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Abstract: In this study, variation characteristics of hydrometeorological factors were explored based
on observed time-series data between 1957 and 2010 in four subregions of the Yellow River Basin.
For each region, precipitation–streamflow models at annual and flood-season scales were developed
to quantify the impact of annual precipitation, temperature, percentage of flood-season precipitation,
and anthropogenic interference. The sensitivities of annual streamflow to these three climatic factors
were then calculated using a modified elasticity coefficient model. The results presented the following:
(1) Annual streamflow exhibited a negative trend in all regions; (2) The reduction of annual streamflow
was mainly caused by a precipitation decrease and temperature increase for all regions before 2000,
whereas the contribution of anthropogenic interference increased significantly—more than 45%,
except for Tang-Tou region after 2000. The percentage of flood-season precipitation variation can
also be responsible for annual streamflow reduction with a range of 7.36% (Tang-Tou) to 21.88%
(Source); (3) Annual streamflow was more sensitive to annual precipitation than temperature in
the humid region, and the opposite situation was observed in the arid region. The sensitivities
to intra-annual climate variation increased after 2000 for all regions, and the increase was more
significant in Tou-Long and Long-Hua regions.

Keywords: intra-annual climate change; variation in percentage of flood-season precipitation;
natural streamflow variation; contribution and sensitivity analysis; Yellow River

1. Introduction

A number of studies have reported streamflow reduction in several rivers throughout the
world [1–5], putting enormous stress on ecological and socioeconomic systems. This is especially
stressful for semiarid and semihumid regions, where the hydrological cycle and water yield will be
more vulnerable to climate change and anthropogenic interference [6]. Climatic changes include
temperature changes and the redistribution of precipitation, which together affect streamflow
discharge [7]. Anthropogenic interference mainly consists of land use/cover change (LUCC),
urbanized and industrialized extension, and hydropower development and irrigation intensification,
which greatly alter the underlying surface and water resource reapportionment [8]. Quantification of
streamflow changes and identification of the various contributing factors are of considerable
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importance for a better understanding of the hydrologic mechanisms, which is beneficial for planning
suitable adaptation strategies and water management.

There are various methods to separate the impacts of climate change and anthropogenic
interference on streamflow, mainly including catchment experiments, hydrological models,
and statistical methods [9]. Catchment experiments are the most rigorous empirical research design
for estimating the effects of land use on aquatic systems [10], but they can be influenced by the
variation in experimental conditions and the presentation of results [11]. Most relevant studies
indicate that catchment streamflow decreased significantly after afforestation and increased after
deforestation [10,12,13]. Hydrological models, both distributed and lumped, have been widely
used [7,14–16]. Hu et al. applied the water and energy budget-based distributed hydrological
model (WEB-DHM) to diagnose and quantify climate and human impacts on streamflow change [17].
Hundecha et al. applied a conceptual rainfall–runoff model to 95 catchments in the Rhine basin to
model the effect of land use change on runoff [18]. Statistical methods such as streamflow elasticity have
also been used in regions specifically with available long-term climate and hydrologic data [9,19,20].
Tian et al. used regression analysis to illustrate runoff decline via comparison of precipitation–runoff
correlation for the period prior to and after sharp runoff decline [21].

The semiarid and arid Yellow River Basin (YRB) is the main source of surface water in the
northwest and northern part of China. The annual streamflow is about 58 billion m3, and the water
resource per capita is 905 m3—only a third of the national average, which poses a threat to the
YRB’s water resources availability. The climbing industry, agriculture, and household demand for
water induced by rapid economic development and expanding urbanization is also a challenge [22].
In addition, some ecological programs launched by the Chinese government since 1999 have greatly
altered the regional water cycle, including the Natural Forest Conservation Program (NFCP) and
Grain for Green Project (GFGP) (http://tghl.forestry.gov.cn/) [6,23], and therefore, the basin is very
sensitive to climate change and anthropogenic interference. Attempts have been made to understand
the long-term streamflow variation and the sensitivity of streamflow to climate change in the Yellow
River Basin. Tang et al. used a distributed biosphere hydrological (DHB) model system to simulate
hydroclimate connections in the Yellow River Basin and found that climate change dominated the
predicted changes in the upper and middle reaches, but anthropogenic interference dominated the
lower reaches [24]. Liu et al. found that streamflow was more sensitive to precipitation in humid
regions or wet years than in arid regions or dry years by means of streamflow elasticity [25].
Li et al. investigated the changing properties and underlying causes for decreased streamflow by
both the Budyko framework and hydrological modeling techniques [26]. However, most of these
previous studies focused on the entire basin or a local scale of catchments instead of comparing
different subregions, let alone the comparison before and after the implementation of Natural Forest
Conservation Program and Grain for Green Project. Moreover, few studies have paid attention to the
contribution made by variations in the intra-annual distribution of precipitation, with only the annual
precipitation considered.

The objectives of this paper are as follows: (1) to explore the spatial–temporal variation of annual
precipitation, average temperature, the percentage of flood-season precipitation and natural streamflow
in different subregions of YRB; (2) to quantitatively analyze the spatial–temporal characteristics of the
contribution made by different meteorological factors and anthropogenic interference to streamflow
changes in different subregions; (3) to analyze the spatial–temporal characteristics of the sensitivity of
annual streamflow to various meteorological factors.

2. Study Area and Data

2.1. Study Area

The Yellow River (Figure 1) originates in the Qinghai Province of China and flows into Bohai
Bay, forming the Yellow River Basin, which covers a total watershed area of 795,000 km2 (including
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endoreic inter flow area). The main stream is 5464 km long with a slope of 4480 m. It can be divided
into three parts. The upper reach travels 3472 km and drains 428,000 km2 of land. The middle reach
flows for 1206 km, with a drainage area of 344,000 km2. When the middle reach flows through the
Loess Plateau, the tributaries transport vast amounts of sediment, proclaiming the Yellow River as
having the highest sediment content in the world. The remaining down reach has a length of 786 km
and a drainage area of 23,000 km2. The climatic and hydrologic conditions of the YRB are complex
because of the large geographical extent and elevation difference. The precipitation exhibits high
spatial and temporal variabilities: the ratio of rainfall between the North and South is greater than 5,
70% of precipitation falls between June and September, and the variation coefficient (Cv) is between
0.15 and 0.4. Temperature disparity is one of the major climate features in the YRB, with an annual
mean temperature fluctuating from −4 ◦C to 14 ◦C. Considering the critical role played by the Yellow
River in regional water supply and the tremendous challenges posed by water shortages, an analysis
of the variation and sensitivity of annual streamflow is both important and imperative.Water 2018, 10, x FOR PEER REVIEW  4 of 18 
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Figure 1. Location and national network of the meteorological and hydrological stations in the YRB.

2.2. Data Collection and Preprocessing

The datasets used in this study include climate, streamflow, leaf area index (LAI), and Digital
Elevation Model (DEM) data.

Climate data were obtained from the China Meteorological Administration (CMA), including daily
precipitation from 582 rainfall gauges and the daily mean, maximum, and minimum temperatures
from 97 meteorological stations inside and near the Yellow River basin from 1957 to 2010.

The monthly naturalized streamflow time-series for four hydrological stations (Tangnaihai,
Toudaoguai, Longmen, and Huayuankou) between 1957 and 2010 were obtained from the Yellow River
Hydrographic Bureau (YRHB). These four-gauge stations were selected with the intent of determining
streamflow changes in four different subregions. Specifically, streamflow at Tangnaihai was considered
the source region; the streamflow from the upper reach was the difference between Toudaoguai and
Tangnaihai; the difference between Huayuankou and Toudaoguai was declared as the middle reach
streamflow. Due to the complex hydrogeological conditions in middle reach (Loess Plateau), Longmen
station was added to separate the middle reach into two detailed parts. Four regions were thus formed:
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the source region, Tang-Tou region, Tou-Long region, and Long-Hua region. Particularly, this dataset
was the naturalized streamflow, having removed the variation caused by artificial water intake and
reservoir storage and streamflow. That is to say, different from the broad sense, the anthropogenic
interference defined in this study mainly included soil and water conservation measures.

GLASS LAI, one of the five typical global LAI products, was chosen for this study because it
includes the longest duration (1982–2013) LAI product. Additionally, compared with those of the
current MODIS and CYCLOPES LAI products, it provides temporally continuous LAI profiles with
much better quality and accuracy [27].

Furthermore, a 30 × 30 m digital elevation model (DEM) was used for the interpolation of
climatic variables. ANUSPLIN, a well-performed spatial interpolation package based on thin-plate
smooth-spline interpolation, was selected to interpolate climatic variables. Developed by Australian
National University, it is a tool mainly used for the transparent analysis and interpolation of noisy
multi-variants data [28]. Using the longitude, latitude, and elevation of the meteorological stations as
variables, daily precipitation and mean temperature datasets were aggregated to obtain mean monthly
and annual values in four different subregions.

3. Methodology

3.1. Time-Series Analysis Method

3.1.1. Change-Point Detection and Trend Analysis of Hydrological and Climate Data

Both the change-point detection of annual streamflow data and trend analysis of
hydrometeorological data were conducted by a Mann–Kendall (MK) test, which is widely used for its
simplicity, robustness and the ability to deal with non-normal and missing data distributions [29,30].
After estimating the test statistics UFi and UBi, the curve of these two test statistics are plotted. If a
match point of the two curves exists and the trend is statistically significant, the match point can be
regarded as a change-point of the time series [17]. In terms of trend analysis, the MK test statistic Z
was calculated. A positive and negative Z value represent increasing and declining trends, respectively.
The null hypothesis, H0, states that there is no statistically significant trend in the series for a given
significance level α. In this paper, α was set to be 0.05 and the 1−α/2 quantile of the standard normal
distribution for α (Z(1−α/2)) was 1.96. If |Z| > Z(1−α/2), the null hypothesis is rejected, indicating the
trend is significant. Otherwise, the H0 hypothesis is accepted.

In addition, the precipitation–runoff double cumulative curve (DCC) was also used as an auxiliary
confirmation of the change-points by providing a visual representation of the consistency of the
precipitation and streamflow data [31].

3.1.2. Trend Analysis of LAI

The temporal and spatial variation of the mean LAI were analyzed using a linear regression
analysis method in this study. Using overall LAI trend computations to identify spatial patterns of
directions and rates of change, a least squares regression was fit through the time series of each pixel
and the slope coefficient that represent trends was calculated [27]. The slope of the trend coefficient
was defined as follows:

slope =
n×

n
∑

i=1
i× LAIi −

n
∑

i=1
i

n
∑

i=1
LAIi

n×
n
∑

i=1
i2 − (

n
∑

i=1
i)2

(1)

where n is the cumulative number of years in the study periods, i is the order of year, and LAIi is the
value of LAI in the ith year. In general, if slope > 0, LAI will increase, suggesting better vegetation in
this pixel.



Water 2018, 10, 1155 5 of 18

3.2. Multitemproal-Scale Precipitation–Runoff Model

Since access to very limited information and data for basin geometry can hardly satisfy the
minimal requirements of basin-scale models, statistical methods were employed to determine the
relationship of streamflow and other climatic factors for the baseline period. Both an annual scale
model and flood and nonflood season model were built.

At annual scale, the precipitation–runoff model was built using multiple linear regression analysis.
At flood and nonflood season scale, given the fact that linear regression analysis method may not satisfy
the requirement of model accuracy, a statistical model based on the Random Forest (RF) regression,
which is one of the most effective machine learning models for predictive analytical approaches [32,33],
was trained to reconstruct streamflow data in the human-affected period. RFs were developed as a
method of improving the predictions of classification and regression trees by alleviating the overfitting
concern of regression trees [34]. It has proved to be more robust and accurate than traditional linear
(e.g., multiple linear regression) or more complex methods [35]. Two parameters need to be set in
order to produce the forest trees: the number of decision trees to be generated (Ntree) and the number
of variables to be selected and tested for the best split when growing the trees (Mtry) [36]. In this paper,
Ntree was set as 200, and Mtry was set as the default value in the R package for random forests.

In this study, the correlation of different climatic variables (annual precipitation, mean
temperature, precipitation in the former years, flood-season precipitation and mean temperature,
nonflood season precipitation and mean temperature, precipitation of the last month of the flood
season) between annual streamflow, flood-season streamflow and nonflood season streamflow were
analyzed using Pearson correlation coefficient analysis respectively, and those with a high correction
coefficient between streamflow were chosen as the independent variable [36] for developing annual,
flood and nonflood seasonal precipitation–runoff models. Furthermore, variance analysis and an F-test
were conducted to test the accountability of the statistical models.

3.3. Contribution Calculation of Climatic and Anthropogenic Factors on Annual Streamflow

Model simulation, along with the hypothesis that climate fluctuations and anthropogenic
interference are independent, was employed to separate the impacts on streamflow variation.
Several scenarios were designed to reconstruct natural streamflow and then separate the impact
of climatic fluctuations and anthropogenic interference on natural streamflow:

S1: Conducting the control simulation based on the annual precipitation–runoff model with
observed changes in precipitation and temperature over the human-affected period;

S2: Using the same forcing data as the control simulation S1, except the mean value of the
temperature was fixed to the mean of the baseline period;

S3: Conducting the control simulation based on the flood and nonflood season
precipitation–runoff model with observed changes in precipitation and temperature over the
human-affected period;

S4: Using the same forcing data as the control simulation S3, except the mean of the percentage of
flood-season precipitation was fixed at the level of the baseline period and the annual precipitation
remained as the S3 observations.

The total streamflow change (∆Rtotal) can be obtained by the difference between the observed
streamflow in baseline period (Rob) and that in human-affected period (Roh), which can be expressed as:

∆Rtotal = Roh − Rob = ∆RC + ∆RH = ∆RP + ∆RT + ∆RH (2)

where ∆Rtotal includes two main parts, the streamflow change caused by climate fluctuations ∆RC
and anthropogenic interference ∆RH , and the former ∆RC is made up of precipitation-induced change
∆RP and temperature-induced variation ∆RT .
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The difference between S1 and S2 (S1–S2) was used to estimate the change magnitude of the
simulated annual streamflow caused by the temperature variation ∆RT :

∆RT = RS1 − RS2 (3)

where RS1 is the mean of simulated annual natural streamflow in the scenario S1, and RS2 is the mean
of simulated annual natural streamflow for the scenario S2.

∆RC can be calculated by the following equation:

∆RC = RS1 − Rob (4)

The streamflow change magnitudes caused by anthropogenic factor (∆RH) and annual
precipitation variation (∆RP) are calculated using Equation (2).

The contribution rate of each factor, which is defined as ηk, is quantitatively estimated by:

ηk =
∆Rk

∆Rtotal
× 100% (5)

where k can be referred to as precipitation (P), temperature (T), and anthropogenic interference (H).
The difference between S3 and S4 (S3–S4) was used to estimate the change magnitude of the

simulated annual streamflow caused by the variation of the percentage of flood-season precipitation:

∆RP_dis = RS3 − RS4 (6)

ηP_dis =
∆RP_dis
∆Rtotal

× 100% (7)

where RS3 is the mean of simulated annual natural streamflow in S3, and RS4 is the mean of simulated
annual natural streamflow for S4. ∆RP_dis is the change magnitude of natural streamflow caused by
the variation of the percentage of flood-season precipitation.

3.4. Sensitivity Calculation of Annual Streamflow to Climatic Factors

Contribution assessment alone cannot fully explain the response of streamflow to different
variables. For example, certain variable contributions may be greater because of the larger change
magnitude of this variable. Therefore, to better understand the streamflow response to climatic factor
changes in different regions and periods, a modified sensitivity coefficient was defined that reflects
sensitivity of streamflow to various climatic variables: The formula uses simulated streamflow data in
different scenarios and observed meteorological factor data to calculate the sensitivity of streamflow to
different meteorological factors. The specific calculation formulas are as follows:

RS1i − Rob
Rob

= f ′P ×
Pi − Pob

Pob
+ f ′T ×

Ti − Tob
Tob

(8)

RS3i − RS4

RS4
= f ′P_dis ×

γi − γob
γob

(9)

where Rob, Pob, Tob, γob are the means of annual natural streamflow, precipitation, temperature,
and percentage of flood-season precipitation over the baseline period, respectively. RS1i , RS3i , RS4i are
the simulated natural streamflow in the ith year in S1, S3, and S4, respectively. RS4 is the mean
of simulated annual natural streamflow for S4. Pi, Ti, γi are the observed annual precipitation,
temperature, and percentage of flood-season precipitation over the human-affected period, respectively.
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4. Results

4.1. Spatial–Temporal Variation Characters for Hydrometeorological Variables

4.1.1. Change-Point Detection

The change-point detection of annual streamflow was mainly conducted using MK mutation
analysis, combined with the auxiliary annual precipitation–streamflow double cumulative curve.
Figure 2a,b demonstrate a change in the relationship between annual precipitation and streamflow in
the Long-Hua region in 1989. Consequently, the study period in Long-Hua region was separated into
two parts: the baseline period (1957–1989) and human-affected period (1990–2010). The change-points
of the source region, Tang–Tou region, and Tou-Long region were 1989, 1991, and 1982, respectively.
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change-point detection in Long-Hua region of YRB (1957–2010).

Particularly, the Chinese government launched the Grain for Green Project (GFGP) in 1999.
Since then, the land cover and vegetation in the middle reaches of the Yellow River have undergone
drastic changes, which may also affect streamflow. In addition, it is found that there is a significant
change point in 2000 in Tou-Long region by DCC in Figure 3, indicating that the impacts of human
activities became more prominent in the Yellow River Basin, especially in the Loess Plateau after
2000. Therefore, the year 2000 was added to further divide the human-affected period into two parts:
from the change-point year to 2000 (Period I) and from 2001 to 2010 (Period II), with the intent of
analyzing how much non-meteorological factors have affected the streamflow after 2000 when land
cover and vegetation change became more intense.
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4.1.2. Trend Analysis of Annual Precipitation, Mean Temperature, and Naturalized Streamflow

Overall, a drying and warming trend was apparent in the YRB throughout the past 54 years.
Figure 4 plots the annual time series of precipitation, mean temperature, naturalized streamflow,
and their mean value before and after the change-point across the Long-Hua region. Both the annual
precipitation and streamflow decreased, whereas mean temperature increased.
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Long-Hua region in YRB.

The other three regions in the YRB also exhibited a similar trend. According to the MK analysis
results in Figure 5, a decreasing trend of precipitation was detected in the YRB, excluding the source
region, which had a positive MK value. As for the reduction rate, Table 1 shows that the precipitation of
Tou-Long and Long-Hua in the middle reach reduced faster than that of Tang–Tou in the upper reach.
However, none of the decreasing trends of precipitation were statistically significant. Conversely,
the obvious warmer trend was statistically significant in the whole study area, with an average
increasing rate of about 0.04 ◦C/a. A decreasing streamflow occurred in the whole basin, with the
reduction rate ranging from 0.57 × 108 m3/a to 2.21 × 108 m3/a.
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Table 1. Average of annual precipitation, mean temperature, and streamflow and their change rate in
four regions of YRB.

Sub Basin
Precipitation Mean Temperature Streamflow

¯
P (mm) ∆ (mm/a) ¯

T (◦C) ∆ (◦C/a) ¯
R (108 m3) ∆ (108 m3/a)

Source 528.93 0.42 0.39 0.04 201.78 −0.57
Tang–Tou 342.27 −0.43 6.23 0.05 126.50 −1.03
Tou-Long 433.85 −1.39 7.93 0.04 49.02 −0.86
Long-Hua 560.92 −1.38 10.26 0.03 162.91 −2.21

4.1.3. Trend Analysis of Percentage of Flood-Season Precipitation

Table 2 presents the MK test results and the average change in the percentage of flood-season
precipitation (γ). The overall declining trend of γ indicates that the intra-annual distribution of
precipitation had changed. Spatially, the absolute value of MK decreased from the upper reach to the
middle reach, with a significant trend in the source region (significance level = 0.05). For the entire
human-affected period, γ dropped 4.63%, 1.18%, 6.89%, and 3.21%. It should be noted that γ increased
by 2.70% during period I in the Tang-Tou region.

Table 2. MK results and average change of the percentage of flood-season precipitation in four regions
of YRB.

Sub Basin
M-K Test from 1957 to 2010 Average Change (%) Compared with Baseline Period

Z H0 Period I Period II Human-Affected Period

Source region −2.69 R −5.54 −3.52 −4.63
Tang-Tou region −1.37 A 2.70 −5.06 −1.18
Tou-Long region −1.27 A −6.75 −7.18 −6.89
Long-Hua region −0.81 A −4.52 −1.61 −3.21

R: reject H0; A: accept H0.

4.2. Precipitation–Runoff Model Calibration and Validation

4.2.1. Annual Model

According to the correlation coefficients in Table 3, annual precipitation was positively related
to annual streamflow, the largest coefficient among the influential factors, suggesting that annual
precipitation dominated the annual streamflow change in the Yellow River Basin. To better reflect the
condition of soil moisture content, precipitation from the former year was introduced as a factor [37]
and was also positively related to annual streamflow, with a varying correlation of 0.03 to 0.27.
In contrast, temperature was negatively related to annual streamflow. Among the four regions,
the correlation coefficient between temperature and annual streamflow in the source region was far
less than that of the other three regions, revealing a spatial difference. Thus, annual precipitation (P),
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precipitation of the former year (P−1), and mean temperature (T) were considered the main factors in
the construction of the annual-scale model.

Table 3. The correlation coefficient of each element to annual streamflow in four regions of the YRB.

Sub Basin Basin Scope P P−1 T

Source region Source region 0.84 0.27 −0.13
Tang-Tou region Upper 0.84 0.10 −0.53
Tou-Long region Midstream 0.84 0.03 −0.35
Long-Hua region Midstream 0.87 0.11 −0.45

Based on the correlation coefficients analysis results, a three-parameter linear regression model
was built for each region. All models were calibrated in the period of 1957–1977 with climatic data
and then validated in the period from 1978 to the change-point year. The observed annual streamflow
and simulated streamflow during calibration and validation period in each region are plotted in
Figure 6. The relative bias (BIAS), relative root-mean-square error (RRMSE), and Nash–Sutcliffe
efficiency coefficient (NSE) are given in Table 4. All four models performed reasonably well: their NSE
values were in the range of 0.75–0.89, and BIAS and RRMSE were within the range of 2.90% and 0.34,
respectively. Moreover, nearly all the trends were captured, and all models passed the F-test. Overall,
the model performance was acceptable within the study domain.
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Table 4. Calibration and validation of the annual, flood and nonflood season model in four subregions
of the YRB.

Sub Basin Period
Annual Flood Season Non-Flood Season

BIAS (%) RRMSE NSE BIAS (%) RRMSE NSE BIAS (%) RRMSE NSE

Source
Calibration 0.40 0.22 0.76 1.19 0.29 0.93 0.47 0.21 0.91
Validation 0.41 0.22 0.89 2.60 0.25 0.92 0.38 0.22 0.90

Tang-Tou Calibration 0.57 0.25 0.83 0.28 0.32 0.93 1.71 0.21 0.92
Validation 1.05 0.18 0.81 0.23 0.28 0.94 2.68 0.15 0.83

Tou-Long Calibration 2.90 0.30 0.78 1.53 0.49 0.94 2.09 0.17 0.87
Validation 0.11 0.24 0.75 8.55 0.40 0.89 9.70 0.21 0.76

Long-Hua Calibration 1.14 0.34 0.85 1.30 0.45 0.92 2.65 0.34 0.90
Validation 2.22 0.32 0.83 5.24 0.40 0.93 2.49 0.24 0.91

4.2.2. Flood and Nonflood Seasonal Model

To further identify the contribution made by the variation of the flood-season precipitation
percentage, a flood season model and nonflood season model were built, calibrated and validated after
identifying the contributing factor by correlation coefficients analysis. Specifically, flood season
precipitation and mean temperature were introduced to build the flood season model. In the
construction of nonflood season model, in addition to nonflood season precipitation and average
temperature, precipitation in October (the last month of the flood season in YRB) was also introduced
as a factor [38]. The model performance in Table 4 and Figure 7, as well as the successful F-test,
suggest that these models were reliable when reconstructing the natural streamflow, despite some
peak differences.
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4.3. Contribution Assessment

The quantitative assessment of the effects on streamflow due to climate fluctuations and
anthropogenic interference was carried out in four regions of the YRB. It can be seen from Table 5 that a
tremendous reduction had taken place in annual streamflow, up to 41.64× 108 m3/a, 31.31× 108 m3/a,
21.96 × 108 m3/a, and 72.24 × 108 m3/a, during the entire human-affected period. The reduction
accounted for 19.00%, 22.77%, 36.35%, and 37.82%, from the source region to the middle reach. Both
climate change and anthropogenic interference had a negative effect on annual streamflow in the YRB,
except for the annual precipitation in the source region from 2001 to 2010, which contributed to a rise
in annual streamflow of 20.72 × 108 m3/a. The climate fluctuations and anthropogenic interference
effects varied spatially and temporally. From the Tang-Tou to the Long-Hua regions, the negative
effect of precipitation increased from 6.68% to 53.07%, while the temperature impact decreased from
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78.10% to 17.55%. Anthropogenic interference had a greater contribution in the middle-reach Tou-Long
and Long-Hua regions than in the upper Tang-Tou region. Temporally, the dominant contributor
shifted from precipitation before 2000, to anthropogenic interference after 2000, in the Tou-Long and
Long-Hua regions.

Table 5. Contribution of precipitation, temperature, and anthropogenic interference on annual
streamflow variation in four regions of the YRB.

Sub Basin Period
Total Change Precipitation Temperature Anthropogenic Interference

∆Rtotal % ∆RP % ∆RT % ∆RH %

Source region
1990–2000 −43.78 −19.98 −21.95 50.14 −3.73 8.52 −18.10 41.34
2001–2010 −39.28 −17.92 20.72 −52.74 −18.89 48.08 −41.11 104.66
1990–2010 −41.64 −19.00 −1.63 3.92 −10.95 26.29 −29.06 69.78

Tang-Tou region
1992–2000 −31.04 −22.57 −4.22 13.60 −19.46 62.67 −7.36 23.72
2001–2010 −31.54 −22.94 −0.18 0.56 −28.94 91.77 −2.42 7.68
1992–2010 −31.31 −22.77 −2.09 6.68 −24.45 78.10 −4.76 15.21

Tou-Long region
1983–2000 −17.74 −29.36 −9.28 52.34 −4.50 25.37 −3.95 22.29
2001–2010 −29.55 −48.93 −5.36 18.14 −10.52 35.60 −13.67 46.26
1983–2010 −21.96 −36.35 −7.88 35.90 −6.65 30.29 −7.42 33.82

Long-Hua region
1990–2000 −73.21 −38.33 −53.23 72.71 −9.22 12.59 −10.76 14.70
2001–2010 −71.17 −37.26 −21.96 30.86 −16.48 23.16 −32.73 45.98
1990–2010 −72.24 −37.82 −38.34 53.07 −12.68 17.55 −21.22 29.38

It is obvious that the combination of decreased precipitation and increased mean temperature
caused the annual streamflow reduction in the YRB. Furthermore, the change in the percentage of
flood-season precipitation also affected streamflow variation. Table 6 shows that the flood-season
precipitation percentage variation mainly caused the streamflow reduction, up to 9.45 × 108 m3/a,
2.32 × 108 m3/a, 2.01 × 108 m3/a, and 14.81 × 108 m3/a—comprising 21.88%, 7.36%, 10.28%,
and 18.24%, respectively, of the total streamflow variation. The effects in the Tang-Tou region in
Period I were an exception, causing a 0.70 × 108 m3/a rise in streamflow. With the variation of the
flood-season precipitation percentage (Table 2) taken into consideration, a decline in the percentage of
flood-season precipitation led to a corresponding drop in streamflow. In contrast, a rise of γ resulted
in an increase in streamflow in the Tang-Tou region during Period I. This indicated that the greater the
percentage of precipitation in flood season, the greater the simulated streamflow in YRB, assuming the
same annual precipitation.

Table 6. Contribution of the variation of flood-season precipitation percentage in four regions of
the YRB.

Sub Basin
Period I Period II Human-Affected Period

∆R % ∆R % ∆R %

Source region −10.04 22.08 −8.72 21.60 −9.45 21.88
Tang-Tou region 0.70 −2.11 −4.00 12.44 −2.32 7.36
Tou-Long region −1.87 12.61 −2.50 8.56 −2.01 10.28
Long-Hua region −13.40 16.86 −14.92 20.04 −14.81 18.24

Specifically, the contribution made by the variation in the percentage of flood-season precipitation
was relatively higher in the source and Long-Hua regions. Furthermore, the contribution lowered after
2000 in source and Tou-Long region. To conclude, the streamflow was affected not only by the amount
of annual precipitation but also the intra-annual distribution of precipitation.

4.4. Sensitivity Assessment

In this study, Equations (8) and (9) were used to calculate the sensitivity of streamflow to different
climatic factors in four regions and the results were presented in Table 7. In general, the absolute value
of the sensitivity coefficient to precipitation was larger than that to mean temperature in the humid
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regions including Source and Long-Hua regions, whereas an opposite situation was observed in the
relatively arid regions including Tang-Tou and Tou-Long regions, indicating that the sensitivity of
streamflow to various climatic factors are different for regions with different hydrothermal conditions
in YRB.

Table 7. Sensitivity of streamflow to various elements in four regions.

Sub-District
P T γ

Period I Period II Period I Period II Period I Period II

Source region 1.73 2.09 −0.01 −0.02 0.63 0.78
Tang-Tou region 0.99 1.06 −0.99 −1.07 0.34 0.36
Tou-Long region 1.09 1.23 −1.16 −1.54 0.19 0.42
Long-Hua region 1.64 1.88 −1.12 −1.15 0.37 0.80

In Period I, regarding the four regions of YRB, a 1% increase in annual precipitation would
generate a 0.99–1.73% (1.36% on average) annual streamflow increase, whereas a 1% increase
in temperature would produce a 0.01–1.16% (0.79% on average) decrease in annual streamflow.
In addition, the sensitivity to the percentage of flood-season precipitation ranged from 0.19 to 0.63 in
Period I. It should also be noted that the sensitivity of streamflow to various factors was not a constant.
The sensitivity to precipitation and temperature increased considerably in Period II compared to that
of Period I, suggesting that streamflow would be more sensitive to climate change. The sensitivities to
intra-annual climate variation increased after 2000 as well, and the increase in sensitivity to percentage
of flood-season precipitation was more significant in Tou-Long and Long-Hua regions.

5. Discussion

5.1. Analysis of the Impact of Anthropogenic Interference on Natural Streamflow

Overall, the findings of this study agreed with the results of other research in the contribution
assessment [8,29,32,39]. Table 5 shows that anthropogenic interference had a greater contribution in
Tou-Long and Long-Hua regions after 2000, which was mainly due to the ecological program launched
by the Chinese government in these two regions. Table 8 displays the implementation of different soil
and water conservation measures in the Tou-Long region (including 25 tributaries) in 1997, 2000, 2003,
and 2006 [40]. According to the table, the amount of all kinds of soil and water conservation had risen
gradually. Among them, forestland and grassland increased more sharply. By 2006, 28,540 km2 of
terraced area, 1310.26 km2 of dammed land, 58,613.53 km2 of forest land, 14,072.64 km2 of grassed
land, and 8380.18 km2 of closed hillside area had been constructed in the Tou-Long region. Moreover,
according to the analysis of LAI data before and after 2000 in Figure 8, the change intensity in forest
and grass vegetation was largest in the Tou-Long region, followed by Long-Hua.

Table 8. Implementation of different soil and water conservation in the Tou-Long region in 1997, 2000,
2003, and 2006 (unit: km2).

Year Terraced
Area

Dammed
Land

Forest
Land Grassland Hillsides Closed

for Erosion Control Total

1997 19,977.25 968.77 27,176.62 6939.60 2601.75 55,062.24
2000 23,291.18 1085.55 36,920.30 8929.06 3346.84 70,226.09
2003 26,166.33 1213.42 49,011.68 11,738.26 5528.36 88,129.69
2006 28,540.36 1310.26 58,613.53 14,072.64 8380.18 102,536.79

Studies have demonstrated that such large-scale land use and land-cover change, driven by soil
and water conservation measures, were closely related to streamflow reduction [41,42]. For example,
the terraced area can reduce the hillside slope and prolong streamflow retention, reducing surface
streamflow [17]. The increasing forests and grasslands play an important role in intercepting
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rainfall and alleviating streamflow [43]. To conclude, all of these can explain why anthropogenic
interference played a more critical role in streamflow reduction in the Tou-Long and Long-Hua regions,
especially during Period II.Water 2018, 10, x FOR PEER REVIEW  14 of 18 

 
     (a) (b) 

Figure 8. Overall change trend in annual LAI in 1982–2000 (a) and in 2001–2013 (b) in the YRB. 

5.2. Analysis of the Sensitivity of Streamflow to Annual Precipitation and the Percentage of Flood-Season 
Precipitation 

This study modified the traditional formula of the elasticity coefficient and used the calculated 
sensitivity coefficient to analyze the sensitivity of streamflow to meteorological factors. It should be 
pointed out that the advantage of this modified sensitivity coefficient calculation formula is that it 
can be combined with the runoff derived from scenario simulation. That is, the dynamic streamflow 
time series under the influence of the target factor (such as precipitation, mean temperature, the 
percentage of flood season precipitation, etc.) can be constructed by the scenario simulation method, 
and then the sensitivity of streamflow to the certain target factor can be directly calculated based on 
the sensitivity formula, and the underlying mechanics for calculating the sensitivity of streamflow to 
the specific factor is relatively easy to understand. In contrast, the traditional elastic coefficient model 
can only use the original observed streamflow, and the simulation accuracy of the elastic coefficient 
is affected by the type and number of factors selected in the construction of the elastic model, leading 
to the greater uncertainty in the sensitivity analysis of specific factors. 

According to the results shown in Table 7, the sensitivity to annual precipitation exhibited both 
temporal and spatial differences. The annual streamflow after 2000 became more sensitive to annual 
precipitation in the whole basin. Chiew [44] reported a strong negative correlation between the 
elasticity coefficient to precipitation and streamflow coefficient (RC) for 219 catchments in Australia. 
Inspired by Zheng et al. [39], the relationship between the sensitivity to annual precipitation (𝑓 ) 
and RC, which were estimated within a moving window of 10 years, was analyzed in this study. The 
relationship in Figure 9a shows that the sensitivity to annual precipitation (𝑓 ) was positively related 
to the inverse of the runoff coefficient (1/Rc), indicating that streamflow was more sensitive to 
precipitation in catchments or periods with low streamflow coefficients. The declining trend of 
streamflow coefficients of four regions, illustrated in Figure 8b, successfully explained the rise in 
sensitivity to annual precipitation from period I to period II. This also shows that the sensitivity 
coefficient calculated in this study has similar properties to the traditional elastic coefficient and can 
appropriately reflect the sensitivity of streamflow to meteorological elements. Furthermore, part of 
the reason for a streamflow coefficient decline may be that these regions experienced a significant 
rise in forest and grass vegetation, as demonstrated in previous studies [42]. 

Table 7 also shows that streamflow in the source, Tou-Long, and Long-Hua regions was more 
sensitive to precipitation than that in the Tang-Tou region. This spatial difference partly accorded 
with their streamflow coefficient except for the source area, which was expected to have a similar 
sensitivity to that of Tang-Tou. In fact, the value of the sensitivity of streamflow depends on many 
factors, such as the stochastic nature of climate, vegetation conditions, field capacity of soils, soil 
moisture levels, length of soil water depletion, and saturated hydraulic conductivity [24]. Compared 
with other regions, the source region has a relatively saturated soil condition ascribed to good 
vegetation cover (Figure 8) and humid climate conditions (Table 1), making it easy to form 

Figure 8. Overall change trend in annual LAI in 1982–2000 (a) and in 2001–2013 (b) in the YRB.

5.2. Analysis of the Sensitivity of Streamflow to Annual Precipitation and the Percentage of Flood-
Season Precipitation

This study modified the traditional formula of the elasticity coefficient and used the calculated
sensitivity coefficient to analyze the sensitivity of streamflow to meteorological factors. It should be
pointed out that the advantage of this modified sensitivity coefficient calculation formula is that it can
be combined with the runoff derived from scenario simulation. That is, the dynamic streamflow time
series under the influence of the target factor (such as precipitation, mean temperature, the percentage
of flood season precipitation, etc.) can be constructed by the scenario simulation method, and then the
sensitivity of streamflow to the certain target factor can be directly calculated based on the sensitivity
formula, and the underlying mechanics for calculating the sensitivity of streamflow to the specific
factor is relatively easy to understand. In contrast, the traditional elastic coefficient model can only use
the original observed streamflow, and the simulation accuracy of the elastic coefficient is affected by
the type and number of factors selected in the construction of the elastic model, leading to the greater
uncertainty in the sensitivity analysis of specific factors.

According to the results shown in Table 7, the sensitivity to annual precipitation exhibited both
temporal and spatial differences. The annual streamflow after 2000 became more sensitive to annual
precipitation in the whole basin. Chiew [44] reported a strong negative correlation between the
elasticity coefficient to precipitation and streamflow coefficient (RC) for 219 catchments in Australia.
Inspired by Zheng et al. [39], the relationship between the sensitivity to annual precipitation ( f ′P)
and RC, which were estimated within a moving window of 10 years, was analyzed in this study.
The relationship in Figure 9a shows that the sensitivity to annual precipitation ( f ′P) was positively
related to the inverse of the runoff coefficient (1/Rc), indicating that streamflow was more sensitive
to precipitation in catchments or periods with low streamflow coefficients. The declining trend of
streamflow coefficients of four regions, illustrated in Figure 8b, successfully explained the rise in
sensitivity to annual precipitation from period I to period II. This also shows that the sensitivity
coefficient calculated in this study has similar properties to the traditional elastic coefficient and can
appropriately reflect the sensitivity of streamflow to meteorological elements. Furthermore, part of the
reason for a streamflow coefficient decline may be that these regions experienced a significant rise in
forest and grass vegetation, as demonstrated in previous studies [42].
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Table 7 also shows that streamflow in the source, Tou-Long, and Long-Hua regions was more
sensitive to precipitation than that in the Tang-Tou region. This spatial difference partly accorded with
their streamflow coefficient except for the source area, which was expected to have a similar sensitivity
to that of Tang-Tou. In fact, the value of the sensitivity of streamflow depends on many factors, such as
the stochastic nature of climate, vegetation conditions, field capacity of soils, soil moisture levels,
length of soil water depletion, and saturated hydraulic conductivity [24]. Compared with other regions,
the source region has a relatively saturated soil condition ascribed to good vegetation cover (Figure 8)
and humid climate conditions (Table 1), making it easy to form streamflow. Thus, streamflow in the
source region is more sensitive to precipitation change than that in other dry regions, such as the arid
Tang-Tou region.

As for the sensitivity to the percentage of flood-season precipitation, it increased more in the
Tou-Long and Long-Hua regions than in the source and Tang-Tou regions. Given the same annual
precipitation, streamflow yield would not be affected by the precipitation temporal pattern in the
regions with less forest and grass vegetation. However, as illustrated in Figure 8, forest and grass
vegetation increased in the Tou-Long and Long-Hua regions, playing a crucial role in streamflow yield:
streamflow would become more sensitive to flood-season precipitation, leading to greater sensitivity
to the percentage of flood-season precipitation.

5.3. Uncertainties Analysis

There are some uncertainties associated with the contribution assessment and sensitivity analysis.
First, combining two different-scaled models—namely, the annual model and flood and nonflood
season model—generates some uncertainties. Another uncertainty in the results exists in the
assumption that climate change is independent of anthropogenic interference. In fact, these two factors
are interrelated. For example, land cover change and vegetation increase caused by afforestation
would also lead to climatic changes.

Despite the uncertainties and limitations, this study provides a relatively easy way to analyze
the contribution of climate variables and the sensitivity of streamflow to these factors, including the
intra-annual distribution of precipitation. More detailed work, such as distributed models, should be
introduced to improve the understanding of the monthly streamflow response mechanism.
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6. Conclusions

With the intent of distinguishing the effect of climate fluctuations and anthropogenic interference
on streamflow reduction and analyzing the sensitivity of streamflow, an improved three-parameter
annual precipitation–streamflow model and flood and nonflood season models were built to simulate
natural streamflow. The major findings from this study are summarized below.

The MK results demonstrated a decreasing trend in annual precipitation, significant increasing
trend in mean temperature, and decreasing trend in annual streamflow across the Yellow River,
excluding the increasing annual precipitation in the source region during 1957–2010. Abrupt change
did not take place simultaneously, with the earliest change-point detected in the Tou-Long region.
On average, the percentage of flood-season precipitation exhibited a decreasing trend, with each of the
four regions experiencing a different level of decline.

The intensity of streamflow reduction improved spatially from 19.00% in the source region
to 37.82% in Long-Hua. The contribution made by the climatic fluctuations and anthropogenic
interference varied spatially and temporally. From Tang-Tou to Long-Hua, the impacts of annual
precipitation and anthropogenic interference increased, while the temperature effect decreased.
Temporally, the dominant factor in the Tou-Long and Long-hua regions had shifted from precipitation
to anthropogenic interference after 2000. Further, the variation in the percentage of flood-season
precipitation was responsible for streamflow variation. The greater the percentage of flood-season
precipitation, the greater the simulated streamflow will be.

The sensitivity of streamflow to various climatic factors are different for regions with different
hydrothermal conditions in YRB: annual streamflow was more sensitive to annual precipitation than
temperature in the humid regions, whereas an opposite situation was observed in the relatively
arid regions. Sensitivity to precipitation and temperature both increased in the whole basin after
2000, indicating that substantial challenges and uncertainties might be introduced to regional water
availability. The sensitivity of streamflow to the percentage of flood-season precipitation increased
most significantly in the Tou-Long and Long-Hua regions, where the highest change intensity of forest
and grass vegetation occurred after 2000. These research conclusions can provide a scientific reference
for future Yellow River water resource management and ecological construction planning.

Author Contributions: All authors contributed to the design and development of this manuscript. J.W. performed
the data processing and wrote the first draft of the manuscript. Z.W. and Z.D. are the graduate supervisors of J.W.
and gave constructive suggestions on the design and modification of the manuscript. Z.W. also helped process the
LAI data. Q.T., X.L., and G.D. helped edit the manuscript prior to submission.

Funding: This research was funded by the National Key R&D Program of China (2016YFC0402402),
China Postdoctoral Science Foundation (2017M610458), Young Elite Scientists Sponsorship by CAST
(2017QNRC023), Foundation of development on science and technology by YRIHR (HKF201709) and National
Natural Science Foundation of China (41701509, 51509102, 51779099).

Acknowledgments: We gratefully thank the anonymous reviewers for their critical comments and constructive
suggestions on the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Razmara, P.; Bavani, A.R.M.; Motiee, H. Investigating uncertainty of climate change effect on entering runoff
to Urmia Lake Iran. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 2183–2214. [CrossRef]

2. Stahl, K.; Hisdal, H.; Tallaksen, L. Trends in low flows and streamflow droughts across Europe. In Proceedings
of the UNESCO, Paris, France, 14 March 2008.

3. Rood, S.B.; Samuelson, G.M.; Weber, J.K. Twentieth-century decline in streamflows from the hydrographic
apex of North America. J. Hydrol. 2005, 306, 215–233. [CrossRef]

4. Xu, X.Y.; Yang, D.W.; Yang, H.B. Attribution analysis based on the Budyko hypothesis for detecting the
dominant cause of runoff decline in Haihe basin. J. Hydrol. 2014, 510, 530–540. [CrossRef]

http://dx.doi.org/10.5194/hessd-10-2183-2013
http://dx.doi.org/10.1016/j.jhydrol.2004.09.010
http://dx.doi.org/10.1016/j.jhydrol.2013.12.052


Water 2018, 10, 1155 17 of 18

5. Hughes, J.D.; Petrone, K.C.; Silberstein, R.P. Drought, groundwater storage and stream flow decline in
southwestern Australia. Geophys. Res. Lett. 2012, 39, L03408. [CrossRef]

6. Li, Y.Z.; Liu, C.M.; Zhang, D. Reduced Runoff Due to Anthropogenic Intervention in the Loess Plateau,
China. Water 2016, 8, 458. [CrossRef]

7. Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean
annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, 411. [CrossRef]

8. Feng, A.Q.; Li, Y.Z.; Gao, J.B. The determinants of streamflow variability and variation in Three-River Source
of China: Climate change or ecological restoration? Environ. Earth Sci. 2017, 76, 696. [CrossRef]

9. Chang, J.X.; Zhang, H.X.; Wang, Y.M.; Zhu, Y.L. Assessing the impact of climate variability and human
activity to streamflow variation. Hydrol. Earth Syst. Sci. 2016, 20, 1547–1560. [CrossRef]

10. Tamai, K. A paired-catchment experiment in the Tatsunokuchiyama experimental forest, Japan: the influence
of forest disturbance on water discharge. In River Basin Management III; WIT Press: Southampton, UK, 2005;
Volume 2, pp. 173–182.

11. Bosch, J.M.; Hewlett, J.D. A review of catchment experiments to determine the effect of vegetation changes
on water yield and evapotranspiration. J. Hydrol. 1982, 55, 3–23. [CrossRef]

12. Tuteja, N.K.; Vaze, J.; Teng, J.; Mutendeudzi, M. Partitioning the effects of pine plantations and climate
variability on streamflow from a large catchment in southeastern Australia. Water Resour. Res. 2007, 43,
W08415. [CrossRef]

13. Buendia, C.; Batalla, R.J.; Sabater, S. Runoff Trends Driven by Climate and Afforestation in a Pyrenean Basin.
Land Degrad. Dev. 2016, 27, 823–838. [CrossRef]

14. Adam, J.C.; Haddeland, I.; Su, F. Simulation of reservoir influences on annual and seasonal streamflow
changes for the Lena, Yenisei, and Ob’ rivers. J. Geophys. Res.-Atmos. 2007, 112, D24114. [CrossRef]

15. Tesfa, T.K.; Li, H.Y.; Leung, L.R. A subbasin-based framework to represent land surface processes in an Earth
system mode. Geosci. Model Dev. Dis. 2013, 6, 2699–2730.

16. Petchprayoon, P.; Blanken, P.D.; Ekkawatpanit, C. Hydrological impacts of land use/land cover change in a
large river basin in central-northern Thailand. Int. J. Clim. 2010, 30, 1917–1930. [CrossRef]

17. Hu, Z.D.; Wang, L.; Wang, Z.J.; Yang, H.; Hang, Z. Quantitative assessment of climate and human impacts
on surface water resources in a typical semiarid watershed in the middle reaches of the Yellow River from
1985 to 2006. Int. J. Clim. 2015, 35, 97–113. [CrossRef]

18. Hundecha, Y.; Bardossy, A. Modeling of the Effect of Land Use Changes on the Runoff Generation of a River
Basin Through Parameter Regionalization of a Watershed Model. J. Hydrol. 2004, 292, 281–295. [CrossRef]

19. Ye, B.S.; Yang, D.Q.; Kane, D.L. Changes in Lena River streamflow hydrology: Human impacts versus
natural variations. Water Resour. Res. 2003, 39, SWC14. [CrossRef]

20. Liu, X.M.; Liu, C.M.; Luo, Y.Z. Dramatic decrease in streamflow from the headwater source in the central
route of China’s water diversion project: Climatic variation or human influence? Geophys. Res.-Atmos. 2012,
117, D06113–D06122. [CrossRef]

21. Tian, F.; Yang, Y.H.; Han, S.M. Using runoff slope-break to determine dominate factors of runoff decline in
Hutuo River Basin, North China. Water Sci. Technol. 2009, 60, 2135–2144. [CrossRef] [PubMed]

22. Zhang, L.; Yang, X. Applying a Multi-Model Ensemble Method for Long-Term streamflow Prediction under
Climate Change Scenarios for the Yellow River Basin, China. Water 2018, 10, 301. [CrossRef]

23. Zhang, P.C.; Shao, G.F.; Zhao, G.; Master, D.C.L.; Parker, G.R.; Dunning, J.B.J.; Li, Q. China’s forest policy for
the 21st century. Science 2000, 288, 2135–2136. [CrossRef] [PubMed]

24. Tang, Q.H.; Oki, T.; Kanae, S. Hydrological Cycles Change in the Yellow River Basin during the Last Half of
the Twentieth Century. J. Clim. 2008, 21, 1790–1806. [CrossRef]

25. Liu, Q.H.; Cui, B. Impacts of climate change/variability on the streamflow in the Yellow River Basin, China.
Ecol. Model. 2011, 222, 268–274. [CrossRef]

26. Li, B.; Li, C.Y.; Liu, J.Y.; Zhang, Q.; Duan, L.M. Decreased Streamflow in the Yellow River Basin, China:
Climate Change or Human-Induced? Water 2017, 9, 116. [CrossRef]

27. Guli, J.; Liang, S.L.; Yi, Q.X. Vegetation dynamics and responses to recent climate change in Xinjiang using
leaf area index as an indicator. Ecol. Indic. 2015, 58, 64–76.

28. Shu, S.J.; Liu, C.S.; Shi, R.H.; Gao, W. Research on spatial interpolation of meteorological elements in
Anhui Province based on ANUSPLIN. In Proceedings of the SPIE 8156, Remote Sensing and Modeling of
Ecosystems for Sustainability VIII, San Diego, CA, USA, 22–23 August 2011.

http://dx.doi.org/10.1029/2011GL050797
http://dx.doi.org/10.3390/w8100458
http://dx.doi.org/10.1029/2010WR010283
http://dx.doi.org/10.1007/s12665-017-7026-6
http://dx.doi.org/10.5194/hess-20-1547-2016
http://dx.doi.org/10.1016/0022-1694(82)90117-2
http://dx.doi.org/10.1029/2006WR005016
http://dx.doi.org/10.1002/ldr.2384
http://dx.doi.org/10.1029/2007JD008525
http://dx.doi.org/10.1002/joc.2131
http://dx.doi.org/10.1002/joc.3965
http://dx.doi.org/10.1016/j.jhydrol.2004.01.002
http://dx.doi.org/10.1029/2003WR001991
http://dx.doi.org/10.1029/2011JD016879
http://dx.doi.org/10.2166/wst.2009.578
http://www.ncbi.nlm.nih.gov/pubmed/19844060
http://dx.doi.org/10.3390/w10030301
http://dx.doi.org/10.1126/science.288.5474.2135
http://www.ncbi.nlm.nih.gov/pubmed/10896587
http://dx.doi.org/10.1175/2007JCLI1854.1
http://dx.doi.org/10.1016/j.ecolmodel.2009.11.022
http://dx.doi.org/10.3390/w9020116


Water 2018, 10, 1155 18 of 18

29. Mann, H.B. Non-parametric tests against trend. Econ. J. Econ. Soc. 1945, 13, 245–259.
30. Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975.
31. Matouškov, M.; Kliment, Z. Runoff changes in the Šumava Mountains (black forest) and the foothill regions:

Extent of influence by human impact and climate change. Water Resour. Manag. 2009, 23, 1813–1834.
32. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
33. Liu, X.H.; Guanter, L.; Liu, L.Y. Downscaling of solar-induced chlorophyll fluorescence from canopy level to

photosystem level using a random forest model. Remote Sens. Environ. 2018. [CrossRef]
34. Carlisle, D.M.; Falcone, J.; Wolock, D.M. Predicting the natural flow regime: Models for assessing

hydrological alteration in streams. River Res. Appl. 2010, 26, 118–136. [CrossRef]
35. Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. 2016, 114, 24–31. [CrossRef]
36. He, Y.H.; Lin, K.R.; Chen, X.H. Effect of Land Use and Climate Change on Runoff in the Dongjiang Basin of

South China. Math. Probl. Eng. 2013, 2013, 14–26. [CrossRef]
37. Xu, X.Y. Hydrological Response of Typical Watersheds under Climate Change. Ph.D. Thesis,

Tsinghua University, Beijing, China, 2012.
38. Bao, W.M. Hydrological Forecast, 4st ed.; China Water Resources and Hydropower Press: Beijing, China, 2009;

pp. 250–257, ISBN 9787508461922. (In Chinese)
39. Zheng, H.X.; Lu, Z.; Zhu, R.R. Responses of streamflow to climate and land surface change in the headwaters

of the Yellow River Basin. Water Resour. Res. 2009, 45, 641–648. [CrossRef]
40. Yao, W.Y.; Xu, J.H.; Ran, D.C. Analysis and Evaluation of Water and Sediment Changes in the Yellow River

Basin, 1st ed.; Yellow River Conservancy Press: Zhengzhou, China, 2011; pp. 37–39, ISBN 9787550901414.
(In Chinese)

41. Mu, X.; Gao, P.; Basangchilie. Application of flow duration curves to analyze the effect of water and soil
conservation measures on river runoff in the Loess Plateau. Adv. Earth Sci. 2008, 23, 382–389. (In Chinese)

42. Liu, X.; Liu, C.; Yang, S. Effect of remote sensing on changes of forest and grass vegetation in the Loess
Plateau to river runoff. Acta Geogr. Sin. 2014, 69, 1595–1603. (In Chinese)

43. Chen, L.D.; Wei, W.; Fu, B.J. Soil and Water Conservation on the Loess Plateau in China: Review and
Perspective. Prog. Phys Geogr. 2007, 31, 3547–3554. [CrossRef]

44. Chiew, F.S. Estimation of rainfall elasticity of streamflow in Australia. Int. Assoc. Sci. Hydrol. Bull. 2006, 51,
613–625. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.rse.2018.05.035
http://dx.doi.org/10.1002/rra.1247
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1155/2013/471429
http://dx.doi.org/10.1029/2007WR006665
http://dx.doi.org/10.1177/0309133307081290
http://dx.doi.org/10.1623/hysj.51.4.613
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data 
	Study Area 
	Data Collection and Preprocessing 

	Methodology 
	Time-Series Analysis Method 
	Change-Point Detection and Trend Analysis of Hydrological and Climate Data 
	Trend Analysis of LAI 

	Multitemproal-Scale Precipitation–Runoff Model 
	Contribution Calculation of Climatic and Anthropogenic Factors on Annual Streamflow 
	Sensitivity Calculation of Annual Streamflow to Climatic Factors 

	Results 
	Spatial–Temporal Variation Characters for Hydrometeorological Variables 
	Change-Point Detection 
	Trend Analysis of Annual Precipitation, Mean Temperature, and Naturalized Streamflow 
	Trend Analysis of Percentage of Flood-Season Precipitation 

	Precipitation–Runoff Model Calibration and Validation 
	Annual Model 
	Flood and Nonflood Seasonal Model 

	Contribution Assessment 
	Sensitivity Assessment 

	Discussion 
	Analysis of the Impact of Anthropogenic Interference on Natural Streamflow 
	Analysis of the Sensitivity of Streamflow to Annual Precipitation and the Percentage of Flood- Season Precipitation 
	Uncertainties Analysis 

	Conclusions 
	References

