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Abstract: As humans increasingly alter the surface geomorphology of the Earth, a multitude of
artificial aquatic systems have appeared, both deliberately and accidentally. Human modifications
to the hydroscape range from alteration of existing waterbodies to construction of new ones.
The extent of these systems makes them important and dynamic components of modern landscapes,
but their condition and provisioning of ecosystem services by these systems are underexplored,
and likely underestimated. Instead of accepting that artificial ecosystems have intrinsically low
values, environmental scientists should determine what combination of factors, including setting,
planning and construction, subsequent management and policy, and time, impact the condition
of these systems. Scientists, social scientists, and policymakers should more thoroughly evaluate
whether current study and management of artificial aquatic systems is based on the actual ecological
condition of these systems, or judged differently, due to artificiality, and consider resultant possible
changes in goals for these systems. The emerging recognition and study of artificial aquatic systems
presents an exciting and important opportunity for science and society.
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1. Introduction

Humans alter geomorphology on an ever-increasing scale [1], one comparable with [2], and in
some ways exceeding [3], rates of natural processes. Every change people make to the Earth’s surface
has the potential to affect the flow and accumulation of water. People have dug ditches, impounded
streams and rivers, and otherwise shifted Earth’s surface to direct and store water for human use,
especially agriculture, for over 5000 years [1]. Today, land use matrices that entail human-engineered
waterbodies, such as urban settlements, rice villages, and irrigated cropland, cover significant fractions
of terrestrial Earth [4]. Patterns of surface water modification and extent are tightly linked to these land
uses [5]. Man-made and -modified aquatic systems have become ubiquitous landscape features [6].

In spite of their commonness, artificial aquatic systems remain poorly understood. Indeed, it is
often unclear which waterbodies even belong in the category of “artificial” or “anthropogenic”. To date,
the limited study of different artificial aquatic systems has been fragmented among various domains
of ecology and other environmental sciences, and more often discussed on the margins of natural
ecosystems than in conjunction with them, as part of a complete hydroscape [7]. Because science and
management does not often focus on artificial aquatic ecosystems, their abundance and extent are
poorly quantified, and their ecological statuses and causes thereof poorly understood. As a result,
we lack a scientific basis for assessing the ecological value of artificial aquatic systems, or determining
how management and policy might improve that value. The ubiquity of artificial aquatic systems,
the potential commonalities among them and with natural aquatic ecosystems, and our limited
understanding of their central and evolving role in the modern hydroscape all argue for more integrated
study of the waterbodies created and transformed by human activity.
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In this paper, we propose a framework for aquatic ecosystem artificiality that includes both
the intent and magnitude of modification, and argue that policy and management often implicitly
use these characteristics to differentiate in their treatment of aquatic systems. We assemble current
estimates of the extent of some types of artificial waterbodies in the U.S., and review established
knowledge of their ecological condition, including the ecosystem services and disservices that they
provide. We argue that the condition of artificial aquatic systems, as for their natural counterparts,
likely reflects ecological processes and human decisions both in place and within their watersheds,
and that the often poor condition of these systems [8] is not necessarily inherent to their anthropogenic
origin. Finally, we posit that scientific undervaluation of artificial aquatic systems may lead scientists,
managers, and policymakers to treat artificial waterbodies in ways that perpetuate poor ecological
conditions. To manage the rapidly changing and increasingly anthropogenic hydroscape, aquatic
scientists need to better inventory its myriad artificial components, evaluate their current structure and
function, and link these findings to drivers. Future assessment of artificial aquatic systems that clarifies
what their real and perceived values are, and how to purposefully change those values, will require
more deliberate, intensive, systematic and mechanistic study, and, perhaps, a shift in our perspective
regarding what counts as nature.

2. Degrees and Axes of Artificiality

What does it mean to identify aquatic ecosystems as “artificial”? Designer ecosystems, like rain
gardens and ponds, swales, and wetlands conceived and built for water treatment [9], are obviously
deliberately constructed for human purposes, often where no waterbody existed before, and thus
undisputedly artificial [10]. A stream or lake in a protected watershed far removed from intensive
human land use might serve, in a traditional ecological study, as a “completely natural” or “pristine”
reference site. However, many, or likely most, ecosystems fall between these extremes. For example,
scientists and policymakers often differentiate between a channelized stream and a wholly man-made
trench, but either may be colloquially called a “ditch” or “artificial”, and the two may look and even
function quite similarly, particularly within a highly modified agricultural landscape. All natural
waterbodies do not necessarily maintain better structure and function than all artificial ones [11].
Restoration projects similarly blur the bounds of “natural” and “artificial” [10,12]. While restoration
typically has the goal of returning an ecosystem to some more natural state [13], the process of
restoration necessitates human intervention, which is often sustained through maintenance [14],
an implicit acknowledgement that many ecosystems cannot withstand human disturbance without
purposeful human assistance. Meanwhile, undirected human actions, like stormwater efflux,
can accidentally “restore” natural systems [15–17]. Even mostly or wholly man-made systems,
like retention ponds, can “naturalize”, or become more biotic and ecosystem-like, in time, without
deliberate human effort [18]. Both current character and driving forces behind it are often a combination
of human and wild, artificial and natural.

These examples suggest that artificial aquatic ecosystems can be usefully organized along two
axes: the degree to which their existence and characteristics depend on human activity, and the degree
to which that activity is specifically intended to produce those changes (Figure 1). The first axis
spans from moderate alteration of systems with initially geologic origins, to the wholesale creation
of waterbodies on formerly dry land, sometimes away from topographic lows. The latter axis ranges
from aquatic systems that came to exist as inadvertent or accidental by-products of other human
activities on the Earth’s surface to deliberate and intentional products of such activity [19]. These two
artificiality axes are gradients, not discrete categories, and can be difficult to parse, especially for the
many waterbodies with complex, multi-layered histories of modification [20–22]. Depending on the
purpose, it may be appropriate to define “artificial” waterbodies broadly or narrowly within this space.
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Figure 1. Classification of artificial aquatic systems. Level of deliberateness of modification increases 
from left to right, and degree of modification increases from bottom to top. These two axes combined 
yield a third axis, likelihood of legal standing as a water for regulatory purposes in the U.S., running 
from unlikely among deliberately constructed ecosystems like swimming pools and upland farm 
ponds in the upper right, to likely among accidentally altered ecosystems, like a lake bisected by a 
railroad causeway, in the lower left. Other potentially influential characteristics, such as size and 
permanence, may influence regulation in both natural and artificial systems. 

2.1. Construction, Transformation, and Alteration 

The most clearly artificial aquatic systems are those that humans construct where none existed 
before. Even the existence of these constructed artificial ecosystems relates to other natural 
waterbodies because they represent water that could have gone or stayed elsewhere, on the 
landscape, underground, or to other parts of the hydrologic cycle. Deliberate examples of 
construction include fountains, many roadside ditches, rain gardens, stormwater treatment areas, 
many farm ponds, and all designer ecosystems [10]. Conservation-oriented water regulation 
typically exempts such constructs outright; they usually do not count as water [7,23,24]. Accidental 
examples include logging ruts, erosional gullies in building sites and agricultural fields, poorly 
drained impervious surfaces, and even bomb craters [25]. Some of these accidental features 
represent failures of water conservation regulation or other damaging abstraction from natural 
water sources. Nonetheless, left unmaintained, in time, such accidental waterbody construction in 
relative uplands can “naturalize” to a seemingly “wild” ecosystem [25–27]. Waterbodies that 
humans have constructed accidentally, but that appear relatively free from human intent, are more 
likely to be regulated than waterbodies that humans have constructed on purpose [23,24].  

Transformation occurs when human intervention changes waterbodies from one type to 
another, fundamentally different in morphology and flow, such as from a lake to a wetland, or a 
wetland to a stream. Deliberate transformations include ditching of wetlands for agriculture, 
conversion of wetlands to ponds during development, damming of streams to build reservoirs, 

Figure 1. Classification of artificial aquatic systems. Level of deliberateness of modification increases
from left to right, and degree of modification increases from bottom to top. These two axes combined
yield a third axis, likelihood of legal standing as a water for regulatory purposes in the U.S., running
from unlikely among deliberately constructed ecosystems like swimming pools and upland farm ponds
in the upper right, to likely among accidentally altered ecosystems, like a lake bisected by a railroad
causeway, in the lower left. Other potentially influential characteristics, such as size and permanence,
may influence regulation in both natural and artificial systems.

Construction, Transformation, and Alteration

The most clearly artificial aquatic systems are those that humans construct where none existed before.
Even the existence of these constructed artificial ecosystems relates to other natural waterbodies because
they represent water that could have gone or stayed elsewhere, on the landscape, underground, or to
other parts of the hydrologic cycle. Deliberate examples of construction include fountains, many roadside
ditches, rain gardens, stormwater treatment areas, many farm ponds, and all designer ecosystems [10].
Conservation-oriented water regulation typically exempts such constructs outright; they usually do not
count as water [7,23,24]. Accidental examples include logging ruts, erosional gullies in building sites
and agricultural fields, poorly drained impervious surfaces, and even bomb craters [25]. Some of these
accidental features represent failures of water conservation regulation or other damaging abstraction from
natural water sources. Nonetheless, left unmaintained, in time, such accidental waterbody construction in
relative uplands can “naturalize” to a seemingly “wild” ecosystem [25–27]. Waterbodies that humans
have constructed accidentally, but that appear relatively free from human intent, are more likely to be
regulated than waterbodies that humans have constructed on purpose [23,24].

Transformation occurs when human intervention changes waterbodies from one type to another,
fundamentally different in morphology and flow, such as from a lake to a wetland, or a wetland to a
stream. Deliberate transformations include ditching of wetlands for agriculture, conversion of wetlands
to ponds during development, damming of streams to build reservoirs, piping of creeks, and many
restorations. The impoundment of the Everglades behind Tamiami Trail, a road that interrupted sheet
flow, is one prominent such example [28]. Similarly, humans accidentally transformed the bed of the
Salt River, dried through damming upstream, into wetlands, at stormwater outflows [15]. Transformed
waters generally retain their regulatory status [23,24] regardless of intent. Such transformations are
often considered degrading and thus may require regulatory permission [23,29,30].
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The least modification that might make a waterbody appear artificial is alteration, in which
fundamental morphology and flow are retained. Deliberately, people straighten and channelize rivers,
harden riverbanks and shorelines, and dredge lakes. Accidentally, sedimentation from agriculture,
mining, or construction makes streams and lakes shallower [31]; mill dams clogged river valleys
all over the eastern U.S. [32]. Meanwhile, “urban stream syndrome”, including incision, flashiness,
and other changes largely in response to stormwater drainage, has become a well-known issue in
developed areas everywhere [33]. In one particularly grand example of accidental alteration, a railroad
causeway divides the Great Salt Lake into mostly independent halves with very different chemistry
and community assemblages [34]. Alterations generally do not remove jurisdiction of regulation from
waterbodies, and instead likely invoke regulatory oversight [23,29,30]. Of the range of artificial aquatic
systems, altered waterbodies are often the easiest to imagine in their “natural” state, the likeliest to be
labeled as simply “degraded”, the most likely to attract conservation, restoration, and related scientific
interest, and, depending on context, possibly the most appropriate for restoration [35–37].

Together, these two axes of artificiality—Degree and intent of modification—may help explain
the regulatory protection afforded to various aquatic ecosystems (Figure 1) in U.S. water law [23,29,30];
increasing modification with increasing intent renders waterbodies less likely to be protected [38]. Scientists,
regulators, legislators, and other policymakers often do not explicitly acknowledge the value judgement
implied by differential treatment of waterbodies according to their type of artificiality. Other traits such as
technology, purpose, age, size, and permanence may also figure into value judgments and policy decisions
people make about aquatic systems, and so might serve as a basis for further regulatory classification of
artificial waterbodies. Some of these attributes, like small size and impermanence, may disproportionately
characterize artificial aquatic systems, but also apply to most natural waterbodies [6,39]. Regulatory
standards that omit smaller, less permanent waterbodies may do so as much because of their biological,
geomorphological, and chemical features [23], or due to their dense distribution inconveniences property
and land use considerations [40], as because of their human origins per se.

3. The Ecological Significance of Artificial Aquatic Systems

Understanding the ecological and socio-ecological value of artificial aquatic systems requires
that we understand their extent and distribution, their physical and chemical condition and how they
relate to biotic communities, and the range of ecosystem services that they provide, but considerable
uncertainty surrounds all of these characteristics [8]. Artificial aquatic systems are likely to be
ecologically important, due to their extent, which may rival that of natural drainage systems and
waterbodies. The ecological functions of artificial systems likely have social significance, often as
ecosystem services and disservices, due to their frequent placement near large numbers of people.
Moreover, the extent, distribution, and characteristics of artificial waterbodies are likely changing
rapidly, in conjunction with those of natural waterbodies. Interdisciplinary understanding of the
services and disservices of artificial aquatic systems, the factors that influence them, and their
distribution in space and time could foster decisions that increase their ecological value.

3.1. The Extent and Dynamics of Artificial Aquatic Systems

Our understanding of the extent of artificial aquatic systems is piecemeal. Available estimates
are largely limited to the U.S. and other developed countries, and largely for intentionally designed
aquatic features that are ubiquitous in agricultural, industrial, urban, and recreational land uses, but
not their accidental counterparts, including in forests. Even with these incomplete inventories, it is
clear that the deliberately constructed or altered fraction of the hydroscape is both large and growing,
and must be included in any comprehensive assessment of aquatic resources.

3.1.1. Deliberately Modified Waterbodies

Deliberately constructed and transformed channels constitute a significant portion of the
U.S. hydroscape (Figure 2). The U.S. National Hydrography Database includes 5525 km of ditches
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and canals, or approximately the length of the Missouri River through the Mississippi to the Gulf of
Mexico. This aggregation is probably a substantial underestimate, as many smaller ditches do not
appear in the database. In 2010, ditches in U.S. agricultural lands occupied about 115,760 km2 [41],
a surface area similar to that of Lakes Superior and Huron combined, or 2.67 times the surface area
of all U.S. streams combined [39]. Channelization, another deliberate transformation, has altered
the geomorphology of upwards of 26,550 km of rivers and streams in the U.S. [31,42], more than
seven times the length of the Mississippi River. Humans have channelized more than 500,000 km
of rivers worldwide, and built more than 63,000 km of canals [43–45]. The U.S. also has 6.5 million
km of roads [46], many of which have ditches or gutters along both sides that contain water at least
occasionally and often for much longer periods. Thus, it is likely that road drainage in the U.S.,
which effectively serves as urban headwaters, is of comparable length to the 5.3 million km of the
country’s rivers and streams. The U.S. EPA estimates that 77% of the approximately 1.8 million km
of wadable streams in the U.S. are in poor (42%) or fair (25%) condition [47]. Some of these poor and
fair streams are likely geomorphically modified enough to fall within our gradients of artificiality.
Within this inventory, the remaining degraded “natural” streams, and even perhaps “natural” streams
in good condition as well, likely occupy less length than artificial channels. Known lengths of “natural”
streams, especially ephemeral and intermittent ones, likewise underestimate their extent [8].Water 2018, 10, x FOR PEER REVIEW  6 of 32 
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Figure 2. Extent of artificial as compared to natural waterbodies in the U.S. Data drawn from a
variety of sources, shown in parentheses. (a) areal features; (b) linear features. Data are taken from
the National Hydrography Dataset (NHD+) [48], U.S. Army Corps of Engineers National Inventory
of Dams (USACE) [49], U.S. Department of Agriculture Natural Resources Conservation Service
(NRCS) [41], Downing et al. [6], U.S. Fish and Wildlife Service (USFWS) [50], Research and Innovative
Technology Administration (RITA) [46], and Leopold [42].
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The extent of constructed lakes and ponds are similarly significant in comparison to natural
waterbodies (Figure 2). The U.S. has about 22,000 km2 of deliberately constructed or transformed
farm ponds an area similar to that of Lake Michigan; the world as a whole has about 76,830 km2 of
farm ponds [6]. In total, for the U.S., the U.S. Army Corps of Engineers inventories an impounded
(deliberately transformed) area in excess of 180,000 km2 [49], for purposes including irrigation,
hydroelectricity, flood control, navigation, water supply, and recreation [49]. The world had
approximately 258,570 km2, or slightly more than the area of the Great Lakes, of impounded water in
the mid-2000s [6], before the completion of the Three Gorges Dam in China and other projects. In 2009,
the U.S. Fish and Wildlife Service estimated that only 31% of the country’s 27,151 km2 of freshwater
ponds were natural. Of the artificial pond area, about the size of Lake Ontario, farm ponds took up
about 1.5 times the space as natural ponds; urban ponds occupied about half the area of natural ponds
despite the relatively small amount of urban space, and industrial and aquaculture ponds made up
significant fractions as well [50]. This estimated aquaculture pond area, of just over a thousand square
kilometers, is much smaller than that of many countries’; globally, 1.7 million km2 of the world’s
2.7 million km2 of irrigated land goes to rice production, and is flooded seasonally, at least [4].

3.1.2. Accidental Waterbodies

The abundance and extent of accidentally created aquatic systems is extremely poorly quantified.
Human earth movement has risen in the last 150 years, from a historic background level of less than
5 tons per capita to more than 30 tons per capita annually in the U.S. [1], creating the potential for
the formation of local low areas and water accumulation. Moreover, earth movement has become
more common in wet spaces [51], where the potential for accidental creation of waterbodies is higher.
Water infrastructure, such as stormwater or water supply pipes, can create accidental wetlands
wherever leakage occurs [27]. Accidental creation of aquatic ecosystems is perhaps most likely in
abandoned areas, where anthropogenic depressions and impoundments that accumulate water may
remain, often with minimal human interference. Better information about the density of accidental
waterbodies, combined with estimates of the land area over which they might occur, would allow us
to estimate their extent, but that information is currently lacking.

3.1.3. Change

The distribution of artificial waterbodies, like and reciprocally with many natural systems,
is dynamic in time, owing to both seasonal and event-driven hydrologic change, as well as longer-term
changes in land cover. Some of these changes involve the destruction or reduction of natural
waterbodies; net effect of growth in artificial waterbodies includes what they replace and from whence
they divert water, including those accidental changes that typically go unmeasured. Between 1984 and
2015, North America as a whole, home to 52% of the world’s non-ocean permanent surface water,
added a net 17,000 km2 to this area. The area of permanent surface water in the U.S. as a whole grew
0.5%, even as six of its western states lost 33%, or over 6,000 km2, of their permanent surface water [52].
Farm ponds, in particular, are highly dynamic in use, creation, and abandonment [53]. In commercial
and residential developments, ponds and other stormwater features too small to appear in the above
analysis, wink in and out of existence too quickly for inventorying, or further scientific study [54].

Emerging technologies and modeling approaches have the potential to improve inventories of
small and accidental waterbodies and better characterize the distribution and dynamics of hydroscape
change. Advances in remote-sensing technology, such as the increasing availability of high-resolution
lidar data, may very soon yield much better maps of small and otherwise over-looked waterbodies
over broad extents [55–57].

4. The Condition of Artificial Aquatic Systems and Its Drivers

The perceived poor condition of artificial aquatic systems matches the reality of poor water
quality and altered ecological structure in many man-made waterbodies [58,59]. Many artificial
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waterbodies support species-poor [60] or otherwise undesirable communities or organisms, including
disease vectors [58,61,62], and can spread pest species to natural habitats [63,64]. Some have also
contributed to, accelerated, or facilitated flow of excess nutrients and other pollutants [65,66], activation
of toxicants [58], interrupted desirable species’ movement and dispersal [67], increased greenhouse gas
emissions [27,68], yielded bad smells [69], and even concealed crime [70]. Other examples of ecosystem
disservices proffered by artificial water bodies appear in Table A1. While natural waterbodies can
possess the same undesirable characteristics, we are more likely to assume that artificial waterbodies
have a negative influence without investigation [71].

Are artificial aquatic systems intrinsically less biologically diverse and less functional than natural
ones? It is at least plausible that humans cannot create a waterbody that supports communities as
diverse or provides as many ecosystem services. Certainly, when transforming, altering, or removing
a functional natural aquatic ecosystem, one should expect a reduction in current ecosystem services
provisioning, unless or until scientific study confirms a better outcome possible from the change.
One important constraint on artificial aquatic systems is that with their anthropogenic origin comes
a severely shortened evolutionary, ecological, and geophysical history [72,73]. To the extent that
diversity and other aspects of ecosystem structure depend on slow processes of physical change and
community assembly, the recent origin of most artificial systems will likely limit their function.

There are other potential limits on the condition and value of artificial aquatic systems. First,
imperfect understanding of how differing designs and constructions affect ecological outcomes,
and imperfect ability to reproduce natural structures and conditions, may constrain the most
ecologically-motivated projects, as may be the case for many ecosystem restorations [13]. Second,
artificial aquatic systems are often embedded in intensively used landscapes, potentially exposing
them to anthropogenic stressors and disconnecting them from diverse natural populations [13]. Finally,
and perhaps most importantly, many artificial aquatic systems may support limited diversity and
ecosystem function because they are not designed or managed to do so; in many cases, their intended
function may preclude or limit the provision of other services [27]. As a result, scientists, policy-makers,
and the general public have tended to accept that artificial aquatic systems will necessarily and
inherently have limited value. However, these assumptions are often not subject to the same critical
assessment and process-based explanations that are applied to explanations of the condition of other
aquatic systems.

The poor condition of artificial aquatic systems is far from universal, and at least some, perhaps
many, artificial aquatic systems also have clear ecological value. Constructed and transformed
aquatic systems, whether agricultural, industrial, urban, or recreational, can sustain biodiversity [74],
sometimes including rare and desirable species [18]. In Europe, manmade farm ponds serve as
primary or important habitat for amphibians [75], birds [76], invertebrates [77–79], plants, and other
species [80,81]. Indeed, European conservation proceeds from the assumption that “artificial”,
“man-made” ponds are not fundamentally ecologically different from “natural ones” [82]. Some species
now apparently depend primarily on deliberate artificial aquatic ecosystems for habitat [83–85];
even species new to science continue to emerge from ditches [86–88]. Equally in the U.S., habitats that
we presently tend to overlook, such as stormwater treatment wetlands, can sometimes be the best
available sites for reproduction of amphibians and other species with specific hydrologic needs [89].
Artificial aquatic systems, whether designed for the purpose or not, have improved water quality in
critical watersheds like the Mississippi River basin [90–92]. Additional examples of ecosystem services
provided by artificial aquatic systems appear in Table A1. Without more intensive and systematic
study, it remains unclear whether good ecological conditions, and the desirable ecosystem services
that derive from them, are a negligible, rare, or even commonplace occurrence in artificial aquatic
systems. Similarly, their net impacts, and value relative to natural counterparts, remain undetermined.

Making artificial aquatic systems more functional and valuable will require a mechanistic and
predictive understanding of their condition and their capacity to provide ecosystems services and
disservices. We propose that the science of artificial ecosystems should entertain and evaluate
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hypotheses about what drives variation among them as well as their differences from their natural
counterparts. Like their natural counterparts, the ecological characteristics of artificial aquatic systems
are likely to depend on their physical structure, the characteristics of the watershed and landscape in
which they are embedded, their age and trajectory over time, and the ongoing interventions of humans
for various purposes (Figure 3). While all of these mechanisms are shaped by human design decisions,
they also have clear analogs to factors commonly invoked to explain the condition of natural aquatic
systems. This re-casting of rationales for why artificial aquatic systems are assumed to be in poor
condition as testable alternative mechanisms allows us to consider how different decisions about the
design, placement, and longevity of artificial aquatic systems might improve their condition and value.
The poor condition and seemingly inherent limitations of artificial aquatic systems could be simply a
syndrome of those decisions. In our exploration of these possible causal variables for the ecological
condition of artificial aquatic systems here, we focus on this management-oriented way of examining
the causal variables, and barely begin to explore the possible interactions between them. We recognize
that scientists with different foci could propose other valid testable hypotheses, and indeed invite
them to do so, but we consider setting, time, physical design, and subsequent management of artificial
waterbodies to be good intellectual places to start trying to understand these ecosystems.
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accepted model (a), in which the inherent qualities of artificiality negatively impact ecosystem structure
and function, rather than scientifically exploring a mechanistic model such as the one we propose in
(b), which breaks the influence of artificiality down into multiple processes.

4.1. Setting

Understanding how the watershed setting of artificial aquatic systems affects their ecology is
important both because understanding will be essential for better policy and management, and because
the effects of setting may obscure the ecological effects of other factors such as design, management,
and time. The condition of the watershed and landscape around any waterbody influences its
condition [93], and artificial aquatic systems should be no different in this respect. Since humans
tend to create artificial aquatic systems in and around heavily modified landscapes with substantial
chemical inputs like agricultural fields, roads, and parking lots, artificial aquatic systems such as
ditches tend to have lower water quality than their natural counterparts [94–96]. The communities of
artificial aquatic systems also tend to reflect the local and regional species pools, yielding, for example,
more exotic species in a restoration in a developed area [97].
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Available evidence suggests that setting does exert a strong and often overwhelming influence
on artificial waterbodies, and that these effects are similar to those observed in natural systems.
Water quality of artificial aquatic systems such as ditches responds to catchment land use in much
the same way as that of waterbodies of natural origin [8,98], and agricultural land cover impacts
reservoirs food webs [99]. In the Salt River in Arizona, level of urbanization explained much of the
variance in communities of plants, birds, non-avian reptiles, and amphibians, for reference, restored,
and accidentally restored river reaches alike [15]. A study in the Florida panhandle found that natural
streams, altered streams, and ditches within the same forested region had similar macroinvertebrate
and fish assemblages [100]. Agricultural intensification around fishponds has contributed to the
rapid decline in breeding populations of black-headed gulls (Chroicocephalus ridibundus) in central
France [101]. More such comparisons between artificial and natural waterbodies in similar settings are
needed to disentangle the effects of watershed setting from other factors that influence the condition
of artificial aquatic systems.

The predictable responses of artificial aquatic systems to their watershed setting has implications
for how these systems are managed and how that management could be improved. The importance
of watershed land cover for reservoir water quality shapes economically motivated conservation,
like New York City’s efforts to prevent development in the watersheds of its reservoirs upstate [102].
More generally, stream restoration is more effective in undeveloped than developed catchments [103].
While more studies are needed, the available evidence suggests that the condition of artificial aquatic
systems depends strongly on their setting, and that those conditions, and the ecosystems services
that depend on them, could be improved by the same watershed-scale policy and management that
protects natural waterbodies.

4.2. Time

Most artificial aquatic systems are young, both because most land use change and earth moving
has occurred within the past few hundred years [1] and because artificial aquatic systems turn over
more quickly than natural ones [93]. Given the timescales over which community assembly occurs
in newly formed natural streams and lakes [104], it is likely that limited diversity of some artificial
aquatic systems simply reflects their recent origin. Understanding the consequences of recent formation
requires that we understand the timescales over which newly created ecosystems develop, whether
they arose from anthropogenic or from geologic processes, and potentially attain the characteristics
of their older counterparts. At present, we lack both general and system-specific models of these
trajectories, as well as criteria with which to judge that an artificial aquatic system has “naturalized”.

A relatively limited set of long-term and chronosequence studies indicate that artificial aquatic
systems can change in important ways over timescales that are similar to those in natural ecosystems,
and that are relevant to decision-making [105–107]. In restored wetlands, for example, ecological
structures and functions such as carbon sequestration can improve with time since intervention,
and soil characteristics approach natural properties over decades [108]. Re-configured two-stage
ditches can achieve soil formation and a geomorphological “quasi-equilibrium” within a decade [109].
Agricultural ditches also undergo a relatively predictable succession of plants and associated
invertebrate communities [110]. Accidentally created waterbodies also change over time, often
acquiring more ’natural’ characteristics. For example, gravel quarries develop more structurally
complex and diverse vegetation over several decades [111]. At some point in time, artificial aquatic
systems may be difficult to distinguish from natural systems. Many of the small, ephemeral wetlands
that sustain populations of amphibians in the Piedmont of the U.S. Southeast are likely legacies of
historical human disturbance [26]. Such examples suggest that time eventually erases many signatures
of anthropogenic origin, and that this naturalization may change how aquatic systems are perceived
and valued.

Better understanding of how time constrains the characteristics of artificial aquatic systems,
and the mechanisms by which they evolve, could improve our ability to manage them, individually
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and as part of the broader aquatic landscape [112]. Properties associated with age may elude newly
created waterbodies, and expectations that artificial waterbodies adequately replace natural ones
should be tempered accordingly. Goals and expectations of restorations and other interventions might
need to reflect the differential responses to the same management technique, as has been observed
in young and old artificial aquatic systems [113]. Deliberate management of successional stages
has been used to increase the abundance and diversity of desirable species [107]. Wider adoption
of such approaches will require better models of succession and its dependence on design, setting,
and management.

4.3. Design

Design is a goal-oriented process with multiple stages, including the establishment of goals, a plan
to achieve those goals given constraints, implementation (including initial construction and subsequent
maintenance), and, ideally, subsequent iterations of goal-setting and redesign [14]. Decisions, whether
unconscious or deliberate, at each of these stages have the potential to shape the outcomes of later
stages, and ultimately the ecological character of artificial aquatic systems, including their trajectories
over time and how they respond to the forcings imposed by their watershed setting. The physical
structure and management of accidentally created waterbodies obviously does not depend directly on
goal-oriented design, though their structure may reflect design decisions and management regimes of
which they are not the object.

4.3.1. Design Goals

Historically, many deliberate artificial aquatic systems have been designed and maintained to
provide one or a few services, such as water conveyance and storage [27,114]. The exclusion of many
such artificial waterbodies from protection within the U.S. apparently reflects that policymakers and
legal frameworks value these systems almost exclusively for their intended, fully human-oriented
purposes [23]. Planning for only one or a few ecosystem services, such as water storage and conveyance
for flood control, can limit the ability of a deliberate artificial aquatic ecosystem to provide other
services, especially when designers overbuild that system for its given purposes [27]. In many cases,
the design goal itself can inherently produce a major ecological cost, as in wetland drainage by
agricultural ditches [115,116], or can result in unintended disservices arising from synergies and
trade-offs in ecosystem services [117,118]. Nonetheless, many designed artificial aquatic systems also
provide a range of additional ecosystem services beyond the purpose of their design [15,89].

The designs of aquatic ecosystems, including both newly constructed waterbodies and restoration
of degraded systems, increasingly seek to provide a portfolio of ecosystem services and functions
through redesign of physical structure as well as changes in management [119,120]. Urban dwellers
appreciate open expanses of water in spaces where they go for recreation [121], and even modified
or constructed waterbodies can mitigate pollutants and floods, cool the air, and provide spaces
for recreational, spiritual, and community-building activities [70]. For example, the Los Angeles
River, converted to a concrete flood chute and movie set for car chases in the mid-20th century,
has recently become the focus of an ambitious revitalization project to improve water quality
and sustain wildlife while also providing a greenway and other recreational opportunities [120].
Similar redesigns of channelized rivers have already demonstrated the benefits of design for a range of
ecosystem services [122]. The Landscape Architecture Foundation has endorsed projects throughout
the U.S. and around the world with similar methods and goals, specifically including stormwater
management, water conservation, water quality, flood protection, and groundwater recharge alongside
other environmental, social, and economic goals [22]. Deliberate artificial aquatic ecosystems like
these tend to remain primarily human oriented, and not ecologically oriented, in their goals, however.
Even restoration designs often explicitly and unapologetically include human-specific concerns, such as
ease of maintenance, accessibility, recreational appeal, aesthetics, regulatory standards, finances,
and property lines, alongside more ecologically oriented values [123–125].
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4.3.2. Planning and Construction

The reduced physical complexity of many artificial aquatic systems, such as concrete-lined
channels, obviously limits their value as habitat and potential for improvements in water quality [126].
Restorations that seek to improve these values therefore often focus on the (re-) introduction of
heterogeneous structures that are more similar to natural systems [120]. Such designs, and their
implementation, can be constrained or flawed in ways that limit their ecological value, including by
insufficient scientific understanding of how design features and subsequent management influence
eventual outcomes [35,93,127,128]. However, many such systems are also affected by intensive land
use and short lifespans [103]; artificial systems whose structure mimics that of natural systems can
support similar biotic communities when water quality is high [100].

Conversely, engineering research on designer ecosystems constructed for a very specific subset of
aquatic ecosystem services, such as water quality improvement, clearly demonstrates that design plays
a role in how effectively these systems achieve their purpose. For example, plant species choice in
wastewater treatment wetlands affects speed and removal efficiency of different forms of nitrogen [129].
In wetlands constructed to remove pharmaceuticals from water, design choices of substrate, plants,
and regimes of hydrology, temperature, oxygen, and light all affected removal efficiency, which varied
from compound to compound in ways apparently related to microbial processes [130,131]. While much
variation remained unexplained even in these relatively controlled systems, they do demonstrate that
how an ecosystem is constructed affects its ecological behavior.

Physical, legal, and cultural constraints exert strong control on goals and resulting designs.
For example, restoration efforts are typically constrained and otherwise impacted by funding, land
ownership, and other social and economic variables [13,93,103]; restorations can have a wide range
of intended outcomes [97]. Morphology of stream restorations depends in predictable ways upon
funding source and legal purposes, and whether the metric for success is stream length (resulting in
very sinuous designs) or some other characteristic [124]. Stream restoration in general has tended
towards a single-channel, S-shaped, meandering morphology that conforms to longstanding aesthetic
concerns [125], reduces maintenance [123], and maximizes mitigation credits, rather than conforming
with local natural history [124]. One indication of the limitations of many restoration projects is the
finding that accidental aquatic systems can sometimes provide equal or greater services compared to
deliberate, designed systems. For example, “accidentally restored” wetlands at stormwater outflows in
the dry bed of the Salt River in Arizona had greater wetland plant richness and cover than comparable
actively restored sites, though the reverse was true for birds, non-avian reptiles, and amphibians [15].

Changes in goals often dictate substantial changes in the physical structure of artificial aquatic
ecosystems. Two-stage ditches, in which miniature floodplains are constructed alongside existing
conveyances [132], can significantly reduce concentrations of phosphorus and other nutrients, turbidity,
and total suspended sediments [133,134]. Their nutrient removal efficiency compares well with, and can
complement, other farmland best practices, like planting cover crops [90]. When properly constructed
according to fluvial principles, these ditches can remain functionally stable, without maintenance,
for years [109]. Thus, water infrastructure of agricultural landscapes can be designed, and successfully
re-built, to achieve a wider range of goals than water conveyance, though additional land area and
design and construction effort may be required.

4.3.3. Management and Policy

Ecosystem function and services of artificial waterbodies likely depends on the management they
receive after construction as well, just as management matters in natural waterbodies. In reservoirs,
the ability of an artificial aquatic system to provide ecosystem services may depend more heavily
on ongoing policy and management than on the specifics of the initial design [135,136]. In ditches,
management strategies, including dredging, mowing, chemical weeding, burning, and regulation
of water depth, can have significant impacts on ditch biodiversity and water quality [137,138].
However, ongoing management and maintenance, like initial design, often does not include these
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potential outcomes in its considerations, instead opting to continue to focus on relatively few, highly
human-oriented goals [126]. Such decisions about ongoing management and policy, however, can,
at least, in theory, be revised to reflect changing goals.

In complex landscapes, achieving a portfolio of ecosystem services often requires both structural
changes and ongoing active management of artificial aquatic systems. Ditches and canals draining
ranchlands in the watershed of Lake Okeechobee were not traditionally managed for water quality or
conservation purposes, even though they house large native animals and other species of interest [139].
Establishment of Total Maximum Daily Loads for phosphorus in the lake and its tributaries [140,141]
prompted creative responses including regional collaborations among various government agencies,
nonprofit conservation organizations, a local scientific research station, and ranchers to raise and actively
manage water levels to flood ditched wetlands. This strategy removed phosphorous more cost-effectively
than did constructed storm water treatment areas [142], while also increasing wetland vegetated area and
vertebrate abundance [143]. Multi-stakeholder management of artificial aquatic systems with ecologically
oriented goals could prove a cost-effective way to increase ecosystem services at a similarly regional scale
in other locations, perhaps as a complementary tool to traditional restoration.

Accidental waters, which often receive little to no management attention, can provide comparable
but non-overlapping ecosystem services to both deliberate and more natural waterbodies. Abandoned
features, especially within broader abandoned landscapes and even in the hearts of cities, can provide
habitat for urban-avoiders and other organisms that survive best away from humans and human
intervention [26]. Abandoned areas can contain accidental artificial waterbodies sustaining both human
and nonhuman life, and functioning as little pockets of biodiversity [27]. Accidental urban wetlands
can also mitigate nutrient pollution flowing from cities to downstream in natural waterbodies [27].
Two European species of damselfly were believed extinct for decades, until rediscovered, separately,
in former industrial and mining areas “not usually explored by biologists”. Other neglected artificial
habitats in our midst could hold similar surprises. Notably, conservation interventions “focused on
returning habitats to a ‘natural’ state” intended to boost one of those damselfly populations actually
backfired [144]. These observations suggest that active intervention, for non-ecological and even
ecological goals, can limit the ecological value of artificial aquatic systems.

4.3.4. Monitoring, Learning, and Iteration

One of the criticisms of many restorations is that they require ongoing, often expensive
management to avoid reverting to a degraded state, which some scientists consider a failure of
resilience. Part of the problem with declaring restoration success or failure is that goals for a specific
restoration are often unclear and may change through time [145], but for most aquatic restorations
are never evaluated [97,146]. Monitoring protocols often focus on easily quantifiable measures that
ensure mitigation credit, rather than landscape-scale and long term ecological contributions [124].
Such monitoring designs may not adequately assess what was lost and what was gained. In all, current
practices of stream and wetland restoration may not be well configured for learning and for adapting
designs to improve environmental outcomes [14]. More broadly, the exclusion of artificial aquatic
systems from policy protections eliminates an important motive for monitoring. In the UK, a recent
precipitous decline in farm pond numbers and services in the UK sparked conservation concern and
action [147]. The U.S. lacks the monitoring data necessary to characterize trends in its small artificial
aquatic systems and to respond accordingly.

Moving forward, adaptive management, designed experiments [148], reconciliation ecology [149],
and other ecologically based ways of improving designs may change the outlook for deliberate
waterbodies. A future increase in the acceptance of novel ecosystems might allow the creation of
new types of waterbodies designed to provide similarly novel suites of ecosystem services [10,150].
Even the tendency for less regulation of more highly and accidentally modified [23,29,30] and smaller
waterbodies [7,8], particularly in the U.S., constitutes an opportunity; this quality could make them
comparatively easy and low-cost systems in which to study, test, and implement novel ecological
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design ideas [148,151,152]. Together with the repetitive design and construction of many such
waterbodies, like ditches and ponds, the manipulability of artificial aquatic ecosystems makes them
prime sites for natural experiments [153] and designed experiments [148]. Irrigation canals can serve
as “lotic mesocosms”, ideal because of their known histories, predictability, and accessibility [152].
Ditch network structure recently served as a good system within which to model possible alternative
stable states in primary producer structure [154]. Science in artificial aquatic ecosystems could
contribute substantially to broader ecological theory and practice. While win–win design decisions to
support multiple desired ecosystem services and other goals can prove challenging to envision and
implement, even in artificial aquatic systems, these waterbodies remain sufficiently understudied that
exploration of the many remaining questions around them likely has many win–wins, in terms of
furthering both applied and theoretical science, left to yield. We hope that the conceptual structures
introduced in this article will assist in future such work.

5. Artificiality and Perception of Ecosystem Value

The concept of artificiality, its associated dichotomy between human and nature, and its connotations
for valuation, have deep roots. One of the earliest abstract concepts U.S. children master is the difference
between artificial and natural, in terms of origin; they learn to tell whether an object is “made by people or
something that people can’t make” [155]. Accordingly, Western culture has a long tradition of elaborating
upon the natural/artificial dichotomy [156] and including it in value systems [157]. In American history,
wild nature provided a divine purpose for European settlers, a spiritual rejuvenation for Romanticists
and early conservationists like Muir, a source of strength to manage for technocrats, and a rallying point
for complex unity among environmentalists [158]. Today, untouched wilderness “exists nowhere but in
the imagination” [157]; every ecosystem is somewhat artificial, yet the concept of pristine wild nature
continues to exert a strong pull. A recent psychological study found that subjects preferred environments
when told that they were natural [159], perceiving them “less dangerous, cleaner, and more plentiful”
than those already exploited by other humans. We argue that research and policy-making about artificial
aquatic systems reflects this cultural subordination of artificial things to the natural and wild, inherited
from broader contemporary Western culture [159,160].

The past several decades have seen ferocious clashes in environmental philosophy and
conservation biology over the role of artificial ecosystems. In the 1980s, prominent ethicists lampooned
restoration on the grounds that “faked nature is inferior” in much the same way that an art
forgery is inferior because it is “a product of contrivance”, lacking “causal continuity with the
past” [161], and that man-made natural areas represent “domination, the denial of freedom and
autonomy” that defines nature [162]. Some philosophers have since softened this dichotomy, viewing
it as a gradient or broadening the criteria that constitute a necessary fidelity to nature [163–165].
While naturalness remains valuable by all standards of environmental ethics, many ethicists
increasingly distinguish categories (or dimensions) of naturalness, including “as a physical property
of species and ecosystems”, such as native biodiversity, and “as a quality of processes that are free of
human intervention” [74]. This particular pair of categories, posited as a distillation of values already
in wide use, corresponds well with our proposed axes of degree of physical modification and level of
intentionality, which U.S. policy tends to reflect [23,29,30].

Discussions of humanity’s relation to authentic nature intermingle with and parallel debates
within conservation biology and broader environmental science and policy. Proponents of traditional
wilderness- and biodiversity-based conservation have reacted with alarm to “new conservation”,
a loose grouping of movements that include human and socio-economic goals, such as poverty
reduction, in their conservation plans [73,166]. While restoration has become a widely accepted
practice, novel and designed ecosystems are on the battle lines between “new conservationists” who
would like to include them in conservation plans and more traditional conservationists who would
not [167]. The difficulty in reconciling these perspectives [168,169] may arise in part from different
priorities, i.e., the physical and ecological condition of ecosystems versus their freedom from human
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intervention, and in part from conflicting views about whether human intervention inherently degrades
ecological condition.

Interactions between Perception and Condition in Artificial Aquatic Systems

The presumption that artificial aquatic systems have little ecological value matters because it
promotes neglect. People make management decisions about aquatic systems not on the basis of
perfect factual knowledge of the state of these systems and their impact on the broader hydroscape,
but instead upon how they perceive them [170]. Natural aquatic ecosystems in poor condition often
retain perceived potential value, which restoration seeks to regain, no matter how little realized value
remains [171]. However, traditionally, scientists and policymakers have regarded artificial ecosystems
as relatively low in ecological value [71], regardless of their actual function and services (Figure 4).
Conversely, a high-functioning artificial system may be overlooked in conservation planning [18].
For example, the 250 km of canals of the North Poudre Irrigation Company near Fort Collins, Colorado,
supported 92% of wetland area in the 23,300-hectare service area through leakage. In spite of the
ecosystem services these wetlands provide, this leakage is considered an unacceptably inefficient
use of a scarce resource, and may cease as irrigation practices change, without considering the value
of lost accidental wetlands [17]. Perceived value influences design and management, which, along
with any other more direct impacts of artificiality, in turn influence ecological condition (Figure 5).
If, as appears prevalent among the ecologically minded, perceived artificiality downgrades perceived
value of aquatic ecosystems, and management and policy decisions reflect this lower valuation in low
expectations and low protections for artificial waterbodies, then assumptions of the low quality status
of artificial aquatic systems could be self-fulfilling.
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The divergent consequences of this positive feedback loop may be illustrated by examining water
management policy in the U.S., where the Clean Water Rule prioritized the exclusion of many artificial
aquatic systems from jurisdiction under the Clean Water Act [24]. In contrast, the European Union’s
1996 Water Framework Directive resolved to gradually expand protection “to all waters, surface waters
and groundwater” [172]. In line with this inclusive view of aquatic ecosystems, pond degradation [173]
and loss is a stated conservation concern for the EU [147] and NGOs [174]. Freshwater Habitats Trust’s
Million Ponds Project aims to “to reverse a century of pond loss, ensuring that once again the UK has
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over one million countryside ponds”, and claims more than 1000 ponds created in 2008–2012, housing
about 50 rare and declining species [175].

Meanwhile, European researchers continue to explore pond conservation measures [82], including
management options that improve habitat quality in existing ponds [105,176]. Similar research and
conservation activity is progressing for British and other European ditches [177,178]. Assuming even
modest success of such efforts, the condition of artificial aquatic systems in the EU is likely to improve,
while the quality of artificial waterbodies in the U.S. is likely to decline. Europe’s example suggests
that how people regulate, perceive and manage farm ponds, and other artificial aquatic systems does
impact conservation outcomes.
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Figure 5. Conceptual diagram of the role of artificiality in the management and services provided by
an aquatic ecosystem. (a) the currently prevailing process model depicts an approximation of how
environmental scientists appear to typically think of the role of artificiality in impacting ecosystems;
(b) our proposed replacement suggests that, while artificiality may impact ecosystem function directly
through mechanisms yet little elucidated, we are more certain that it impacts the perceived value
of ecosystem services. Because perception impacts policy, policy affects reality, and reality impacts
perception, this proposed replacement process model for the role of artificiality in aquatic ecosystems
sets up a positive feedback loop.

Getting the policy, management, and science around these systems right matters not just
ecologically, but for social reasons as well. Under-managed artificial waterbodies, particularly
environmentally hazardous ones, may often occur in already at-risk communities. Two well-studied
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examples of 20th-century environmental injustice in the United States, in Anniston, Alabama, and Hyde
Park, Georgia, both involved predominantly black communities contaminated and sickened in part
by ditches bearing water laced with toxic industrial waste [179,180]. Recently, hog waste lagoons
associated with industrial swine facilities in eastern North Carolina have proved resistant to regulation
despite repeated flooding during hurricanes and tropical storms and persistent strong detrimental
effects on the health and quality of life of neighbors, who are disproportionately black and low in
income [181,182]. Thus, what artificial aquatic systems go unregulated may say as much about what
we socially undervalue as what we ecologically undervalue. Relatedly, the same accidental wetlands
that host birds and remove nitrogen in the Salt River in Phoenix, Arizona, provide somewhat unsafe,
legally unauthorized sources of water and cool places to rest for homeless people [15,16,27], which calls
into question the design of non-aquatic infrastructure whose functions may have been deputized to
or externalized on artificial aquatic ecosystems. When science and policy overlooks artificial aquatic
systems, it risks overlooking the people impacted by them as well.

6. Conclusions—Artificial Aquatic Ecosystems in Hybrid Hydroscapes

Artificial aquatic systems comprise a substantial, perhaps predominant, and likely enduring
component of the modern hydroscape. Because the sheer extent of artificial aquatic ecosystems may,
by some measures, increasingly rival that of natural systems, they have the potential to play an
important role in both conservation and in the provision of ecosystem services within these hybrid
aquatic landscapes. The premise underlying reconciliation ecology [149] is the insufficient extent of
relatively undisturbed habitats to preserve anything but a fraction of extant species. In some regions,
it may be difficult to enact any sufficiently wide-reaching biodiversity conservation policy without
inclusion of artificial systems [183]. Because artificial aquatic systems are interwoven with, rather than
separate from, natural elements of the hydroscape, improvements in the condition of artificial systems
may benefit natural waterbodies as well [75], or may degrade natural waterbodies through abstraction;
the net effect of their creation must account for all of the above. Thus, plans to improve land and water
management should target artificial aquatic systems as well as those of natural origin [183].

To realize greater socio-ecological benefits from artificial aquatic systems, we need to understand
not just their current value, but their possible provisioning of ecosystem services. This understanding
will require, first and foremost, better assessments of the extent and condition of artificial aquatic
systems. Improving that condition will require that we suspend our conventional assumption that
artificial aquatic systems are intrinsically inferior; instead, we need more hypothesis-driven study that
evaluates the factors, such as watershed setting, physical structure and design, time, and management,
that influence their ecological condition. We will need to move beyond this initial exploration to
more thoroughly consider interactions among these drivers and alternative ways of framing the
mechanisms underlying artificiality (e.g., physical vs. biological), first conceptually and then through
well-controlled studies.

Because the very way we perceive artificial aquatic systems may affect their ultimate condition
and value, effective management of the modern hybrid hydroscape may require reconsidering cultural
norms about the concept of artificiality, even undoing our deeply held notions about a human/nature
dichotomy. Environmental scientists, and our cross-disciplinary collaborators, must first take on such
efforts in support of our own work, but can also play a role in helping policy-makers and others meet
these challenges.
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Appendix A

Table A1. Documented ecosystem services and disservices of artificial aquatic systems. This list, while
incomplete, provides examples of supporting, provisioning, and cultural services and disservices,
including biodiversity, for a variety of ecosystems around the world. Actual monetary valuation
of ecosystem services and disservices of artificial aquatic ecosystems, particularly of net effects of
waterbodies and comparisons with natural waterbodies, remain lacking, and constitute an area inviting
further study.

Ecosystem Service/Disservice Waterbody Type Location

Supporting
Biodiversity retention

Rare damselfly habitat Agricultural ditches Czech Republic [144]
Mite diversity Agricultural ditch and depression Slovakia [184]
Diverse macroinvertebrate habitat Agricultural ditches and peat lakes The Netherlands [185]
Stickleback genetic diversity Agricultural ditches Japan [186]
Reduced fish diversity Drainage ditches and dredged streams Estonia [60]
Endangered turtle habitat Mined peat bogs and drainage ditches Canada [187]
Amphibian habitat and breeding area Anthropogenic small isolated wetlands USA [188]

Rice paddies Japan [67], Brazil [189]
Carp aquaculture ponds Poland [190]

Barriers to amphibian dispersal Roadside ditches Japan [67]
River fragmentation Reservoirs & dammed rivers Global [45]

Bird habitat Open water salt marsh management and
mosquito ditches USA [191]

Integrated marsh management USA [192]

Rice fields Philippines [193], Brazil [189],
China, Japan [194], France [195]

Bomb craters Hungary [25]
Carp aquaculture ponds Poland [190]

Macroinvertebrate/ zooplankton habitat Bomb craters Hungary [25]
Rice fields Brazil [189]
Urban and agricultural ponds UK [196]

Wetland plant dispersal Agricultural ditches Netherlands [197,198]

Wetland/aquatic plant habitat Paddies and ditches China [199,200], Brazil [189]
Drainage ditches China [201]
Fen restoration and ditch UK [202]
Open water salt marsh management USA [191]
Bomb craters Hungary [25]

Reduced plant diversity Fish ponds and managed fens Czech Republic [203]
Wetland habitat loss Forestry drainage ditches Southeast Asia [68]

Shrimp aquaculture ponds Mexico, Central America,
Indonesia [204]

Agricultural drainage USA [205], Global [206]
Rice fields Brazil [189]
Fish ponds and managed fens Czech Republic [203]

Instream habitat loss River channelization Global [31,95]
Nutrient cycling

Habitat for common collector-gatherers Channelized agricultural headwater streams USA [207]
Habitat for common aquatic vegetation Agricultural ditches and peat lakes Netherlands [185]

Soil erosion Roadside ditches and culverts USA [208]
Peatland forestry ditches Finland [209]

Reduced soil bulk density and mineral content Salt marsh ditches USA [116]
Groundwater recharge Agricultural drainage ditches Netherlands [210], China [115]
Lowered groundwater table Forestry drainage ditches Southeast Asia [68]

Open water salt marsh management
(sometimes) USA [191]

Hot springs swimming pools and baths Turkey [211]

ian.umces.edu/symbols/
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Table A1. Cont.

Ecosystem Service/Disservice Waterbody Type Location

Water overuse Rice fields USA [212]
Impoundments and abstractions Global [95]
Mining and industrial diversion Global [45]
Swimming pools and golf courses Turkey [211], Global [213]

Provisioning
Fisheries

Dispersal corridors for fish and shrimp Paddy irrigation ditches Taiwan [214]
Fish and mussel habitat and nursery Irrigation ditch Japan [215]
Nekton habitat (prey fish and shrimp) Integrated marsh management USA [192]

Open water salt marsh management USA [191]
Fish habitat Agricultural ditches Japan [216]

Constructed wetlands, recycle pits, and ditches
Hunting Rice fields USA [212]

Abandoned ditches USA [personal observation]
Animal aquaculture

Catfish and prawns Embankment ponds USA [217]

Shrimp Shrimp aquaculture ponds Mexico, Central America,
Indonesia [204]

Carp Aquaculture ponds Poland [190]
Duck Integrated Rice-Duck Farms China, Japan [194]

Crops

Rice Paddies / fields
China [194,199], USA [212],
Philippines [193], Brazil [189],
Japan [194], France [195]

Vegetables Rice fields with High Diversity Vegetation Patches Philippines [193]
Biofuel Cutaway peatland, reed canary grass field and ditches Finland [218]
Timber Forestry drainage Southeast Asia [68]

Regulating
Pest control

Dispersal corridors for diverse, mostly
predaceous spiders and ground beetles Agricultural drainage ditches Belgium [219]

Habitat for frogs, spiders, dragonfly larvae Paddy ditches China [199]
Mosquito reduction Salt marsh mosquito ditches and managed ponds USA [191]
Reduced invasive plants Integrated marsh management USA [192]
Insectivorous birds Rice fields Philippines [193]
Weed/invertebrate control/spreading by ducks Integrated Rice-Duck Farms China, Japan [194]
Habitat for pest fish Irrigation ditches Japan [220]
Movement of invasive predator fish Irrigation canals USA [221]

Disease vector
Fecal bacteria export Roadside ditches USA [222]

Urban ditches and pond USA [65]
Intestinal parasites Open sewage USA [223]
Liver flukes Irrigation ditches Southeast Asia [62]
Schistosomiasis Paddies, ditches, ponds China [224]

Malaria (mosquitoes) Puddles, urban farms, construction sites, drains,
ditches Ghana [61]

Pollination Rice fields with High Diversity Vegetation Patches Philippines [193]
Pollutant removal Paddy fields, ditches, and reservoirs China [225]

Denitrification Paddy ditches China [199]
Traditional and ecological agricultural drainage ditches China [226]
Agricultural drainage ditches USA [227]
Restored wetlands and two-stage ditches USA [90]

Soil sorption of P Traditional and ecological agricultural drainage ditches China [226], USA [228]
P efflux Agricultural drainage ditches UK [202], Germany [229]

Tile drains and ditches USA, Canada, Sweden,
New Zealand [230]

Plant uptake of nutrients Aquaculture drainage ditches USA [217]
Traditional and ecological agricultural drainage ditches China [226]
Restored wetlands and two-stage ditches USA [90]
Vegetated agricultural drainage ditches USA [231,232]

Nutrient export Agricultural drainage ditches Germany [229], China [233]
Rice paddies China [234]
Roadside ditches USA [235]
Urban ditches and pond USA [65]

Algal blooms and hypoxia Urban ditches and pond USA [65]
Organic matter and C retention Agricultural drainage ditches USA [228]
Greenhouse gas emissions Rice paddies and drained peat Southeast Asia [68]

Reed canary grass field and ditches in drained peat Finland [218]
Drained peatlands UK [236]

Shrimp aquaculture ponds Mexico, Central America,
Indonesia [204]

DOC efflux Drained peatlands UK [236]
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Table A1. Cont.

Ecosystem Service/Disservice Waterbody Type Location

Sediment/solids retention Ecological drainage system (wetlands, ditches, ponds) China [237]
Agricultural drainage ditches USA [228]

Sediment/solids export Roadside ditches USA [222]
Peatland forestry ditches Finland [209]

Salt export Agricultural drainage ditches China [233]
Organic pollutant attenuation Vegetated agricultural ditch Mexico [238]
Pesticide degradation Stagnant ditches Netherlands [239]
Antibiotic export Agricultural ditches Germany [66]
Hormone export Tile drains and ditches USA [240]

Bad smell Industrial ditch Taiwan [69]
Flood control Drainage ditches Netherlands [210]
Increased hydrologic flashiness Roadside ditches USA [235], Greece [241]

Flooding Flooding irrigation Mexico [242]

Cultural
Scientific model system Irrigation canal USA [152]

Agricultural drainage ditches Netherlands [154]
Bird-watching, photography Road borrow pit, reservoir USA [243]
Sport Canals Netherlands [244]
Source of conflict Impounded rivers Global [95]
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