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Abstract: The global rainfall pattern has changed because of climate change, leading to numerous
natural hazards, such as drought. Because drought events have led to many disasters globally,
it is necessary to create an early warning system. Drought forecasting is an important step toward
developing such a system. In this study, we utilized the stochastic, autoregressive integrated moving
average (ARIMA) model to predict drought conditions based on the standardized precipitation index
(SPI) in southern Taiwan. We employed data from 1967 to 2006 to train the model and data from 2007
to 2017 for model validation. The results showed that the coefficients of determination (R2) were over
0.80 at each station, and the root-mean-square error and mean absolute error were sufficiently low,
indicating that the ARIMA model is effective and adequate for our stations. Finally, we employed the
ARIMA model to forecast future drought conditions from 2019 to 2022. The results yielded relatively
low SPI values in southern Taiwan in future summers. In summary, we successfully constructed an
ARIMA model to forecast drought. The information in this study can act as a reference for water
resource management.
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1. Introduction

Drought is a natural phenomenon which can be classified into four categories: meteorological,
hydrological, agricultural, and socioeconomic drought. Among these, meteorological drought can
precede and lead to the other three types. It is essentially caused by insufficient precipitation and usually
results in severe disaster events. Dai [1] found that the global trends of observed annual precipitation
from 1950 to 2010 showed a decline in areas such as Africa, Southeast and East Asia, Eastern Australia,
and Southern Europe. These results indicate that water shortages are becoming increasingly severe,
which may lead to drought. However, drought events not only lead to environmental changes but also
have serious impacts on the social economy and agricultural development [2]. For example, between
1976 and 2006, the total cost associated with drought in Europe was as high as €100 billion, while the
number of people affected by drought increased by 20% [3]. Therefore, it is important to assess drought
conditions to develop a mitigation strategy.

Many drought indices have been proposed to assess meteorological drought to identify the
occurrence of drought events. Among these, the standardized precipitation index (SPI) has been widely
employed to evaluate the intensity of meteorological droughts, owing to the following advantages.
First, the SPI is based only on long-term rainfall data. Second, the SPI is in a standardized form, which
means that it can be compared between different regions. Third, it has variable timescales, which
allows it to describe different drought conditions. Therefore, the SPI was selected as the meteorological
drought index in the present study.
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Because a drought varies slowly in time, it is generally not discovered until a disaster occurs.
Therefore, an effective monitoring system is required to mitigate the impacts of droughts. An effective
monitoring system can help to establish an early warning system for drought [4], and drought
forecasting is an important step toward developing such an early warning system. Forecasting
future drought conditions in a region is critical for the sustainability of water resource planning and
management. In addition, drought forecasting plays a vital role in drought risk assessment [5,6] and
provides information for water resource managers and policy makers to take precautions against
droughts in advance [7]. There have been many previous studies concerning drought forecasting,
such as detecting occurrences of drought and predicting the duration and severity of a drought event.
However, the main challenge is to select a suitable and effective tool for forecasting [6–8].

There exist many methodologies for forecasting drought events based on drought indices, such as
regression analysis [9,10], stochastic models [7,11–14], probability models [15], artificial intelligence
(AI)-based models [16–19], and dynamic modeling [20,21].

The stochastic model, also known as the time series model, has been utilized to predict hydrological
time series. In general, the time series model has a weak capability for modeling data with nonlinear
characteristics but is able to effectively fit linear data such as streamflow and precipitation. In addition,
there are periodic characteristics and serial correlations between observations in hydrological time
series, and the time series model can describe these features well and perform systematic modeling.
The most useful and common class of stochastic model is the autoregressive integrated moving
average (ARIMA) model. The advantages of the ARIMA model include low data input requirements,
a simple computational process [22], and few model parameters being required to describing the time
series [10,11]. It is also suitable for nonstationary data. Owing to these merits, this time series model is
superior to other statistical models [7,23].

The purpose of this study was to develop a valid linear stochastic model based on an SPI time
series in southern Taiwan. According to a previous study, most studies have only developed the
ARIMA model to fit their own time series data, and few studies have actually predicted future drought
situations. Hence, in this study, we utilized the ARIMA model to forecast drought conditions over
next four years, from 2019 to 2022.

2. Study Area

The study area is located in southern Taiwan and includes the Pozi River basin, Bazhang River
basin, Jishui River basin, Yanshui River basin, Erren River basin, Gaopping River basin, and Linbian
River basin. It belongs to the tropical monsoon climate zone. There is abundant rainfall, but owing to
the uneven distribution of rainfall in time and space, the region is characterized by distinct wet and
dry seasons. In this study, we selected one rainfall station in each basin, with records from the years
1967 to 2017. Information on the rainfall stations is presented in Table 1, and the spatial distributions of
the rainfall stations at each basin are shown in Figure 1.

Table 1. Information on rainfall stations at each basin.

Basin Station Short Name

Pozi River basin Zhang Nao Liao-2 PR1
Bazhang River basin Da Hu Shan BR1

Jishui River basin Guan Zi Ling-2 GR1
Yanshui River basin Qi Ding YR2

Erren River basin Gu Ting Keng RR2
Gaoping River basin Ping Dong-5 KR3
Linbian River basin Nan Han LR2
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3. Methodology

3.1. SPI

There exist many methods that can identify drought events, and using drought indicators is the
most convenient and effective method to do this. In this study, we explored meteorological drought in
southern Taiwan. The SPI was proposed by McKee et al. [24]. This index simply utilizes the cumulative
precipitation data over different periods for calculation. Because the index is standardized, it can
be compared between different regions. The World Meteorological Organization [25] listed this as
the preferred index for describing precipitation drought events. Considering the rainfall pattern in
Taiwan, over a shorter aggregation time scale, the SPI only exhibits periodic oscillations in time, and it
is difficult to evaluate long-term drought events. In contrast, it is easier to identify drought events with
a longer aggregation time scale. Therefore, we chose a 12 month aggregation time scale for the SPI.
In this study, we utilized historical SPI time series to predict future drought conditions using a time
series model.
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3.2. Time Series Model

The time series model is a stochastic model that is commonly used for time series forecasting.
Common time series models include the autoregressive (AR), moving average (MA), and autoregressive
moving average (ARMA) models. Many studies have employed time series models to predict
hydrological and meteorological time series [7,11,26].

3.2.1. Nonseasonal ARIMA Model

The AR and MA models can be effectively combined into an ARMA model. The current data
is analyzed by a linear combination of previous data plus error terms. However, the ARMA model
is only applicable when the data is stationary. If the original time series is nonstationary, then the
difference must be added. The resulting model is called the ARIMA model, as proposed by Box and
Jenkins [27]. The ARIMA model provides a new generation of forecasting tools, emphasizing the
stochastic properties of time series rather than constructing single and simultaneous equation models.
Each variable of the ARIMA model is represented by its own lagged value and stochastic error terms.
The general nonseasonal ARIMA model consists of a p-order AR model, a q-order MA model, and the
operators on the dth difference of the original time series data. This can be expressed as ARIMA(p,d,q),
and the algorithm of the model is as follows:

φ(L)∇dxt = θ(L)εt (1)

where φ(L) and θ(L) are polynomials of order p and q, respectively. The operators for the nonseasonal
AR model of order p and MA model of order q are written as

φ(L) = (1−φ1L−φ2L2
− · · · −φpLp)

θ(L) = (1− θ1L− θ2L2
− · · · − θpLp)

(2)

where L is the lag operator Lixt = xt−i.

3.2.2. Seasonal ARIMA (SARIMA) Model

Box et al. [28] extended the ARIMA model to deal with seasonality, with the result commonly
referred to as the SARIMA model. The SARIMA model is analyzed by introducing seasonal periodic
change to a general ARIMA mode, and it can be denoted as ARIMA(p,d,q)(P,D,Q)S, where (p,d,q) is the
nonseasonal part of the model and (P,D,Q)S is the seasonal part. This can be expressed as follows:

φp(L)ΦP(Ls)∇d
∇

D
s xt = θq(Ls)ΘQ(Ls)εt (3)

where p is the order of the nonseasonal AR model, q is the order of the nonseasonal MA model, d is the
order of the general difference, P is the order of the seasonal AR model, Q is the order of the seasonal
MA model, D is the seasonal differencing, and S is the length of a season.

3.3. ARIMA Model Development

In general, the development and selection of an appropriate ARIMA model consists of three steps:
model identification, parameter estimation, and diagnostic checking [23,27,29,30].
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3.3.1. Model Identification

This step involves transforming the data which is to confirm the original data to normality and
stationarity and utilizing the autocorrelation function (ACF) and partial autocorrelation function
(PACF) to initially confirm the general form of the ARIMA model. Here, the ACF and PACF were
used to determine the order of the model, and the final model was selected using the goodness-of-fit
criteria through the Akaike information criterion (AIC) [31] and Schwarz–Bayesian criterion (SBC) [32].
The model that gives the minimum AIC and SBC value is selected as the best. The mathematical
formulations of the AIC and SBC are as follows:

AIC = n ln(MSE) + 2m (4)

SBC = n ln(MSE) + m ln(n) (5)

where m = (p + q + P + Q) is the number of model parameters, n is the number of data, and MSE is
the mean-square error.

Mean square error (MSE) =
1
n

n∑
i=1

(yt − ŷt)
2 (6)

where yt is the observed data and ŷt is the predicted value.

3.3.2. Parameter Estimation

After identifying the ARIMA model, the parameters of the model must be estimated. This study
employed the method of maximum likelihood, as proposed by Box and Jenkins [27], to estimate the
parameters of the ARIMA model. Maximum likelihood estimation is a method of estimating the
parameters of a statistical model.

3.3.3. Diagnostic Checking

Once an appropriate model has been selected and the parameters have been estimated, diagnosing
the ARIMA model represents a crucial component of model development. In this step, it is necessary
to verify whether the residuals of the model satisfy the properties of independence, following a normal
distribution, and homoscedasticity to verify that the model is suitable for time series. Several statistical
tests and plots of residuals are utilized for diagnostic checking. For a good model, the residuals must
satisfy the white noise process requirements of being uncorrelated and normally distributed around a
zero mean.

The residual autocorrelation function (RACF) and residual partial autocorrelation function
(RPACF) of a time series are utilized to determine whether the series is independent. If the ACF
and PACF of the residuals are significant within the confidence limits, this indicates that there is no
significant correlation between the residuals. An alternative method is the Ljung–Box–Pierce (LBQ)
test, which is a statistical method of testing for residual autocorrelation. The null hypothesis of the
LBQ test is that the residuals are independent. The test statistic is defined in Equation (7):

Q = n(n + 2)
m∑

k=1

r2
k

n− k
(7)

where m is the number of autocorrelation lags, n is the number of data, and rk is the sample
autocorrelation at lag k. The statistical Q values are compared with the critical value with the degree of
freedom at a 5% significance level. If the calculated values are less than the critical value, this means
the residuals of the model are in accordance with white noise.

The normality of residuals is verified by histograms and a probability plot of residuals.
The residuals are also verified for homoscedasticity, which means there is a constant error variance
over all the data. This is verified through a scatterplot of the residuals against predicted values. If the
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scatterplot exhibits no obvious patterns and the residuals are distributed randomly around zero, this
indicates the residuals are homoscedastic.

4. Results and Discussion

In this study, to perform the predictive analysis, we selected seven stations with long-term
monitoring data in the study area. The dataset was divided into two periods: training data (from 1967
to 2006) and validation data (from 2007 to 2017). Here, we used the ARIMA model to forecast future
drought conditions based on the SPI. The model development steps included model identification,
parameter estimation, and diagnostic checking. In this study, we utilized MATLAB to develop the
time series model.

4.1. Model Identification

There are two main stages in model identification: (1) confirm whether the data is stationary
and (2) utilize the ACF and PACF to determine the general form of the ARIMA model. According
to the Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test, our data was nonstationary, and so it
needed to be differenced. After applying the first-order difference, each station satisfied the model
development conditions. Because the data at every station exhibited a similar pattern, we simply took
the PR1 station as an example. Figure 2 shows that the ACF curve was damping out in a sine wave and
the PACF exhibited a significant spike at lag 1, which reflected the AR(1) process. In addition, there
were significant spikes in the PACF at lags 12, 24, 36, and 48, which indicated that the data exhibited
seasonality with a period of 12. In the ACF, each station had a sine wave pattern, which also indicated
that the data was seasonal [13]. Therefore, we chose AR(1) as the nonseasonal part of the ARIMA
model, and the peaks at the lags that were multiples of 12 in the PACF indicated a seasonal model,
which comprised the SARIMA model. The AIC and SBC criteria were utilized to select the best model,
and the results are shown in Table 2. The model with the minimum AIC and SBC was selected as the
best model.
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Table 2. The Akaike information criterion (AIC) and Schwarz–Bayesian criterion (SBC) parameters of each station for selected candidate autoregressive integrated
moving average (ARIMA) models.

Station Model AIC SBC Station Model AIC SBC Station Model AIC SBC

PR1

SARIMA(1,1,0)(1,0,4)12 348.0881 381.4784

YR2

SARIMA(1,1,0)(1,0,3)12 288.9087 318.1252

KR3

SARIMA(1,1,0)(2,0,2)12 356.0616 385.2781
SARIMA(1,1,0)(2,0,2)12 345.4032 374.6197 SARIMA(1,1,0)(2,0,2)12 288.6429 317.8594 SARIMA(1,1,0)(2,0,4)12 351.2744 388.8385
SARIMA(1,1,0)(2,0,3)12 347.0453 380.4356 SARIMA(1,1,0)(2,0,3)12 277.1375 310.5278 SARIMA(1,1,0)(3,0,2)12 355.4204 388.8107
SARIMA(1,1,0)(2,0,4)12 346.5433 384.1074 SARIMA(1,1,0)(2,0,4)12 283.4290 320.9931 SARIMA(1,1,0)(3,0,3)12 351.1653 388.7294
SARIMA(1,1,0)(3,0,2)12 346.7269 380.1172 SARIMA(1,1,0)(3,0,3)12 279.1007 316.6648 SARIMA(1,1,0)(4,0,2)12 352.6365 390.2005
SARIMA(1,1,0)(3,0,4)12 314.7873 356.5252 SARIMA(1,1,0)(4,0,4)12 271.8073 317.7189 SARIMA(1,1,0)(4,0,3)12 352.7802 394.5180

BR1

SARIMA(1,1,0)(1,0,4)12 333.3618 366.7521

RR2

SARIMA(1,1,0)(2,0,2)12 194.4071 223.6236

LR2

SARIMA(1,1,0)(2,0,3)12 354.4606 387.8509
SARIMA(1,1,0)(2,0,4)12 332.7244 370.2284 SARIMA(1,1,0)(2,0,4)12 184.9914 222.5554 SARIMA(1,1,0)(2,0,4)12 351.3671 388.9312
SARIMA(1,1,0)(3,0,1)12 338.9115 368.1280 SARIMA(1,1,0)(3,0,2)12 195.0079 228.3982 SARIMA(1,1,0)(3,0,3)12 339.6911 377.2552
SARIMA(1,1,0)(3,0,2)12 331.8391 365.2294 SARIMA(1,1,0)(4,0,0)12 190.8300 220.0465 SARIMA(1,1,0)(3,0,4)12 338.4294 380.1673
SARIMA(1,1,0)(3,0,3)12 328.9278 366.4919 SARIMA(1,1,0)(4,0,1)12 189.1966 222.5869 SARIMA(1,1,0)(4,0,3)12 341.4640 383.2019
SARIMA(1,1,0)(3,0,4)12 319.4850 361.2228 SARIMA(1,1,0)(4,0,2)12 191.1358 228.6999 SARIMA(1,1,0)(4,0,4)12 339.7495 358.6611

GR1

SARIMA(1,1,0)(1,0,3)12 238.5829 267.7994
SARIMA(1,1,0)(1,0,4)12 240.4575 273.8478
SARIMA(1,1,0)(2,0,2)12 238.4253 267.6418
SARIMA(1,1,0)(3,0,2)12 239.3507 272.7410
SARIMA(1,1,0)(3,0,3)12 241.0885 278.6526
SARIMA(1,1,0)(4,0,4)12 211.4762 257.3878
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4.2. Parameter Estimation

After identifying the order of the model, the parameters must be estimated. Table 3 presents the
model parameters, standard errors, t-statistics, and p-values for the PR1 station in the Pozi River basin.
It can be observed that the standard error was reasonably small compared with the model parameters.
In addition, most of the p-values of the model parameters were less than the alpha level (0.05), which
implies that the estimations of the parameters were statistically significant. Therefore, these model
parameters should be included in the model.

Table 3. Statistical analysis of the model parameters for the PR1 station in the Pozi River basin.

Pozi River Basin: SARIMA(1,1,0)(3,0,4)12

Model Parameters
Variables in the Model

Value of Parameter Standard Error t-Statistic p-Value

constant 0.0020 0.0112 0.1765 0.8599
∅1 −0.0903 0.0355 −2.5469 0.0109
Φ1 −0.2841 0.0286 −9.9461 0.0000
Φ2 −0.2889 0.0203 −14.2303 0.0000
Φ3 −0.7950 0.0195 −40.7233 0.0000
Θ1 −0.4530 0.0366 −12.3870 0.0000
Θ2 0.1171 0.0360 3.2491 0.0012
Θ3 0.6851 0.0304 22.5332 0.0000
Θ4 −0.6389 0.0307 −20.8422 0.0000

∅1 = nonseasonal AR parameter; Φ1, Φ2, Φ3, Φ4 = seasonal AR parameters; Θ1, Θ2, Θ3, Θ4 = seasonal MA parameters.

4.3. Diagnostic Checking

After completing the parameter estimation, diagnostic checking was performed. The residuals
of a model must be examined to verify that the model is adequate for the time series. The residuals
must satisfy the following statistical properties: (1) the residuals are independent of each other;
(2) the probability distribution is a normal distribution; and (3) homoscedasticity (constant variance) is
satisfied. That is, the residuals must satisfy the requirements of a white noise process. Because each
station yielded a similar result, we took the PR1 station as an example.

The independence of the residuals was checked by a correlogram and the LBQ test. Figure 3
shows the RACF and RPACF. The results show that most of the RACF and RPACF values were within
the confidence limit, which implies that the residuals did not exhibit a significant correlation with each
other. For the second method, the LBQ test was employed in this study to determine whether the
residuals are dependent, and the results are presented in Table 4. We can observe that the computed
statistics were less than the critical values at each station, which also indicates there was no significant
correlation between the residuals, and the residuals from the selected model were in accordance with
white noise.Water 2019, 11, x FOR PEER REVIEW 9 of 15 
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Table 4. Ljung–Box–Pierce (LBQ) statistics for the residuals at each basin.

LBQ Test

Station PR1 BR1 GR1 YR2 RR2 KR3 LR2

Test statistic (Q) 55.33 58.41 73.58 53.91 41.43 37.89 48.18
Critical value 89.39 89.39 89.39 89.39 89.39 89.39 89.39

Degrees of freedom = 69; significance level = 0.05.

Figure 4 depicts the histogram and normal probability plot of the residuals at the PR1 station
in the Pozi River basin. The histograms show that the residuals were roughly centered on zero and
were more or less normally distributed [13,33]. The normal probability plot of the residuals indicates
that the residuals lay on a diagonal line, which represents the normal probability for residuals in each
basin [13,34]. Therefore, both methods provided evidence of the normality of the residuals.
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To determine whether the ability of the model to predict variable values is consistent, it is important
to verify the homoscedasticity of the residuals [35]. The homoscedasticity of the residuals was checked
by the scatterplot of the residuals against predicted values. The results are shown in Figure 5. The plot
exhibited no pattern, and the residuals were randomly scattered. That is, the residuals were evenly
distributed around a zero mean, which implies that the model was well fitted.

According to the above check, the residuals of the model were uncorrelated, had constant variance,
and were normally distributed, and the statistical properties of the residuals were compliant with
white noise. Thus, we confirmed that the selected model is adequate for the corresponding SPI time
series at each station.Water 2019, 11, x FOR PEER REVIEW 10 of 15 
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4.4. Model Validation

Here, we utilized data from 2007 to 2017 for model validation. Figure 6 presents a comparison of
the observed data with predicted values at each basin using the best SARIMA model. The predicted
value yielded a similar pattern to the observed data, and the performance measures are presented in
Table 5. In general, the higher the R2 value, the better the performance of the model. According to our
results, the R2 values in each station were greater than 0.8, and the root-mean-square error (RMSE) and
mean absolute error (MAE) were also sufficiently low. Therefore, the SARIMA model used to predict
drought index in this study is reasonably precise.Water 2019, 11, x FOR PEER REVIEW 11 of 15 
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Table 5. Performance measures for the selected model for the observed data and predicted values.

Station Model
Performance Measures

R2 RMSE MAE

PR1 ARIMA(1,1,0)(3,0,4)12 0.8775 0.3220 0.2159
BR1 ARIMA(1,1,0)(3,0,4)12 0.8869 0.3628 0.2291
GR1 ARIMA(1,1,0)(4,0,4)12 0.8938 0.3241 0.2120
YR2 ARIMA(1,1,0)(2,0,3)12 0.8445 0.3123 0.2060
RR2 ARIMA(1,1,0)(2,0,4)12 0.8602 0.3482 0.2239
KR3 ARIMA(1,1,0)(3,0,3)12 0.8337 0.3699 0.2339
LR2 ARIMA(1,1,0)(3,0,3)12 0.8213 0.3714 0.2281

Abbreviations: RMSE—root-mean-square error, MAE—mean absolute error.

4.5. Forecasting

The reason that drought forecasting is necessary for water resource management and planning is
that drought events can then be diagnosed in advance, so that experts can take precautions. In this
study, we employed the seasonal ARIMA model to forecast the drought condition in the next four
years, from 2019 to 2022. The results at each basin are depicted in Figure 7. It was observed that
the predicted values showed stochastic change for each SPI time series. According to the analytical
results, the lowest SPI values were concentrated in the summer, which means that this region may
be affected by drought in the summer in the future. In general, the main source of rainfall in Taiwan
during the summer is typhoons. Typhoons can introduce abundant water resources. However, if the
number of typhoons is small or the typhoons do not directly affect Taiwan, this sometimes results
in a water shortage in the summer. In 2018, the number of typhoons generated between June and
September was as high as 22. This is the year in which the most typhoons occurred in the past 10 years.
However, only two typhoons affected Taiwan, which may have led to insufficient summer rainfall in
Taiwan [36]. In addition, the Pacific high is the main climate factor during the summer in Taiwan, and
this is becoming stronger owing to climate change [37], making Taiwan’s climate hotter and with less
precipitation. The Pacific high also guides the paths of typhoons. If the western edge of the Pacific high
extends westward to the Asian continent, then a typhoon may pass through the Philippines instead of
Taiwan. This is one of the reasons why there were fewer typhoons in 2018 in Taiwan. In recent years,
the Pacific high has exhibited a tendency to move increasingly westward [38]. Therefore, the summer
climate of Taiwan may change in the future under climate change. However, the details remain to
be discussed in future research. In this study, the ARIMA model was employed to forecast drought
events in the future. Unlike previous studies, we used a stochastic rather than deterministic method
to describe the forecasting results. According to historical drought events in Taiwan, drought events
occur approximately every three to four years. There was a water shortage situation in 2017 in Taiwan,
and 2020 may be a drier year, which is consistent with the results we found in this study. A statistical
method involves establishing suitable models to characterize climate factors such as precipitation.
Stationarity is generally assumed to exist between predictor and historical data, but this is not always
true. Thus, the uncertainty of the model may be higher. In addition, there are many factors that affect
environmental changes, and this may present a challenge under this situation. Further studies should
consider climate variability in the model for drought forecasting.
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5. Conclusions

In this study, the ARIMA model was employed as a drought forecasting tool in southern Taiwan.
We used data from 1967 to 2006 to train the model. The model development included three steps:
model identification, parameter estimation, and diagnostic checking. In the model identification step,
we selected the general form of the model and chose the model with the minimum AIC and SBC as
the best fit. In the parameter estimation step, we utilized several statistics to determine whether the
parameters we estimated were significant. The results showed that most of the model parameters
had p-values below the alpha level (0.05). The diagnostic checking step indicated that the statistical
properties of the model residuals were compliant with white noise, including being uncorrelated with
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a constant variance and normal distribution. Then, the data from 2007 to 2017 were used to validate
the model. The results showed that there was a high coefficient of determination (R2) at each station
(all over 0.80) and low values for the RMSE and MAE, which implies that the model is adequately
precise at each basin. Finally, we used the ARIMA model to forecast the future drought conditions from
2019 to 2022. The forecasting results demonstrate that the SPI value is relatively low in the summer of
2020, which implies that there may be a water shortage in southern Taiwan. This phenomenon may
be related to climate change, which leads to an enhancement of the Pacific high extending westward,
thus affecting the paths of typhoons. In addition, the Pacific high dominates the summer climate in
Taiwan, and if its intensity continues to increase, this will reduce precipitation in Taiwan in the future.
However, the detailed evolution mechanism still remains to be discussed in the future.

The stochastic models selected for forecasting the SPI time series provided information on
precipitation in southern Taiwan. This is a powerful tool, which can also be used to describe the
hydrological time series. The ARIMA model used in this study, based on the SPI, can be applied
to forecast drought impacts, playing a vital role in mitigating drought in water resource systems.
However, the corresponding natural phenomena are complicated, owing to the influences of many
factors. Stochastic models do not consider physical processes, and so it is difficult to understand the
physical mechanisms of climate change. In addition, the assumption of the model may lead to higher
uncertainty. Nevertheless, the model can be used to predict future trends and serve as a variable for
other physical models in further studies.
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