50 1.00–3.00 −0.10–0.10 0.00–1.00 0.00–1.00

Flood data for River Wyre October in 1982 0.01–10.00 −0.50–0.50 0.00–1.00 −3.00–3.00 0.00–1.00 0.00–1.00
Daechung flood data 0.01–100.00 −0.50–0.50 1.00–10.00 −3.00–3.00 0.00–1.00 0.00–1.00

The SSQ was applied to calculate the error values in each Muskingum flood routing method [8].
The SSQ of the difference between the observed and calculated outflows was used as an objective
function. The six parameters (K, χ, m, β, θ1, θ2) were used as decision variables in the objective function.
The objective function in ANLMM-L is shown in Equation (6).

Minimize SSQ = ∑(Oobs − Ocal)
2 (6)

where Oobs is the amount of observed outflow (m3/s) and Ocal is the amount of calculated outflow
(m3/s). The root mean square error (RMSE) and Nash-Sutcliffe efficiency (NSE) as well as SSQ
were added to compare the performance of the different models. The function of RMSE is shown in
Equation (7).

RMSE (x1, x2) =

√
∑n

i = 1(x1 − x2)
2

n
(7)

where x1 is the amount of observed outflow (m3/s), x2 is the amount of calculated outflow (m3/s),
and n is the number of data. The function of NSE is shown in Equation (8).

NSE (x1, x2, x) = 1 − ∑n
i = 1(x2 − x1)

2

∑n
i = 1(x1 − x)2 (8)

where x1 is the amount of observed outflow (m3/s), x2 is the amount of calculated outflow (m3/s),
x is the amount of average outflow (m3/s) and n is the number of data. The results of kinematic wave
model (KWM), linear Muskingum method (LMM), linear Muskingum method incorporating lateral
flow (LMM-L), nonlinear Muskingum method (NLMM), NLMM-L, and ANLMM-L are compared for
verifying the effectiveness of ANLMM-L.

2.4. Vision Correction Algorithm

VCA, whose development was inspired from a vision correction procedure, was applied to several
mathematical benchmark problems such as Rosenbrock’s valley, Easom, Goldstein price, Rastrigin,
Griewank, and Ackley for verifying its performance [16]. VCA based on the optical characteristics for
vision correction is inspired by the process of human vision. VCA includes several parameters such
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as DR1, DR2, modulate transfer function rate (MR), and AR. The process of VCA consists of several
steps: (1) Generate initial solutions; (2) Generate a new solution (DR1 and DR2); (3) Apply MR and AR;
(4) Replace the current worst solution with a new solution if the new solution is better than the current
worst solution.

The initial solutions are randomly generated between the upper and lower boundaries. Each
decision variable has a range and is determined within this range. A new solution can be generated
in the selection of current solutions or random generation. In the selection of current solutions,
each decision variable is chosen with a given probability according to the value of fitness. Random
generation has two kinds of search directions: positive direction and negative direction. The new
decision variable is searched in the positive direction (from the best decision variable to the upper
boundary) when it is a myopia (nearsighted). In contrast, the new decision variable is determined in
the negative direction (from the lower boundary to the best decision variable) when it is a hyperopia
(farsighted). Equation (9) shows the generation of new decision variables.

nx = bx + random (0, 1)× (ub − bx)orlb + random (0, 1)× (bx − lb) (9)

where nx is the new decision variable, bx is the current best decision variable, and random (0, 1) is a
random value from 0 to 1. The terms ub and lb indicate the upper and lower boundaries, respectively.
The process of MR is applied after the generation of new decision variables. In this process, the concept
of MTF is based on the distance between the decision variable of the current best solution and the
new decision variable. Additionally, each decision variable has a different value of MTF. Equation (10)
shows the calculation of MTF.

MTFj =

√√√√ dxj√
dx2

1 + dx2
2 + · · · + dx2

k

where dxj =
xi − x1

xn − x1
, (10)

where MTFj is the value of MTF of the j-th decision variable and k is the total number of decision
variables. dxj represents the distance ratio between A (xi − x1) and B (xn − x1) at the j-th decision
variable (A: distance from the selected decision variable (xi) to the best decision variable (x1); B: distance
from the worst decision variable (xn) to the best decision variable). Each decision variable is adjusted
using the MR process as given in Equation (11).

nx = nx ×
{

1 + MTF × random (−1, 1)×
(

1 − Current iteration
Total number o f iteration

)CF
}

(11)

where random (−1, 1) is a random value from −1 to 1 and CF is a compression factor between 0 and 100.
The process of AR inspired by an astigmatic correction is used after the application of MR.
The astigmatic correction of vertical and horizontal errors is conducted to view three-dimensional
objects. Each decision variable is calculated using the AR process as given in Equation (12).

nx = nx ×
{

1 + random (−1, 1)× (sin ϕ)2
}

(12)

where φ is the astigmatic angle (AF). After all the processes including MR and AR are completed,
the new solution with new decision variables is compared with the current worst solution. The current
worst solution is replaced with the new solution if the new solution is better than the current worst
solution. Five parameters—candidate glasses (CG), MR, CF, AR, and AF—were used in VCA. CG
is the number of initial solutions and MR is the probability of the MR process. CF is the factor that
reduces the local search range. AR is the probability of the AR process and AF is the astigmatic angle
used in the AR process. The ranges of each parameter in VCA are selected as [10, 500] for CG, [0, 1] for
MR, [0, 100] for CF, [0, 1] for AR, and [0, 180] for AF. The pseudo-code of VCA is presented in Table 2.
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Table 2. Pseudo-code of VCA.

Objective function f (x), x = (x1, x2, . . . , xd)T

Generate initial glasses
While (t < Max number of iterations)
if (DR1 < rand)

Choose an existing glasses/generate new glasses
if (DR2 < rand)

Determine global search direction
end

end
if (new solution < current worst solution)

Replace new solution with current worst solution
end

Find the current best solution
End while

The number of function evaluations (NFEs) was used in the optimization process instead of
the total iteration number. The NFE is the product of the number of new solutions in each iteration
and the total iteration number. NFE was considered as 100,000 in all the flood data. The VCA used
as an optimization technique has five parameters (CG, MR, CF, AR, and AF). The values of the five
parameters are selected as 50, 0.1, 2, 0.1, and 45 for CG, MR, CF, AR, and AF, respectively, in all
applications. The application procedure of ANLMM-L using VCA as follows:

1. Generate initial solutions
2. Calculate the fitness of solutions using the objective function
3. Generate new solution
4. Compare new solution with current worst solution
5. Determine the replacement between two solutions
6. Repeat steps 2–5 if iteration process is not finished.

The optimization algorithms in Muskingum routing models are only tools for quickly finding
the optimum value and does not improve the optimum value. The results of all Muskingum routing
models using optimization algorithms are based on the performance of each Muskingum routing
model. The ANLMM-L will show the same results if other optimization algorithm are applied
instead of VCA. The VCA was used in ANLMM-L and it is a kind of meta-heuristic optimization
technique. Therefore, the VCA can be applied to a distributed model structure in which many spatial
discretizations are used.

The choice of optimization algorithm is not an important issue in this study. It is also possible
to select other optimization algorithms because the optimization in this study is only a tool for
accurate Muskingum flood routing. The choice of optimization algorithms is not a problem if
the proper parameters in Muskingum flood routing models can be selected. The purpose of this
study is the prediction of the accurate outflows using one of optimization algorithms. The VCA has
the advantage of finding the correct solutions; however, it is difficult to calibrate, because the VCA has
many parameters.

3. Results

3.1. Application of Wilson Flood Data

The Wilson flood data were used in 1974 and the parameter estimation was conducted using
the cuckoo search algorithm (CSA) [8]. The LMM-L [3], NLMM [17], and NLMM-L [8] were applied to
the Wilson flood data. The optimal parameters of NLMM-L for the Wilson flood data were determined
to be 0.5342 for K, 0.3005 for χ, 1.8642 for m, −0.0216 for β, and 0.0000 for θ using CSA [8]. The reason
for choosing these values is that the value of θ becomes 0, and only the previous inflow is included
in the calculation of outflow. The optimal parameters of ANLMM-L for the Wilson flood data were
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determined to be 0.933576 for K, 0.340998 for χ, 1.746706 for m, −0.020975 for β, 0.670453 for θ1,
and 0.261739 for θ2 using VCA.

The VCA was applied to the LMM-L, NLMM, NLMM-L, and ANLMM-L for the comparison of
computational time in each model. All results of average computational time are based on the average
value of 20 simulations with 100,000 iterations. The results of average computational time for the Wilson
flood data using VCA is shown in Table 3.

Table 3. Average computational time for the Wilson flood data using VCA.

Measures LMM-L NLMM NLMM-L ANLMM-L

SSQ 56 s 63 s 64 s 66 s
RMSE 60 s 67 s 68 s 70 s
NSE 68 s 70 s 72 s 73 s

In Table 3, the average computational time at three measures (SSQ, RMSE and NSE) were
estimated. The computational time of SSQ is shorter than other measures (RMSE and NSE) because
the structure of the equation in SSQ is simple. The computational time of RMSE is shorter than
NSE because the denominator of RMSE is the number of data and it of NSE should be calculated.
The average computational time of LMM-L is shorter than other models because its equation is
the simplest. The computational time increases greatly when the calculating process is added.
It increases a little when additional variable was added. There are differences depending on the type of
Muskingum flood routing and measures for error. The proper Muskingum flood routing model should
be selected according to the accuracy of results because the computational time difference between
each model is not huge. The results of LMM-L, NLMM, NLMM-L, and ANLMM-L are listed in Table 4.

Table 4. Comparison of the outflow hydrographs calculated for the Wilson flood data.

Time (h) Input
(m3/s)

Output
(m3/s)

LMM-L
(O’Donnell [4])

NLMM
(Karahan [17])

NLMM-L
(Karahan [8])

ANLMM-L
(This Study)

0 22 22 22 22 22.00 22.00
6 23 21 22.1 22 21.71 21.57

12 35 21 21.7 22.4 22.02 21.67
18 71 26 22.6 26.6 26.08 25.46
24 103 34 30.7 34.5 33.51 34.59
30 111 44 44.7 44.2 42.83 43.73
36 109 55 58.1 56.9 55.44 54.59
42 100 66 68.9 68.1 66.67 66.01
48 86 75 76.1 77.1 75.77 75.52
54 71 82 79.2 83.3 82.12 82.16
60 59 85 78.5 85.9 84.78 85.04
66 47 84 75.6 84.5 83.42 84.00
72 39 80 70.7 80.6 79.44 79.62
78 32 73 65.1 73.7 72.48 72.63
84 28 64 59.1 65.4 64.08 63.80
90 24 54 53.4 56 54.58 54.31
96 22 44 47.9 46.7 45.22 44.80
102 21 36 43.1 37.7 36.34 36.25
108 20 30 38.9 30.5 29.21 29.45
114 19 25 35.4 25.2 24.21 24.63
120 19 22 32.3 21.7 20.96 21.39
126 18 19 29.9 20 19.41 19.81
SSQ - - 815.68 36.77 9.82 4.54

RMSE - - 6.232327 1.330234 0.683938 0.464948
NSE - - 0.965417 0.998424 0.999584 0.999808
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All the outflows at 0 h are equal to 22 m3/s, but the difference appears at 6 h. The values of outflow
for LMM-L, NLMM, NLMM-L, and ANLMM-L are 22.1 m3/s, 22 m3/s, 21.71 m3/s, and 21.57 m3/s
when the time is 6 h, respectively. The difference between the observed outflows and those calculated
using each Muskingum method is apparent at 42 h although the error is larger or smaller at all times.
The outflow for LMM-L, NLMM, NLMM-L, and ANLMM-L is 68.9 m3/s, 68.1 m3/s, 66.67 m3/s,
and 66.01 m3/s when the observed outflow (output) at 42 h is 66 m3/s, respectively. The difference
between the observed outflows and those calculated using LMM-L, NLMM, NLMM-L, and ANLMM-L
is 2.9 m3/s, 2.1 m3/s, 0.67 m3/s, and 0.01 m3/s, respectively. The result obtained using ANLMM-L is
better than those obtained using the other methods and this method shows the smallest value of SSQ,
RMSE, and NSE. Figure 2 shows the comparison of results for the Wilson flood data.
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In Figure 2, the results of LMM-L, NLMM, NLMM-L, and ANLMM-L were compared with
the outflow data. The hydrograph of ANLMM-L and the hydrograph of outflow are very similar
because the difference between the observed and calculated outflows at each time is less than 1 m3/s.
This result shows that the ANLMM-L is much better than the previous models when applied to
the Wilson flood data.

3.2. Application of Flood Data by Wang et al. (2009)

The flood data by Wang et al. [10] were used for the application of the hybrid genetic algorithm.
The LMM [10], NLMM [14], and NLMM-L [8] were applied to the flood data by Wang et al. [10].
The optimal parameters of NLMM-L for the flood data by Wang et al. [10] were determined to be
0.2179 for K, −1.1304 for χ, 1.2207 for m, −0.0024 for β, and 0.7999 for θ using CSA [8]. The reason for
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choosing these data is different from that of choosing the Wilson flood data as the value of θ is not 0.
The reason for selecting these data is to verify whether the ANLMM-L exhibits good performance even
in the case where the NLMM-L operates without difficulties. The optimal parameters of ANLMM-L
for the flood data by Wang et al. [10] were determined to be 0.178058 for K, −1.49182 for χ, 1.235281
for m, −0.00243 for β, 0.268097 for θ1, and 0.0384045 for θ2 using VCA. The results of LMM-L, NLMM,
NLMM-L, and ANLMM-L are listed in Table 5.

Table 5. Comparison of the outflow hydrographs calculated for Wang et al.’s flood data [10].

Time
(12 h)

Input
(m3/s)

Output
(m3/s)

LMM
(Wang et al. [10])

NLMM
(Geem [7])

NLMM-L
(Karahan et al. [8])

ANLMM-L
(This Study)

1 261 228 228 228 228.00 228.00
2 389 300 305.19 303.8 299.74 300.92
3 462 382 382 382.3 382.57 381.51
4 505 444 442.7 442.4 442.76 443.15
5 525 490 483.6 482.4 482.16 482.69
6 543 513 513 511.2 509.89 510.09
7 556 528 534.29 532.3 530.72 530.66
8 567 543 550.44 548.5 546.77 546.62
9 577 553 563.53 561.7 559.96 559.77

10 583 564 573.16 571.6 569.94 569.80
11 587 573 580.02 578.7 577.07 576.95
12 595 581 587.32 586.2 584.39 584.22
13 597 588 592.14 591.2 589.68 589.60
14 597 594 594.59 593.9 592.34 592.30
15 589 592 592.02 591.8 590.33 590.34
16 556 584 574.89 575.7 574.68 574.86
17 538 566 556.85 558.5 556.41 556.23
18 516 550 536.93 539 537.43 537.13
19 486 520 512.18 514.8 513.47 513.35
20 505 504 507.96 509.6 507.07 506.51
21 477 483 493.22 494.9 494.86 494.95
22 429 461 462.34 464.8 464.39 464.94
23 379 420 421.87 425.1 423.97 424.15
24 320 368 372.34 376.1 375.05 375.07
25 263 318 318.97 322.4 321.35 321.35
26 220 271 270.39 272.5 271.42 271.40
27 182 234 226.99 227.5 226.94 227.09
28 167 193 197.2 195.7 194.92 195.13
29 152 178 174.87 172.6 172.46 172.76

SSQ - - 1086.84 979.96 917.06 909.35
RMSE - - 6.121869 5.820949 5.623120 5.599733
NSE - - 0.998180 0.998354 0.998464 0.998477

All the outflows at 12 h are equal to 228 m3/s and the initial difference between the observed
outflows and those calculated using NLMM-L at 24 h is smaller than the corresponding value for
the other methods. However, the magnitude of the difference between the observed and calculated
outflows varies at each time. The ANLMM-L generally shows better results than the other methods
although there is no significant difference at each time. Figure 3 shows the comparison of results for
Wang et al.’s data [10].
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Figure 3. Comparison of results for Wang et al.’s flood data [10].

The outflows of LMM-L, NLMM, NLMM-L, and ANLMM-L were compared with the output
in Figure 3. In Wang et al.’s flood data [10], the hydrograph of outflow using ANLMM-L is slightly
different from that of the output because the difference between the observed and calculated outflows
occasionally exceeds 10 m3/s. The SSQ of ANLMM-L is better than that of the other methods with
Wang et al.’s flood data [10].

3.3. Application of Flood Data for River Wye December in 1960

The River Wye, UK, with no tributaries, is linked from Erwood to Belmont; its total length is
69.75 km. The flood data for River Wye December in 1960 were suggested for the application of flood
routing methods [11]. The LMM-L [4], NLMM [17], and NLMM-L [8] were applied to the flood data
for River Wye December in 1960. The optimal parameters of NLMM-L for the flood data of River Wye
December in 1960 were determined to be 0.3691 for K, 0.3830 for χ, 1.6141 for m, 0.0547 for β, and 0.0000
for θ using CSA [8]. The reason for choosing these data is to enable the comparison between ANLMM-L
and the other methods to verify the improvement in flood routing owing to the new method for large
outflows. The optimal parameters of ANLMM-L for the flood data of River Wye December in 1960
were determined to be 1.000000 for K, 0.473018 for χ, 1.478194 for m, 0.057214 for β, 0.799610 for θ1,
and 0.212095 for θ2 using VCA. The results of LMM-L, NLMM, NLMM-L and ANLMM-L are listed in
Table 6.
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Table 6. Comparison of the outflow hydrographs calculated for the River Wye December in 1960.

Time
(h)

Input
(m3/s)

Output
(m3/s)

LMM-L
(O’Donnell [4])

NLMM
(Karahan et al. [17])

NLMM-L
(Karahan et al. [8])

ANLMM-L
(This Study)

0 154 102 102 154 102.00 102.00
6 150 140 116 154 149.50 146.52

12 219 169 120 152 156.59 155.74
18 182 190 147 181 191.40 194.41
24 182 209 158 191 200.79 194.19
30 192 218 165 185 195.14 196.05
36 165 210 176 187 197.46 198.35
42 150 194 178 179 188.48 186.83
48 128 172 176 162 170.80 172.12
54 168 149 164 141 148.10 150.37
60 260 136 160 154 162.59 167.56
66 471 228 167 198 210.36 216.61
72 717 303 218 264 281.58 294.27
78 1092 366 303 344 367.75 378.29
84 1145 456 484 416 447.65 461.17
90 600 615 690 599 629.57 612.03
96 365 830 700 871 892.78 862.51
102 277 969 642 834 859.01 884.60
108 227 665 572 689 719.30 737.54
114 187 519 505 535 567.50 565.33
120 161 444 442 397 427.85 414.97
126 143 321 386 283 308.86 297.45
132 126 208 338 202 220.90 216.14
138 115 176 296 152 163.64 164.43
144 102 148 260 124 131.90 134.94
150 93 125 228 106 111.93 114.46
156 88 114 201 94 99.28 101.24
162 82 106 179 88 92.90 94.00
168 76 97 160 82 86.14 86.94
174 73 89 144 75 79.34 80.13
180 70 81 130 73 76.46 76.87
186 67 76 118 69 73.13 73.54
192 63 71 109 66 69.85 70.23
198 59 66 100 62 65.09 65.60
SSQ - - 251,802 37,944.15 25,915.27 20,494.98

RMSE - - 87.351953 33.900478 28.023846 24.921077
NSE - - 0.892983 0.983882 0.988986 0.991290

All the outflows at 0 h are equal to 102 m3/s except for that of NLMM (152 m3/s). The difference
between the observed outflows and those calculated using ANLMM-L at 102 h is noticeably smaller
than those of the other methods. The outflow of LMM-L, NLMM, NLMM-L, and ANLMM-L is
642 m3/s, 834 m3/s, 859.01 m3/s, and 884.60 m3/s when the observed outflow (output) at 102 h
is 969 m3/s, respectively. The difference between the observed and calculated outflows of LMM-L,
NLMM, NLMM-L, and ANLMM-L is 327 m3/s, 135 m3/s, 109.99 m3/s, and 84.40 m3/s, respectively.
The result obtained using ANLMM-L is better than those obtained using the other methods and this
method shows the smallest value of SSQ, RMSE, and NSE. Figure 4 shows the comparison of results
for flood data of River Wye December in 1960.
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In Figure 4, the outflows of LMM-L, NLMM, NLMM-L, and ANLMM-L were compared with
the output for the River Wye December in 1960. The hydrograph of outflow using ANLMM-L is almost
the same as the output, because the difference between the observed and calculated outflows is less
than 100 m3/s. The ANLMM-L shows better performance than the other methods with the flood data
of River Wye December in 1960.

3.4. Application of Sutculer Flood Data

The Sutculer flood data on 4 November 1995 were recorded in Sutculer City, Turkey; it was
suggested for the application of flood routing methods [12]. The kinematic wave model (KWM) was
applied to the Sutculer flood data [13] and NLMM-L was compared with KWM [8]. The optimal
parameters of NLMM-L for the Sutculer flood data were determined to be 0.9953 for K, −0.0196 for
χ, 1.0029 for m, −0.0410 for β, and 1.0000 for θ using CSA [8]. The reason for choosing these data is
to enable the comparison between ANLMM-L and the other methods. The optimal parameters of
ANLMM-L for the Sutculer flood data were determined to be 0.973098 for K, −0.03454 for χ, 1.00263
for m, −0.04106 for β, 0.120753 for θ1, and 0.295127 for θ2 using VCA. The results of KWM, NLMM-L
and ANLMM-L are listed in Table 7.
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Table 7. Comparison of the outflow hydrographs calculated for the Sutculer flood data.

Time
(h)

Input
(m3/s)

Output
(m3/s)

KWM
(Karahan and Gurarslan [13])

NLMM-L
(Karahan et al. [8])

ANLMM-L
(This Study)

0 7.53 7 7.00 7.00 7.00
1 9.06 8 7.62 7.24 7.26
2 28 23 9.98 9.00 9.01
3 79.8 25 29.16 27.35 27.35
4 64.3 75 73.78 74.84 74.81
5 38.2 60 63.01 61.57 61.59
6 41.4 40 41.98 37.40 37.41
7 41.3 41 41.25 39.63 39.62
8 33.8 41 40.48 39.47 39.47
9 32 32 34.64 32.57 32.58

10 29 30 32.13 30.68 30.68
11 35 34 29.52 28.00 28.00
12 63.1 35 36.16 33.93 33.93
13 110 60 62.98 60.62 60.62
14 170 105 108.45 105.25 105.25
15 216 160 166.29 162.06 162.07
16 131 206 206.02 204.11 204.11
17 101 128 136.31 127.58 127.61
18 65 97 104.68 97.14 97.10
19 62.4 61 67.14 63.33 63.32
20 53.8 60 63.35 59.78 59.76
21 36.3 50 53.18 51.51 51.50
22 29.6 33 37.84 35.16 35.16
23 25 27 30.34 28.49 28.48
24 21.3 23 25.11 24.03 24.03
25 19.6 19 21.68 20.49 20.49
26 18 18 19.71 18.81 18.81
27 17.3 17 18.1 17.29 17.29
28 17 17 17.39 16.60 16.60
29 16 17 16.97 16.29 16.29

SSQ - - 532.62 281.11 280.95
RMSE - - 4.213541 3.062067 3.060222
NSE - - 0.992271 0.995918 0.995923

The difference between observed data and all simulated results becomes clear from 2 h. The peak
time in all results is 16 h and the KWM has the most accurate result in the peak outflow. However,
the results of KWM is larger than the observed data in the latter half. Conversely, the results of
NLMM and ANLMM-L are smaller than the observed data in the first half. The result obtained using
ANLMM-L is better than those obtained using the other methods and this method shows the smallest
value of SSQ. The results of ANLMM-L is similar with those of NLMM-L in RMSE and NSE because
the values of RMSE and NSE are smaller than those of SSQ. Figure 5 shows the comparison of results
for Sutculer flood data.
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In Figure 5, the outflows of KWM, NLMM-L, and ANLMM-L were compared with output for
Sutculer flood data. The ANLMM-L shows better performance than the other methods with Sutculer
flood data though the results of ANLMM-L are not much different from those of NLMM-L.

3.5. Application of the Flood Data for River Wyre October in 1982

In the River Wyre, flood occurred in October, 1982 and it was used for LMM-L [4]. Additionally,
NLMM-L was applied to the flood data of River Wyre October in 1982 and compared with LMM-L [8].
The optimal parameters of NLMM-L for the flood data of River Wyre October in 1982 were determined
to be 5.6765 for K, 0.2271 for χ, 0.9800 for m, 2.5298 for β, and 0.0000 for θ using CSA [8]. These data
were chosen because these data have a multi-peak inflow. The optimal parameters of ANLMM-L for
the flood data of River Wyre in October, 1982 were determined to be 6.129198 for K, 0.256363 for χ,
0.967245 for m, 2.532946 for β, 0.999999 for θ1, and 0.114425 for θ2 using VCA. The results of LMM-L,
NLMM-L and ANLMM-L are listed in Table 8.
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Table 8. Comparison of the outflow hydrographs calculated for the food data of River Wyre October
in 1982.

Time
(h)

Input
(m3/s)

Output
(m3/s)

LMM-L
(O’Donnell [4])

NLMM-L
(Karahan et al. [8])

ANLMM-L
(This Study)

0 2.6 8.3 8.3 8.3 8.30
1 4.2 9 8.2 8.51 8.52
2 12.3 9.9 8.1 8.79 9.94
3 25.4 10.2 12.7 10.94 12.74
4 24.1 18.9 27.9 20.28 19.71
5 20.3 35.9 39.9 37.54 35.73
6 23.3 51.8 45.7 49.07 48.87
7 27.7 59.4 52.2 55.11 55.95
8 27.7 63.3 61.4 62.5 62.74
9 26.9 69.6 68.9 71.44 71.35

10 24.8 76.7 74.7 78.03 77.95
11 26.9 82 77.2 82.07 82.67
12 33.7 85.3 79.8 83.72 85.27
13 33.9 89 87.8 87.43 88.11
14 27.8 94.6 95.5 95.49 94.74
15 20.8 98.8 97.7 100.88 99.90
16 15.6 98 94.4 99.29 98.87
17 11.9 91.8 87.9 92.06 92.05
18 9.5 82.3 79.8 82.22 82.36
19 7.8 72 71.5 71.75 71.88
20 6.5 61.9 63.6 61.94 61.93
21 5.8 53 56.1 53.12 53.10
22 5.0 45.6 49.6 45.47 45.37
23 4.8 39.2 43.7 39.14 39.04
24 4.5 33.8 38.8 33.76 33.65
25 4.1 29.3 34.6 29.55 29.39
26 3.7 26.2 30.9 26.12 25.96
27 3.4 23.5 27.7 23.2 23.08
28 3.2 21.2 24.8 20.67 20.59
29 2.9 19.2 22.3 18.52 18.44
30 2.8 17.7 20.1 16.71 16.68
31 2.6 16.4 18.2 15.12 15.09

SSQ - - 468.84 53.66 40.16
RMSE - - 3.790780 1.263563 1.120320
NSE - - 0.989570 0.998842 0.999090

The difference between observed data and all simulated results becomes clear from 2 h.
The outflow of LMM-L, NLMM-L, and ANLMM-L is 8.1 m3/s, 8.79 m3/s, and 9.94 m3/s when
the observed outflow (output) at 2 h is 9.9 m3/s, respectively. The maximum error of ANLMM-L in
each time does not exceed 4 unlike LMM-L and NLMM-L. Figure 6 shows the comparison of results
for the flood data of River Wyre October in 1982.
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In Figure 6, the outflows of LMM-L, NLMM-L, and ANLMM-L were compared with the output
for the flood data of River Wyre October in 1982. The results of ANLMM-L is better than those of
other models in SSQ, RMSE, and NSE. Additionally, the ANLMM-L shows better performance than
the other models for the flood data of River Wyre October in 1982 because the maximum errors at each
time using LMM-L, NLMM-L, and ANLMM-L are approximately 9.00 m3/s, 4.29 m3/s, 3.45 m3/s,
respectively. The ANLMM-L was applied to the five flood data including the Wilson flood data, Wang
et al.’s data [10], and the flood data of River Wye December in 1960, Sutculer flood data, and the flood
data of River Wyre October in 1982 for overcoming the shortcoming of NLMM-L. It shows better
results than other Muskingum flood routing methods (KWM, LMM, LMM-L, NLMM, and NLMM-L).
Accurate Muskingum flood routing using ANLMM-L is possible for various flood data.

3.6. Application for the Prediction in Daechung Flood Data

The ANLMM-L was applied to the Daechung flood data for the prediction of flood data. Daechung
is the dam of Geum River in Chungcheongbuk-do, Korea. All flow data of rivers in Korea were
provided by Han River Flood Control Office in Ministry of Construction and Transportation [18].
Initially, the ANLMM-L was applied to the Daechung flood data in April, 2010. The optimal
parameters of ANLMM-L for the Daechung flood data in April, 2010 were determined to be 96.44027
for K, −0.47211 for χ, 7.883545 for m, 1.96461 for β, 0.78404 for θ1, and 0.21141 for θ2 using VCA.
The optimal parameters of NLMM-L for the Daechung flood data in April, 2010 were determined to be
15.88463 for K, −0.23059 for χ, 0.68005 for m, 0.16082 for β, and 0.00000 for θ using VCA. Additionally,
the ANLMM-L and NLMM-L were applied to the Daechung flood data in April, 2014 for the prediction
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of outflow. The parameters of ANLMM-L and NLMM-L for the Daechung flood data in April, 2014
were same with those for the Daechung flood data in April, 2010. The results of prediction are shown
in Figure 7.
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In Figure 7a, the parameter estimation was conducted with Daechung flood data in April,
2010. The results of error in 2010 were 67.60 (SSQ), 1.553773 (RMSE), and 0.997410 (NSE) using
ANLMM-L. The results of error in 2010 were 131.6704 (SSQ), 2.168528 (RMSE), and 0.991726 (NSE)
using NLMM-L. In Figure 7b, the same parameters were applied to the Daechung flood data in
April, 2014 for the prediction of outflow. The results of error in 2014 were 23.93 (SSQ), 0.924386
(RMSE), and 0.998497 (NSE) using ANLMM-L. The results of error in 2014 were 981.20 (SSQ), 5.919692
(RMSE), and 0.962401 (NSE) using NLMM-L. It means that the ANLMM-L is significantly better than
the NLMM-L in some flood data. The results of Daechung flood data show that the new method is
required for accurate flood routing in real applications. The ANLMM-L can be useful for the prediction
of outflow although the value of error slightly increased.

4. Discussion

The NLMM-L was suggested by the integration of the continuity and storage equations
with the assumptions of O’Donnell’s nonlinear Muskingum model considering the lateral flow.
The NLMM-L had a limitation, in that the weighted inflow was sometimes determined to be one of
the two inflows (previous and current inflows). The most remarkable change in the new method
is a new weighted inflow considering three types of inflows: the first previous, second previous,
and current inflows. The two previous inflows (the first and second previous inflows) are proposed
for the application of flood data, because the water flow is continuous. The weights of each inflow
are determined according to two kinds of weighted factors. The outflow in Muskingum routing
model should be determined by various inflows including the current inflow, first previous inflow
and second previous inflows, because the outflow is affected by the continuous inflow. The ANLMM-L
is applied to the Wilson flood data, the flood data by Wang et al. [10], the flood data of River Wye
December in 1960, Sutculer flood data in Turkey, and the flood data of River Wyre Octorber in 1982 for
the comparison between the previous and new Muskingum flood routing methods.
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There is not much difference in each Muskingum flood method in five flood data. In particular,
the difference between ANLMM-L and NLMM-L is not large for each flood data though the results
of ANLMM-L are slightly better than those of NLMM-L. The reason for this is that one flood data
is used for parameter adjustment in Muskingum flood routing methods. The parameters should be
applicable to future flood data in the same place. The Daechung flood data was selected to verify
two Muskingum flood routing models (NLMM-L and ANLMM-L) showing the closest results in
five flood data. There was no significant difference in 2010 flood data for parameter validation, but
there was large difference in 2014 flood data. Typically, there is a difference of the RMSE values by
two Muskingum flood routing models. The values of RMSE in 2010 flood data are approximately
1.55 and 2.17, respectively. The difference between the two values is approximately 0.6. However,
the values of RMSE in 2014 flood data are approximately 0.92 and 5.92, respectively. The RMSE value
using NLMM is larger than six times of the RMSE value using ANLMM-L. This result implies that
the new method can show better results as one of Muskingum flood routing models for predicting
future flood data.

It can be used for more accurate flood routing and can be combined with various optimization
algorithms that are easily applicable to users. In Muskingum routing models including ANLMM-L,
it is not possible to estimate water level if a rating curve or river geometry is not present at a specific
target point. However, such information is crucial in flood forecasting or design of hydraulic structures.
The ANLMM-L does not provide more information than hydraulic flood routing models because it is
a hydrologic flood routing model. The ANLMM-L was developed to estimate accurate flood routing
using selected parameters based on observed flood data in a target area. The ANLMM-L is useful for
flood forecasting in urban areas that have only flow information.

5. Conclusions

The Muskingum flood routing model is widely known for its simplicity, and it has been used by
many water managers. The ANLMM-L can be also used for water managers that can use the original
Muskingum flood routing model. The ANLMM-L has simplicity, and improves the accuracy of
flood routing compared to the conventional Muskingum flood routing models. The ANLMM-L was
suggested for accurate flood routing. The NLMM-L with the weighted inflow including the previous
and current inflows was suggested [8].

The ANLMM-L was applied to the Wilson flood data, Wang et al.’s data [10], River Wye December
in 1960, Sutculer flood data, and flood data of River Wyre October in 1982 for the comparison of new
and other models. Three measures for the comparison are SSQ, RMSE, and NSE. Among three
measures, SSQ was selected as the objective function in order to clearly distinguish between each
Muskingum flood routing model because it shows the largest value in the application of each flood
data. In the Wilson flood data, the SSQ of ANLMM-L is 4.530563 and it is the smallest value in
applied Muskingum flood routing models. Additionally, The RMSE and NSE of each model showed
differences. In Wang et al.’s data [10], the ANLMM-L shows better results than other models and the
SSQ value of ANLMM-L was 909.2069. The SSQ values of each model showed a difference but RMSE
and NSE values did not differ greatly. The ANLMM-L was compared with other models for the River
Wye December in 1960. The error values in this flood data was the largest among all flood data.
The SSQ value of ANLMM-L was 20,495.98 and it is the smallest value in all models. A clear difference
was found in all error measures for applied Muskingum flood routing models. In Sutculer flood data,
NLMM-L and ANLMM-L showed similar values. The Sutculer flood data has two peak values, and it
can be seen that the ANLMM-L cannot show excellent results. In the case of Sutculer flood data with
two peak outflows, the Muskingum flood routing model considering continuous inflows (ANLMM-L)
cannot show better performance than NLMM-L because the value of outflow does not increase or
decrease continuously. The SSQ value of ANLMM-L was 281.05 and it is similar to the SSQ value
of NLMM-L, 281.11. Finally, the ANLMM-L was applied to the flood data of River Wyre October
in 1982. The SSQ value of ANLMM-L is the smallest value (40.2099) in applied Muskingum flood
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routing models. The difference in RMSE was no large but perceivable and the difference in NSE was
very small.

Daechung flood data were selected for the prediction of outflow, which is the purpose of this
study. The ANLMM-L and NLMM-L, which showed the closest results in the five flood data, were
applied to Daechung flood data in 2010 to estimate the parameters. Then, the prediction of outflow
for Daechung flood data in 2014 was conducted by applying the same parameters for each model.
There was slight difference in the process of parameter estimation, but there was big difference in
the prediction of outflow. In 2014, the SSQ value of ANLMM-L was 23.93 and it of NLMM-L was
981.20. These results show that the accurate flood prediction is possible in Daechung flood data by
ANLMM-L. Additionally, the ANLMM-L can be applied to the prediction of outflow in other areas.

Comprehensively, the ANLMM-L using VCA shows good results for all the flood data.
The ANLMM-L, as a hydrologic flood routing model, is more accurate than conventional Muskingum
flood routing models. In future studies, various methods for calculating the error of Muskingum flood
routing can be added and used as an objective function in future studies. The VCA can be used not
only for various flood routing models but also for parameter estimation of sewer network and for
the optimal design of water distribution systems/urban drainage systems. The ANLMM-L can be
used to predict flood in urban areas with only inflow and outflow data.
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Abbreviations

ANLMM-L Advanced nonlinear Muskingum flood routing model considering continuous flow
NLMM-L Nonlinear Muskingum flood routing model incorporating lateral flow
VCA Vision correction algorithm
SSQ Sum of squares
DR1 Division rate 1
DR2 Division rate 2
MTF Modulation transfer function
CF Compression factor
AR Astigmatic rate
RMSE Root mean square error
NSE Nash-Sutcliffe efficiency
KWM Kinematic wave model
LMM Linear Muskingum method
LMM-L Linear Muskingum method incorporating lateral flow
NLMM Nonlinear Muskingum method
AF Astigmatic angle
CG Candidate glasses
NFEs Number of function evaluations
CSA Cuckoo search algorithm
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