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Abstract: As a well-built, distributed hydrological model, the Soil and Water Assessment Tool (SWAT)
has rarely been evaluated at small spatial and short temporal scales. This study evaluated crop growth
(specifically, the leaf area index and shoot dry matter) and daily evapotranspiration at the hydrological
response unit (HRU) scale, and SWAT2009 was modified to accurately simulate crop growth processes
and major hydrological processes. The parameters of the modified SWAT2009 model were calibrated
using data on maize for seed from 5 HRUs and validated using data from 7 HRUs. The results show
that daily evapotranspiration, shoot dry matter and leaf area index estimates from the modified
SWAT2009 model were satisfactory at the HRU level, and the RMSE values associated with daily
evapotranspiration, shoot dry matter, and leaf area index were reduced by 17.0%, 1.6%, and 71.2%,
compared with SWAT2009. Thus, the influences of various optimal management practices on the
hydrology of agricultural watersheds can be effectively assessed using the modified model.
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1. Introduction

An irrigation district is a composite ecosystem with anthropogenic and natural elements [1].
In an irrigation district, the processes of artificial irrigation and evapotranspiration are critical for
water resource management and are important in the hydrological cycle. To understand and analyse
watershed processes and interactions, assess management scenarios, test research hypotheses, and
evaluate the influence of changing irrigation [2], a coupled hydro-agronomic model is needed.

Numerous agricultural watershed models, such as the Agricultural Non-Point Source (AGNPS)
model [3] and Soil and Water Assessment Tool (SWAT) [4,5], have been used to support water quality
management, water resource analysis, and soil erosion assessment in agricultural watersheds. Among
these models, SWAT is one of the best for the long-term simulation of watersheds dominated by
agricultural land use. For example, SWAT has been used to evaluate the influence of irrigation
diversion on river flow [4,6–9], to simulate climate change and the associated effects under various
scenarios [10,11], to calculate nutrient and sediment yields [12], and to estimate the water balance [13].
SWAT can be effectively calibrated, by comparing the sediment yield and/or simulated surface runoff
and nutrient concentrations in runoff to observations at the outlets of watersheds at the subbasin
level or at large spatial scales [7,14–18]. The modified SWAT model was developed to improve the
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simulation of particular watershed processes. Additionally, the modified version includes enhanced
flow predictions (including interflow and percolation, as well as hydraulic conductivity), the evaluation
of phosphorus derived from bank erosion in the upper soil layers, organic nitrogen losses, fast
percolation, a groundwater dynamics sub-model, amended dynamic functions for crop growth, and
channel and drainage losses [12,19–27].

Many studies of runoff hydrological processes have been performed using the SWAT model,
but crop growth dynamics (represented by metrics such as shoot dry matter and the leaf area index)
and evapotranspiration (ETc) are more significant than rainfall–runoff processes in irrigation districts.
Notably, additional studies must be performed in irrigation districts. First, ETc simulations have
yielded satisfactory results at the field spatial scale and the daily temporal scale. Many studies have
described the dual crop coefficients of many crops, such as cotton, winter wheat, maize, sorghum
and soybean [28–33]. In SWAT, studies have used satellite-estimated monthly evapotranspiration
values to calibrate the ETc parameters at the subbasin scale [34–37], daily lysimeter evapotranspiration
values to test the ETc parameters at the subbasin scale [38]. The weekly or daily temporal scales and
hydrological response unit (HRU) spatial scales of such studies are coarse. Existing research has shown
that SWAT generally underestimates daily and monthly ETc. In addition, automatic irrigation in
SWAT can be improved to accommodate limited irrigation scheduling strategies by adding parameters
that allow irrigation levels to be set as a percentage of ETc. Some studies have mentioned potential
flaws in SWAT’s automatic irrigation capabilities to simulate real irrigation conditions. At present,
the irrigation trigger factor of the soil moisture content method is not reported as the percentage
of plant water demand option, but as soil water, which is easily ignored [38–40]. Data availability
at the daily scale is often limited in hydrological modelling. Notably, more attention should focus
on evapotranspiration in various irrigation domains and the validation and calibration of model
parameters in combined distributed hydrological models (e.g., SWAT) and dual crop coefficient models
(e.g., SIMDualKc). Second, the irrigation quota is limited to the field capacity, and the excess water
above the field capacity is returned to the source and is not taken into account in the calculation of the
daily soil water balance. In fact, the irrigation quota is always larger than the field capacity, and such a
constraint is not suitable for surface irrigation and flooding irrigation. Additionally, various irrigation
schedules should be considered in different irrigation domains, and SWAT should be used for various
applications, instead of creating a “unified optimum irrigation schedule”, developing methods for
“auto-irrigation”, etc., to accurately describe the cyclic processes involved in regional irrigation. Third,
while many studies have assessed the crop water productivity index on the basin scale [41,42] and
yield predictions on the HRU scale [43], crop growth dynamics have rarely been evaluated at small
scales. Four, the leaf area index (LAI) curve is determined via linear regression after leaf senescence,
but this method is not suitable for irrigated crops, LAI follow and have logistic relationships with
climatic and soil variables [44].

The objectives of this paper are as follows: (1) to modify SWAT and improve its ability to model
crop growth parameters (shoot dry matter and LAI) and daily evapotranspiration; (2) to conduct a
sensitivity analysis of the modified model and identify the parameters that strongly influence estimates
of crop growth and ETc; and (3) to calibrate and validate the parameters of LAI, shoot dry matter, and
evapotranspiration in the modified model at small spatial (the HRU level) and temporal (daily) scales.

2. Materials and Methods

2.1. Study Area

The Yinke experimental site is located in an artificial oasis in the central Hei River Basin of
Northwest China (Figure 1). The elevation of the basin ranges from 1456 to 1600 m, and the basin
encompasses a total irrigation area of 18.65 km2 (Figure 1). The irrigation water supply is conveyed by
the Yinke Canal [45], which is located adjacent to the Hei River and forms part of the irrigation system
that connects the southwest region to the northeast region. In 2012, the main cultivated crop was
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maize (84.13%). Other land cover types included forestry (0.18%), pasture (0.82%), water (0.69%), and
residential land (14.18%). The climate is cold, and the arid region receives a mean annual precipitation
of 125 mm. The reference evapotranspiration in the area is 1972 mm. additionally, the mean annual
temperature is 6.7 ◦C, and the temperature difference between winter and summer is large. The soil
texture is mainly homogeneous sandy loam with a gravelly bottom layer.
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2.2. Field Experiment

Sixteen points that represent different branch canals and soil types were arranged in the irrigation
district, and 17 points that represent typical ditches were arranged in the second rural canal (Figure 1).
Maize for seed was the crop chosen for the experiment (local variety name: series 13).

At each monitoring point of the second rural canal, a field soil moisture measurement instrument
(TRIME-PICO IPH T3/44) was installed to monitor the soil water profile within each 0.2–0.4 m layer
at 15-day intervals. At each monitoring point of different branch, oven drying method was used
to monitor the soil water profile at 15-day intervals. The LAI and shoot dry matter were included
in the crop growth observations. The assessments of LAI and biomass were conducted at 15-day
intervals. The application ratios of fertilizer were 180 kg/ha for N and 150 kg/ha for P, which were
implemented based on local fertilizer management practices [46]. An eddy covariance (EC) instrument
was established to measure the latent heat flux at 100◦24′37′ ′ E 38◦51′25′ ′ N and an elevation of 1519 m.
The raw EC data were collected at a sampling frequency of 10 Hz, and they were processed using the
post-processing software EdiRe [47].

2.3. Model Description

2.3.1. SIMDualKc Model

The SIMDualKc model calculates daily crop evapotranspiration by considering soil evaporation
and crop transpiration components according to the water balance and the dual coefficient method.
The SIMDualKc software application was developed over a range of cultural practices and to provide
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ETc information for use in irrigation scheduling and hydrologic water balances [48]. The actual crop
evapotranspiration in the model can be computed as follows:

ETc = (KsKcb + Ke)ET0 (1)

where Ks is the water stress coefficient, Ke is the soil evaporation coefficient, and Kcb is the basal crop
coefficient. Additionally, ET0 is the reference evapotranspiration (mm/d) [49].

The SIMDualKc model, described in the companion paper, was developed to compute crop
ETc using many recent refinements [50]. The SIMDualKc model calibration procedure involves the
adjustment of standard soil parameters (e.g., readily evaporable water REW, total evaporable water
TEW, and the depth of the surface soil layer Ze) and crop parameters (e.g., Kcb and the depletion
fraction p) to minimize the differences between observed and estimated ETc values [29].

2.3.2. SWAT Model

SWAT is a temporally continuous, physically-based, and spatially semi-distributed model [51].
A‘watershed can be categorized into multiple sub-watersheds that can be further divided into particular
land/soil utilization characteristic units or HRUs. The water balance of each HRU is based on four
volumes of storage, including storage in the soil profile (0–2 m), snow, deep aquifers (>20 m), and
shallow aquifers (typically 2–20 m). Chemical loadings, flow generation and the sediment yield were
calculated in each HRU, and the resulting loads were routed via ponds, channels, and/or reservoirs to
the watershed outlet. The soil profile was further divided into multiple layers with different soil water
processes, such as evaporation, infiltration, percolation, lateral flow and plant uptake.

A storage routing method is used in the soil percolation module of SWAT to simulate flow in
every soil layer in the root zone. Crop evapotranspiration is simulated as a function of root depth, LAI,
and potential evapotranspiration [52].

Crop evapotranspiration (ETc) can be determined using the Penman-Monteith method, and the
surface runoff from daily rainfall was estimated using the modified Soil Conservation Service (SCS)
curve number [51].

The distributed modelling was carried out through a coupling of modified SWAT2009 and
SIMDualKc model (Figure 2). Measured data (Soil water, daily crop evapotranspiration by EC) in
the second rural canal were used to calibrate and validate the SIMDualKc model, measured data
(Soil water, crop data) in different branch canals and daily crop evapotranspiration calculated by the
SIMDualKc model were used for analysis performance of the modified SWAT2009.
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2.3.3. Sensitivity Analysis

The key of SWAT model is the selection of hydrological model parameters. At present,
the optimization of SWAT model parameters can be divided into manual adjustment and automatic
adjustment. Manual calibration parameters require certain calibration experience of hydrologists,
which requires a long working time. Due to the large influence of human interference factors on
the model, there is no good evaluation standard. SWAT-CUP can conduct sensitivity analysis,
uncertainty analysis and parameter automatic rate determination for the output results of SWAT2009.
To assess the parameters that affect crop growth and ETc based on daily values, the LH-OAT
(Latin Hypercube-One-factor-At-a-Time) method was used in the study, through the LH-OAT,
the dominant parameters were determined and a reduction of the number of model parameters
was performed [53,54]. The parameters which have influences on crop growth and ETc were used for
sensitivity analysis are presented in Section 3.3.1.

2.4. SWAT Input Data

Three basic files are required to divide the basin into HRUs and subbasins: a digital elevation
model (DEM), a soil map and a land use/land cover map. The topographic characteristics (the drainage
network, slope length, slope, the number of subbasins and the delimited watersheds) were generated
from the DEM of the Hei River Basin (30× 30 m grid size). The soil and land use data were based on soil
distribution maps and crop data obtained from the online portal of the Ecological and Environmental
Science Data Centre of Western China. In total, 137 HRUs and 13 subbasins were delineated in
the study area (Figure 3). The weather input data, which included minimum and maximum daily
air temperatures, relative humidity, wind speed and solar radiation, were obtained from Zhangye
meteorological station. This station which is located at 100◦25′48′ ′ E 38◦55′48′ ′ N and an elevation of
1470 m. Irrigation scheduling was shown in Table 1 for different branch canals, it is reflected in the
SWAT input file by setting the *.mgt files of 13 subbasins separately. The results of the specific settings
and process were shown in Figure 3. Current farm management strategies, such as planting and tillage
scheduling and harvesting and fertilization practices, were used as inputs to the model.
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Table 1. Irrigation quota/irrigation scheduling in the Yingke irrigation district.

Brach Canals The Second Rural Canal

Sub Basin Irrigation Quota
(mm) Sub Basin Irrigation Quota

(mm)
Irrigation Time
(Month/Day)

Irrigation Water
(mm)

1 786 8 652 5/26 120
2 786 9 885 6/22 180
3 748 10 861 7/21 160
4 858 11 634 8/13 150
5 1375 12 861
6 1415 13 1176
7 652
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2.5. Modification of the Model

Since excess irrigation is returned to the source of irrigation instead of being considered in the
surface runoff calculations and daily soil water balance calculations, the original version of SWAT2009
could not be used to simulate agricultural irrigation practices [55]. The linear decreasing LAI curve
after senescence could underestimate ETc. Thus, the following modifications were included in the
source code of the modified version of SWAT to include the excess water, as previously noted in the
soil water balance and LAI growth calculations:

1. The maximum amount of water used was in accordance with the depth of irrigation water
used in every HRU, as specified by the irrigation operation scheme, rather than the amount of water
in the soil profile based on the field capacity by Farida et al. [56]. This modification can be expressed
as follows:

Original version: vmm = sol_sumfc

Modified version: vmm = irr_amt

where vmm refers to the maximum amount of water used (mm); irr_amt refers to the depth of irrigation
water used in each HRU (mm), as specified by the user; and sol_sumfc refers to the amount of water in
the soil profile at field capacity (mm).

2. LAI values had subsequent effects on ETc estimation by Gary Marek et al. (2016) [38]. The LAI
curve after senescence was originally linear, but it should be represented using a logistic growth curve
for irrigated crop. This modification can be expressed as follows:

Original version:

LAI =
LAImx(

1− f rphu,sen

)2 ·
(

1− f rphu

)2
, f rphu ≥ f rphu,sen (2)

Modified version:

LAI =
LAImx(

1 + a· exp
(

1 + b· f rphu

)) , f rphu ≥ f rphu,sen (3)

where a and b are empirical parameters, LAI is the leaf area index on a given day, LAImx is the maximum
leaf area index, frphu is the fraction of potential heat units accumulated by a plant on a given day during
the growing season, and frphu,sen is the fraction of the growing season (PHU) in which senescence is the
dominant growth process.

2.6. Model Performance

Three statistical methods and time series plots were used to assess the performance of SWAT and
SIMDualKc according to the data. The five statistical criteria used to assess the effectiveness of the
validation and calibration results were as follows: (i) the Nash-Sutcliffe efficiency (NSE); (ii) the root
mean squared error (RMSE); and (iii) the coefficient of determination (R2). The calibration objectives
for LAI, shoot dry matter, and ETc were to minimize the RMSE and maximize the R2 and NSE values.

3. Results

3.1. Calibration and Validation of the SIMDualKc Model

3.1.1. Calibration of the SIMDualKc Model

The model simulations were initiated using a table of Kcb values; p and soil evaporation parameter
values were those recommended by Allen et al. [49]; and the initial Ze, TEW and REW values of 0.1 m,
28 mm and 8 mm, respectively, were used for silt-loam soils. The suggested initial values of ap and bp,
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which are deep percolation parameters, were 370 and −0.0173, respectively [57]. The soil parameters
was provided in Table 2, and the irrigation schedule was shown in Table 1 for the second rural canal.

The results of comparing the observed and simulated values of available soil water (ASW) based
on the calibration data sets of maize for seed are presented in Figure 4. The figure shows that the
ASW dynamics were well simulated, and there was no apparent bias in the estimation. The calibrated
values of Kcbini and p exhibited good agreement with those proposed by Allen et al. [49], and the
calibrated values of Kcbmid were slightly smaller than those of Allen et al. [49] and Duan et al. [58].
These differences were likely caused by crop and application differences, as this crop was planted for
seed and was sent to local companies who buy from the farmers. The reference values discussed above
are presented in Table 3.

Table 2. Selected soil parameters and values used in SIMDualKc model.

Depth
(mm)

Bulk Density
(g/cm3)

Clay Content
(% Soil Mass)

Silt Content
(% Soil Mass)

Sand Content
(% Soil Mass)

0–200 1.46 13.88 51.17 34.96
200–800 1.48 15.19 50.45 34.36

800–1400 1.57 16.59 50.26 33.16

Table 3. Initial and calibrated values of the crop and soil parameters appropriate for maize for
seed: crop coefficients, depletion fractions under conditions of no stress, soil evaporation and deep
percolation parameters.

Initial Values Calibrated Values

Crop coefficients

Kcbini 0.15 0.15
Kcbdev 0.15–1.2 0.15–0.95
Kcbmid 1.2 0.95
Kcbend 0.35 0.35

Depletion fractions

Pini 0.5 0.5
Pdev 0.5 0.5
Pmid 0.5 0.5
Pend 0.5 0.5

Soil evaporation

REW (mm) 8 10
TEW (mm) 28 34

Ze (m) 0.1 0.15

Deep percolation

ap 370 366
bp −0.0173 −0.065Water 2018, 10, x FOR PEER REVIEW  8 of 22 
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The results show that the regression coefficient was less than 1.0, indicating that the data
plotted slightly below the 1:1 line of the observed data. The coefficient of determination was 0.88,
indicating that most of the variance could be explained by the model. The RMSE reached 20.52 mm,
representing approximately 6.7% of the total available water (TAW). Additionally, the NSE value was
0.65. The statistical test values of determining coefficient, regression coefficient and intercept are 9.98,
0.52, and 1.14, respectively, with t-test (t0.05 = 2.131, n = 15). The results suggest that the SIMDualKc
model effectively accounted for the variation in the observed ASW and accurately predicted the ASW
value of maize for seed.

3.1.2. Validation of the SIMDualKc Model

The results of comparing the observed and simulated ETc values are presented in Figure 5.
The coefficient of determination was 0.79, indicating that most of the variance could be explained by
the model. The RMSE reached 1.01 mm/d, and the NSE value was 0.56. The statistical test values of
determining coefficient, regression coefficient and intercept are 15.55, 11.53, and 8.09, respectively, with
t-test (t0.05 = 1.996, n = 67). The results show that there are some schematic errors in the model that can
reducing ETc predictive power. The observed value ETc is the water consumption calculated by the
energy balance of the eddy-related system, while the SIMDuaIKc model calculates the ETc based on
the water balance formula. Results of previous research indicate that the ETc calculated by the vorticity
correlation system is lower than that calculated by the water balance formula [59], the comparison of
ETc at different scales may be the main reason of schematic errors.
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Figure 5. Comparison between the simulated and observed ETc values of maize for seed.

3.2. SWAT2009 vs. Modified SWAT

3.2.1. Water Balance

After calibrating and validating SWAT2009 and modified SWAT2009 independently, the irrigation
quota of different SWAT versions is shown in Figure 6a, and there were larger differences between
SWAT 2009 and modified SWAT2009 versions, the differences ranging from 0–430 mm. the modification
of Equation (1) could increase the irrigation water in the soil, and more percolation in the water cycle.
In the Figure 6b, there were some differences between modified SWAT2009 and original SWAT2009
versions, and the differences ranged from 46–68 mm. The total evapotranspiration ranged from
540–580 mm of modified SWAT2009, the other is 492–519 mm. Yongyong Zhang et al. (2016) showed
that evapotranspiration of seed maize is 545 mm during the growing season [60]. The results is similar
with the results of modified SWAT2009 versions. The modification of Equation (2) could increase
evapotranspiration, especially after peak LAI was reached. In the Figure 6c, there were larger difference
between modified SWAT2009 and original SWAT2009 versions, and the differences ranged from−42 to
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401 mm. the variation of percolation is similar with the variation of irrigation quota. In the Figure 6d,
there were some differences in the senescence stage, the ASW decline rate of modified SWAT2009
was faster than that of original SWAT2009. Therefore, there was a different water balance between
modified SWAT2009 and original SWAT2009 versions.
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Figure 6. Water balance element of different SWAT versions. ((a) irrigation quota; (b) evapotranspiration;
(c) perolation; and (d) available soil water).

3.2.2. Difference of Model Performance

Crop growth (specifically, the leaf area index and shoot dry matter) and daily evapotranspiration
were used to test the SWAT2009 model at the hydrological response unit (HRU) scale, the comparisons
between the estimated and measured values of ASW, shoot dry matter, LAI and estimated daily ETc

values using SIMDualKc, SWAT2009, and the modified SWAT model exhibited large differences.
The daily ETc results exhibited some differences between the observed data and values simulated

using SIMDualKc, SWAT2009, and the modified SWAT model. The less differences were observed
for the shoot dry matter and ASW based on SWAT2009 and the modified SWAT2009 model (Table 4).
These observations suggest that the parameters values of shoot dry matter and ASW used in the
calculation process are nearly equal.

Large differences were observed between SWAT2009 and the modified SWAT model (Figure 7).
The largest difference occurred during the leaf senescence stage, when the statistical parameters
were much lower than those in the modified SWAT model (Table 4). In SWAT2009, the RMSE is 1.84
and the NSE is negative. These differences are because of the linear LAI functions used in the leaf
senescence stage.

Based on this comparison between SWAT2009 and the modified SWAT model, the largest
improvement was associated with LAI, followed by the ETc and available soil water, the values
of shoot dry matter were nearly equal in both models.
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Table 4. Comparison between SWAT2009 and the modified SWAT2009 model.

Parameter Version R2 RMSE NSE

Available soil water
SWAT2009 0.71 18.30 0.70

Modified SWAT2009 0.80 15.98 0.77

Evapotranspiration SWAT2009 0.35 2.41 0.31

Modified SWAT2009 0.53 2.00 0.52

Shoot dry matter SWAT2009 0.89 2.64 0.85

Modified SWAT2009 0.89 2.60 0.86

LAI
SWAT2009 0.15 1.84 −1.12

Modified SWAT2009 0.84 0.53 0.82

The units of available water content, evapotranspiration, shoot dry matter, and LAI are mm, mm/d, t/ha, and
none, respectively.
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3.3. Modified SWAT Model Calibration and Validation

3.3.1. Sensitivity Analysis

During the process of simulating LAI using the SWAT model, a sensitivity analysis was performed
with the observed data. The results indicated that BLAI, LAI, LAIMX2, and LAIMX1 were the primary
parameters in the mgt, crop, sol, gw, and rte input files used in the SWAT model (Table 5). Additionally,
LAI development depended on the accumulation of plant heat units and the environmental stress
indexes. Thus, the shape coefficients are very important for obtaining accurate LAI development
curves [55]. In the process of simulating shoot dry matter, BIO_E, T_OPT, and T_BASE were the
primary parameters (Table 6). Biomass production was coupled with the radiation-use efficiency
(BIO_E) and intercepted, photosynthetically active radiation [55]. The higher the BIO_E value is, the
more biomass can be produced [26]. In the process of simulating daily ETc, SOL_K, ESCO and GSI
were the primary parameters (Table 7). ESCO is an important parameter used to estimate unsaturated
soil evaporation [61], and GSI is a significant parameter used to calculate rc in the Penman-Monteith
equation [49]. Additionally, ESCO is the soil evaporation compensation factor, which affects all the
water balance components [62].
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Table 5. Global sensitivities of the parameters that affect the leaf area index.

Parameter a t-Value b p-Value c Initial Value Calibrated Value

FRGRW2 1.67 0.09 0.5 0.71
FRGEW1 4.27 <0.01 0.15 0.05

BLAI 9.79 <0.01 6 5.14
DLAI 12.42 <0.01 0.7 0.67

LAIMX2 18.17 <0.01 0.95 0.77
LAIMX1 20.11 <0.01 0.05 0.01

a Parameter definitions can be found in the theoretical documentation of SWAT [63]. b The t-value indicates
parameter sensitivity; the larger the t-value is, the more sensitive the model output is to the parameter. c The p-value
indicates the significance of the t-value; the smaller the p-value is, the less chance that a parameter has of being
falsely identified as sensitive.

Table 6. Global sensitivities of the parameters that affect shoot dry matter.

Parameter a t-Value b p-Value c Initial Value Calibrated Value

HVSTI 0.88 0.38 — —
USLE_C 1.61 0.11 0.5 0.26

EXT_COEF 1.68 0.09 0.5 0.78
BIO_E 7.15 <0.01 39 28.85
T_OPT 10.58 <0.01 25 23.68
T_BASE 12.36 <0.01 8 12.26

a Parameter definitions can be found in the theoretical documentation of SWAT [63]. b The t-value indicates
parameter sensitivity; the larger the t-value is, the more sensitive the model output is to the parameter. c The p-value
indicates the significance of the t-value; the smaller the p-value is, the less chance that a parameter has of being
falsely identified as sensitive.

Table 7. Global sensitivities of the parameters that affect daily evapotranspiration.

Parameter a t-Value b p-Value c Initial Values Calibrated Values

ALPHA_BF 0.14 0.89 — —
GWQMN 0.14 0.89 — —
SOL_BD 0.22 0.83 — —

SOL_ZMX 0.31 0.76 — —
CH_N2 0.33 0.74 — —

GW_REVAP 0.38 0.70 — —
CO2HI 0.41 0.68 — —
CH_K2 0.57 0.57 — —

GW_DELAY 0.67 0.50 — —
SOL_AWC_B 0.82 0.41 — —

CN2 0.82 0.41 — —
CANMX 0.86 0.39 — —

SOL_AWC_C 1.39 0.17 0.25 0.20
ALPHA_BNK 1.58 0.11 0.5 0.42

EPCO 1.8 0.07 0.1 0.69
SOL_AWC_D 2.11 0.04 0.18 0.21

SOL_K 5.63 <0.01 20 30
ESCO 3.37 <0.01 0.1 0.57
GSI 23.93 <0.01 0.007 0.01

a Parameter definitions can be found in the theoretical documentation of SWAT [63]. b The t-value indicates
parameter sensitivity; the larger the t-value is, the more sensitive the model output is to the parameter. c The p-value
indicates the significance of the t-value; the smaller the p-value is, the less chance that a parameter has of being
falsely identified as sensitive.
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3.3.2. LAI Calibration and Validation

Only those parameters with the highest sensitivities were considered in the calibration process.
Table 5 shows the initial values and calibrated values of each parameter considered in the
calibration process.

Regional monitoring stations were distributed over 16 HRUs, of which four HRUs were sparsely
planted with vegetables (greenhouse crops). Hence, they were not considered in this study. Calibration
and validation were performed sequentially [54]. The LAI data from HRU-1, HRU-18, HRU-24,
HRU-30, and HRU-58 were adopted for calibration, and the LAI data from HRU-68, HRU-82, HRU-99,
HRU-100, HRU-104, HRU-115, and HRU-118 were used for validation.

The calibration and validation curves and statistical parameters are shown in Figure 8 and Table 8,
respectively. In the calibration phase, the coefficient of determination ranged from 0.90 to 0.98, the NSE
ranged from 0.72 to 0.93, and the RMSE ranged from 0.32 to 0.98. In the validation phase, the coefficient
of determination ranged from 0.90 to 0.97, the NSE ranged from 0.22 to 0.89, and the RMSE ranged from
0.41 to 0.95. The simulated and measured LAI values in the calibration and validation phases exhibited
good agreement, and the simulated results effectively described the growth process represented by the
LAI of maize for seed.
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Table 8. Statistical parameters related to the simulation of LAI in the calibration and validation phases.

HRU R2 RMSE NSE

Calibration

1 0.94 0.32 0.93
18 0.96 0.54 0.80
24 0.85 0.71 0.75
30 0.81 0.98 0.72
58 0.89 0.42 0.89

Validation

68 0.96 0.95 0.22
82 0.88 0.51 0.84
99 0.81 0.71 0.42
100 0.84 0.53 0.77
104 0.94 0.41 0.89
115 0.94 0.45 0.88
118 0.85 0.54 0.69

3.3.3. Calibration and Validation of Shoot Dry Matter

The default values and adjusted values of each parameter considered in the calibration process
are presented in Table 6. The calibrated and validated HRUs were the same as those used in the process
of LAI calibration and validation. The calibration and validation curves and statistical parameters are
shown in Figure 9 and Table 9.Water 2018, 10, x FOR PEER REVIEW  14 of 22 

 

 

Figure 9. Typical variations in simulated and measured values of shoot dry matter ((a) values for 
calibration; and (b) values for validation; DAP is day after planting). 

Table 9. Statistical parameters related to shoot dry matter in the calibration and validation phases. 

 HRU R2 RMSE (t/ha) NSE 

Calibration 

1 0.90  2.89  0.78  
18 0.85  3.58  0.77  
24 0.93  5.07  0.68  
30 0.98  1.64  0.94  
58 0.97  5.97  0.66  

Validation 

68 0.91  2.55  0.81  
82 0.85  2.91  0.78  
99 0.93  2.17  0.88  
100 0.95  1.14  0.94  
104 0.98  2.65  0.87  
115 0.98  2.45  0.75  
118 0.93  3.19  0.84  

3.3.4. ETc Calibration and Validation 

The default values and adjusted values of each parameter considered in the calibration process 
are presented in Table 7. The HRUs used for calibration and validation were the same as those used 
in the process of LAI calibration and validation. The calibration and validation curves and statistical 
parameters are presented in Figures 10 and 11 and Table 10. 

During the calibration phase, the coefficient of determination between the SIMDualKc and 
SWAT simulations ranged from 0.62 to 0.86, the NSE ranged from 0.33 to 0.70, and the RMSE ranged 
from 1.52 to 2.40 mm/d. Additionally, in the validation phase, the coefficient of determination 

Figure 9. Typical variations in simulated and measured values of shoot dry matter ((a) values for
calibration; and (b) values for validation; DAP is day after planting).

In the calibration phase, the coefficient of determination between the simulated and measured
values of shoot dry matter ranged from 0.92 to 1.0, the NSE ranged from 0.66 to 0.97, and the RMSE
ranged from 1.64 to 5.97 t/ha. In the validation phase, the coefficient of determination ranged from 0.92
to 0.99, the NSE ranged from 0.75 to 0.94, and the RMSE ranged from 1.14 to 2.91 t/ha. The measured
values were consistently less than simulated values for the validation period, the inaccuracy of shoot
dry matter estimation might also be caused by the errors in response to soil water stress in the
cumulative temperature model.



Water 2018, 10, 1064 14 of 22

Table 9. Statistical parameters related to shoot dry matter in the calibration and validation phases.

HRU R2 RMSE (t/ha) NSE

Calibration

1 0.90 2.89 0.78
18 0.85 3.58 0.77
24 0.93 5.07 0.68
30 0.98 1.64 0.94
58 0.97 5.97 0.66

Validation

68 0.91 2.55 0.81
82 0.85 2.91 0.78
99 0.93 2.17 0.88

100 0.95 1.14 0.94
104 0.98 2.65 0.87
115 0.98 2.45 0.75
118 0.93 3.19 0.84

3.3.4. ETc Calibration and Validation

The default values and adjusted values of each parameter considered in the calibration process
are presented in Table 7. The HRUs used for calibration and validation were the same as those used
in the process of LAI calibration and validation. The calibration and validation curves and statistical
parameters are presented in Figures 10 and 11 and Table 10.

Water 2018, 10, x FOR PEER REVIEW  15 of 22 

 

between the SIMDualKc and SWAT simulations ranged from 0.70 to 0.80, the NSE ranged from 0.48 
to 0.62, and the RMSE ranged from 1.69 to 2.19 mm/d. The ETc values simulated by SWAT and 
SIMDualKc exhibited good agreement in the calibration and validation phases. Marek et al. (2016) 
showed that The NSE value could reach 0.7 in the validation period [38], the inaccuracy of ETc 
estimation might also stem from the errors in the soil water stress function and pre-set GSI. 

 

 

 
Figure 10. Variations in ETc simulated using SIMDualKc and SWAT ((a) HRU-1; (b) HRU-18; (c) HRU-
24; (d) HRU-30; and (e) HRU-58, which are used for calibration; DAP is day after planting). 

 

Figure 10. Variations in ETc simulated using SIMDualKc and SWAT ((a) HRU-1; (b) HRU-18;
(c) HRU-24; (d) HRU-30; and (e) HRU-58, which are used for calibration; DAP is day after planting).



Water 2018, 10, 1064 15 of 22

Water 2018, 10, x FOR PEER REVIEW  15 of 22 

 

between the SIMDualKc and SWAT simulations ranged from 0.70 to 0.80, the NSE ranged from 0.48 
to 0.62, and the RMSE ranged from 1.69 to 2.19 mm/d. The ETc values simulated by SWAT and 
SIMDualKc exhibited good agreement in the calibration and validation phases. Marek et al. (2016) 
showed that The NSE value could reach 0.7 in the validation period [38], the inaccuracy of ETc 
estimation might also stem from the errors in the soil water stress function and pre-set GSI. 

 

 

 
Figure 10. Variations in ETc simulated using SIMDualKc and SWAT ((a) HRU-1; (b) HRU-18; (c) HRU-
24; (d) HRU-30; and (e) HRU-58, which are used for calibration; DAP is day after planting). 

 
Water 2018, 10, x FOR PEER REVIEW  16 of 22 

 

 

 

 
Figure 11. Variations in ETc simulated using SIMDualKc and SWAT ((a) HRU-68; (b) HRU-82; (c) 
HRU-99; (d) HRU-100; (e) HRU-104; (f) HRU-115; and (g) HRU-118, which are used for validation; 
DAP is day after planting). 

Table 10. Statistical parameters related to ETc in the calibration and validation phases. 

Phase HRU R2 RMSE (mm/d) NSE 

Calibration 

1 0.71  1.79  0.65  
18 0.74  1.52  0.70  
24 0.51  2.07  0.51  
30 0.39  2.40  0.33  
58 0.42  2.20  0.41  

Validation 

68 0.59  1.69  0.58  
82 0.52  1.91  0.52  
99 0.49  2.19  0.48  
100 0.64  1.80  0.62  
104 0.52  2.03  0.50  
115 0.51  2.07  0.50  
118 0.49  2.16  0.48  

3.3.5. Available Soil Water Test 
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Figure 11. Variations in ETc simulated using SIMDualKc and SWAT ((a) HRU-68; (b) HRU-82;
(c) HRU-99; (d) HRU-100; (e) HRU-104; (f) HRU-115; and (g) HRU-118, which are used for validation;
DAP is day after planting).

During the calibration phase, the coefficient of determination between the SIMDualKc and SWAT
simulations ranged from 0.62 to 0.86, the NSE ranged from 0.33 to 0.70, and the RMSE ranged from
1.52 to 2.40 mm/d. Additionally, in the validation phase, the coefficient of determination between the
SIMDualKc and SWAT simulations ranged from 0.70 to 0.80, the NSE ranged from 0.48 to 0.62, and the
RMSE ranged from 1.69 to 2.19 mm/d. The ETc values simulated by SWAT and SIMDualKc exhibited
good agreement in the calibration and validation phases. Marek et al. (2016) showed that The NSE
value could reach 0.7 in the validation period [38], the inaccuracy of ETc estimation might also stem
from the errors in the soil water stress function and pre-set GSI.
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Table 10. Statistical parameters related to ETc in the calibration and validation phases.

Phase HRU R2 RMSE (mm/d) NSE

Calibration

1 0.71 1.79 0.65
18 0.74 1.52 0.70
24 0.51 2.07 0.51
30 0.39 2.40 0.33
58 0.42 2.20 0.41

Validation

68 0.59 1.69 0.58
82 0.52 1.91 0.52
99 0.49 2.19 0.48

100 0.64 1.80 0.62
104 0.52 2.03 0.50
115 0.51 2.07 0.50
118 0.49 2.16 0.48

3.3.5. Available Soil Water Test

Results showed that the simulated and observed available soil water are in agreement at all
observation points (Figure 12). The determination coefficients ranged from 0.56 to 0.96, the regression
coefficient ranged from 0.76 to 1.02, RMSE ranged from 7.36 to 25.46 mm, and the average NSE was
0.59, thus indicating that the model explained only a relatively small fraction of observed variance.Water 2018, 10, x FOR PEER REVIEW  17 of 22 
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Figure 12. Simulated and measured available soil water.

4. Discussion

4.1. Crop Growth Dynamics

The typical LAI growth patterns (HRU-1) used in the original and modified SWAT models are
shown in Figure 7, which illustrates considerable differences in the senescence stage. Since the



Water 2018, 10, 1064 17 of 22

original SWAT model uses a linear attenuation formula to simulate the LAI, it reflects the dynamics
of plant growth under natural conditions but not for agricultural cultivated crops. The parameters
were established using empirically fitted functions, although the LAI growth-related modules were
modified for the senescence phase. Therefore, the growth mechanism of the leaf area was not
properly represented. The LAI can influence the radiation-use efficiency, which influences the
production of biomass because the shape coefficients are flexible in the optimal LAI curves [55].
When senescence is the major growth process, other shape coefficients can be used to modify the LAI
growth sub-module [26]. Notably, the modified sub-module did not consider the effects of nitrogen
stresses on leaf senescence. Thus, this process should be added in subsequent studies [14].

The calculation of shoot dry matter in SWAT is based on empirical formulas. Specifically, biomass
production is calculated using Beer’s law [64], which can assess the proportion of shoots to the total
crop biomass. The fraction of roots in the total biomass varies from 0.40 in the emergence stage to 0.20
at maturity. Biomass production can be affected by the light extinction coefficient (K), the biomass
fraction, and the radiation-use efficiency.

Cabelguenne et al. divided the entire period of crop development into various physiological
stages to improve the simulation results and assess differences in water stress between phenological
stages [14]. Similarly, future versions of SWAT should consider additional processes related to crop
growth to enhance the simulation of crop yields and the yield response to irrigation management.

4.2. Evapotranspiration

According to Figure 11, the ETc values simulated using SWAT and SIMDualKc are not identical.
ET0 is the foundation for the calculations of ETc. Slight deviations between ET0 in SWAT and
SIMDualKc occur because SWAT uses alfalfa as a reference crop, whereas SIMDualKc ET0 uses
grass. For grass, rs equals 70 m s−1, and the reference crop height is 0.12 m. For alfalfa, rs is 100 m s−1,
and the reference height is 0.40 m. The input radiation in SWAT was iteratively increased in each
subbasin until the value of ET0 in SWAT matched the value of ET0 in SIMDualKc to correct these
differences. Generally, ETc in SIMDualKc is different from ETc in SWAT for three potential reasons.

First, one hypothetical conditions are used in SWAT. One condition states that evaporation will
decrease firstly if the soil water availability is insufficient (Appendix A, Equation (A1)). The water stress
unit (wstrs) in SWAT2009 uses the ratio of the actual and maximum plant transpiration (Appendix A,
Equation (A2)), an overestimated value of actual plant transpiration will lead to no or little water
stress, and the associated material and water cycles are affected.

Second, the LAI can affect evapotranspiration when the Penman-Monteith method is used
(Appendix A, Equations (A3) and (A4)). In this case, LAI decreases linearly in the senescence stage,
potentially leading to underestimated values of ETc. Gary Marek et al. (2016) also showed that SWAT
generally underestimated ETc at both the daily and monthly levels [38].

Third, the module that represents agricultural irrigation management in the SWAT model is
relatively simple. The effects of irrigation and precipitation on crop transpiration are not effectively
reflected in SWAT. Nonetheless, this issue can be resolved in the SIMDualKc model by the daily water
balance of the topsoil layer [49]. Although there is inherent uncertainty involved in using this approach,
the SWAT model eliminates some of the uncertainty by establishing an upper irrigation limit based on
the soil water content.

4.3. Soil Water

In SWAT2009, soil moisture is simulated using the method of layered infiltration, and the model
calculates actual crop evapotranspiration based on the available water in different soil layers. The water
stress coefficient is then calculated based on the ratio of actual to potential crop evapotranspiration,
and this coefficient restricts crop production.

SWAT2009 assumes that water stress occurs when the content of available soil water decreases to
ASW/4 (Appendix A, Equation (A5)). Allen et al. and Luo et al. used 0.55 as the threshold value of
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soil water stress instead of 0.25 [26,49]. Water extraction decreases below this threshold, despite the
differences between crop and soil types. Nonetheless, the soil water holding capacity is varied, based
on the different crop and soil types. The water stress coefficient calculated by Equation (A5) uses an
exponential formula. There are many applications of the water stress coefficient from FAO56 using
the ratio of total and readily available water [49], and from Feddes et al. (1978) considering the effects
of water potential on the uptake rate to be multiplicative [65]. The water stress coefficient formula of
SWAT should accept more tests for irrigation crops.

5. Conclusions

The highest sensitivity parameters are FRGRW2, FRGEW1, BLAI, DLAI, LAImx2, and LAImx1
for the leaf area index, EXT_COEF, BIO_E, T_OPT, and T_BASE for the shoot dry matter, EPCO,
SOL_AWC_D, SOL_K, ESCO, and GSI for daily evapotranspiration.

The modified version of the SWAT model exhibits better performance on the daily
evapotranspiration, shoot dry matter, and leaf area index at the daily temporal scale and the HRU
spatial scale.

Based on the performance statistics of modified SWAT model, there may be errors related to water
stress functions in shoot dry matter and ETc estimation, and the most important thing is that the stress
factor cannot be well reflected into the crop growth. Therefore, users should be aware of the response
of crop growth to soil moisture movement.
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Appendix A

See Equations (A1)–(A5):

if(pet < es_ max + ep_ max)then
es_ max = pet× es_ max/(es_ max + ep_ max)

if(pet_ day < es_ max + ep_ max)then
es_max = petday − ep_ max

(A1)

where ep_max is the maximum transpiration, es_max is the maximum evaporation, pet_day is the
potential evapotranspiration, and pet is the amount of pet_day remaining after the water stored in the
canopy evaporates.

The water stress unit (wstrs) in SWAT2009 is as follows:

wstrs = 1− Etact/Et (A2)

where Et is the maximum plant transpiration on a given day and Etact is the actual plant
evapotranspiration. The plant transpiration rate and wstrs range from 0.0 to 1.0 when wstrs equals 0.0.

rc =
r1

0.5·LAI
(A3)

λETc =
∆·Rnet + ρ·γ·VPD

ra

∆ + γ·
(

1 + rc
ra

) (A4)
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where ETc is the daily evapotranspiration (mm d−1), ∆ is the slope of the saturation vapour
pressure-temperature curve (kPa ◦C−1), ρ is the air density (kg m−3), γ is the psychrometric constant
(kPa ◦C−1), VPD is the vapour pressure deficit (kPa), ra is the atmospheric resistance (s m−1), rc is the
canopy resistance (s m−1), and rl is the minimum effective stomatal resistance of a single leaf (s m−1).

SWAT2009 assumes that water stress occurs when the available soil water content decreases
to ASW/4:

reduc = exp
[

5
(

1
4

SWl
ASWl

− 1
)]

when SWl ≤
1
4

ASWl (A5)

where SWl refers to the volumetric soil water content above the wilting point, reduc is the water uptake
reduction factor, l is the number of soil layers, and ASW is the available soil water.
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