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Abstract: The prediction of long term water balance components is not a trivial issue, even when
empirical Budyko’s type approaches are used, because parameter estimation is often hampered
by missing or poor hydrological data. In order to overcome this issue, we provided regression
equations that link climate, morphological, and vegetation parameters to Fu’s parameter. Climate
is here defined as a specific seasonal pattern of potential evapotranspiration and rain: five climatic
scenarios have been considered to mimic different conditions worldwide. A weather generator has
been used to create stochastic time series for the related climatic scenario, which in turn has been used
as an input to a conceptual hydrological model to obtain long-term water balance components with
low computational effort, while preserving fundamental process descriptions. The morphology and
vegetation’s role in determining water partitioning process has been epitomized in four parameters of
the conceptual model. Numerical simulations explored a large set of basins in the five climates. Results
show that climate superimposes partitioning rules for a given basin; morphological and vegetation
watershed properties, as conceptualized by model parameters, determine the Fu’s parameter within
a given climate. A sensitive analysis confirmed that vegetation has the most influencing role in
determining water partitioning rules, followed by soil permeability. Finally, linear regressions relating
basin characteristics to Fu’s parameter have been obtained in the five climates and tested in a basin
for each case, obtaining encouraging results. The small amount of data required and the very low
computational effort of the method make this approach ideal for practitioners and hydrologists
involved in annual runoff assessment.
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1. Introduction

One of the most important challenges in hydrology is to quantify water availability for
every climatic scenario and geographic area in order to support socio-economic activities and
ecosystem needs [1].

Simplified models are available to explore water partitioning processes at large temporal and
spatial scales [2–4]. Considering steady state conditions [5,6] and neglecting the variation of water
storage [7–9], the mean annual precipitation P is balanced by mean annual runoff Q and mean annual
evapotranspiration ET. Under these conditions, Budyko [10] found a semi-empirical relation between
the ratio of mean annual potential evapotranspiration ETP to P and the ratio of ET to P. The first one is
called the aridity index (AI) and it is an indicator related to the local climatic condition, meaning the
higher the aridity index is, the dryer the climate. In the Budyko’s theory, ET is constrained by energy
and water availability, by net radiation, and by P [11–13]. For this reason, the ratio of ET/P, called the
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evaporative index (EI), can vary between 0 and 1 (energy and water limit), differently to the aridity
index that could be higher than one and theoretically could reach an infinite value.

The variability of Budyko’s curve could be caused by three main triggers [14]: (i) climate
properties [15–18], (ii) catchments physical processes [19,20], and (iii) vegetation [6,21,22].

Different authors proposed parametric or analytic expressions to describe the relation between EI
and the aridity index AI [5,23–27]; one of the most well known expressions was obtained by Fu [28]
with only one parameter, commonly indicated as ω, describing the rainfall partitioning into Q and ET.
The mathematical expression was as follows:

EI =
ET
P

= 1 + AI − (1 + AIω)1/ω. (1)

The higher the Fu’s parameter, the higher EI for a given aridity index AI. Some authors derived
the ω value of Budyko’s semi-empirical expression as being equal to 2.6 [23,29,30].

Since Fu’s equation is a representation of Budyko’s curve that, as said before, is responsive to
climate, catchment processes, and vegetation, ω should comprise and describe the variability in the
annual water catchment response [8,30–33].

Different attempts have been done to interpret and model ω. Using 270 Australian catchments,
Zhang, Hickel, Dawes, Chiew, Western, and Briggs [9] performed a stepwise regression analysis
between ω and basin properties (i.e., vegetation cover, precipitation characteristics, catchment slopes,
and plant available water capacity), and found that the most significant elements were the average
storm, depth, and coefficient of variation in daily precipitation. Similarly, Xu et al. [34] linked
Fu’s parameter with geographic and morphometric catchment properties of a dataset composed by
MOPEX “small” basins [35] and a “large basin” whose data are from different sources (CRU TS 3.20,
HYDRO1K, GIMMS). A simple stepwise regression and a more complex artificial neural network
analysis were adopted to explain the relationship between the ω hydrological defined parameter and
morphological basin properties, finding good explanatory capacity of the two developed models
for small and large basins (R2 = 0.53–0.83). Latitude has proved to be the best correlate with Fu’s
parameter. As an alternative, Yang et al. [36] selected non-linear expression for predicting ω over
180 non-humid basins in China, which was a function of infiltration capacity, soil water storage,
and average terrain slope. The expression was able to predict annual water cycle components
(95.2% and 62% of the variance of mean annual evapotranspiration and runoff, respectively) by
just using the aforementioned morphological descriptors. Through water-soil-vegetation metrics,
Abatzoglou and Ficklin [2] studied the correlation between ω and morphological properties over
watersheds in the United States. The relative cumulative moisture surplus (rCMS), the ratio of
available soil water holding capacity to precipitation (AWC/P), and the topographic slope were
integrated in a regression model that demonstrated the ability to simulate the spatial variability of ω
(81.2%), which was involved in increasing the value of rCMS as Fu’s parameter decreased, whereas
AWC/P > 0.4 has direct proportionality with ω.

In this work, we will trace an original way (i) to further demonstrate and support the idea that
climate, basin morphology, and vegetation drive water partitioning within Budyko’s framework and
(ii) to establish the ω value in data-poor condition, providing practitioners and hydrologists with a tool
for assessing annual runoff. But, differently from the previous studies, we used in silico experiments.
Namely, we ran a simple conceptual lumped model, which preserved the physical description of
fundamental hydrological processes acting within a natural basin. The choice of a simple model allowed
us to deal with a huge amount of stochastic input data, consider a large range of basin descriptors
and vegetation types, and work within reasonable computational time. The model will be forced
by stochastic synthetic potential evapotranspiration and precipitation daily timeseries. The climatic
input will be generated by a weather generator that roughly epitomizes the climatic variability by
using five combinations of seasonal patterns involving potential evapotranspiration and precipitation.
The model parameters domain was explored in order to assess how basin morphology and vegetation
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impact on the water partitioning process and for determining the ω value. Then we interpreted the
model outputs within the Budyko’s framework to unravel the role of climate, basin morphology,
and vegetation in multi-years water partitioning rules.

2. Methods

The role of climate, basin morphology, and vegetation in characterizing long term hydrological
processes and in determining the ω value was explored by three consequent modeling experiments,
which are sketched in Figure 1.
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2.1. Climatic Scenarios and Weather Generator 

Figure 1. (a) Fixed climate, fixed morphology and vegetation: given a climate, a watershed, over
different annual precipitation, and potential evapotranspiration, hydrological response follows the
same law. (b) Varying climate, fixed morphology and vegetation: given a watershed, the climate drives
the hydrological response in different ways. (c) Varying climate, varying morphology and vegetation:
for each climate, the water partitioning process is driven by morphological and vegetation properties
of the basin.

Supposing a particular climate, defined as a characteristic seasonal pattern of potential
evapotranspiration and precipitation, once defined the morphological basin and vegetation properties
(model parameters), we hypothesize that the hydrological response is only related to the aridity index.
In other words, for a given climate condition, notwithstanding that the combinations between mean
annual precipitation and potential evapotranspiration are infinite, water partitioning rules are uniquely
defined. In the Budyko’s framework and using the Fu’s equation, this means that for different casual
couples of AI and EI, a unique value of ω is identifiable (Figure 1a).

Another cornerstone of this work is to support the idea that the hydrological behavior of
a basin is driven by climate, again defined as a seasonal pattern of potential evapotranspiration
and precipitation. Namely, the same basin (the same model parameters and then, morphological
and vegetation properties), in different geographic areas with different seasonal patterns of climatic
variables will result in different partitioning rules as a function of climate (Figure 1b).

Finally, we support the idea of biunivocal relationship between basin morphometric and vegetation
properties and hydrological response (Figure 1c). Numerical simulations were run for the five
climates with different basin morphological and vegetation properties (model parameter combinations).
Results were used to create five linear relations (one for each climate type) between model parameters
(that are four, representing the role of morphology and vegetation) and ω. These relations are aimed
to help practitioners and hydrologists in using Fu’s parameter in the case of limited or missing
evapotranspiration and runoff data.
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2.1. Climatic Scenarios and Weather Generator

To take into account the role of climate in water partitioning, we considered five climatic scenarios
which roughly mimic some of the most frequent climate conditions. As specified before, every climate
is characterized here by different seasonal patterns of rain and potential evapotranspiration. Within
a given climate, we generated synthetic series of rainfall P(t) and ETP(t) at daily time scale t using
a weather generator. The five climatic scenarios are intended to represent the seasonal variability of
rain and potential evapotranspiration time patterns, as illustrated in Figure 2. The idea of exemplifying
climate in such a simple schematization refers to Viola et al. [37], where it has been used to investigate
green roof retention performances. The first climatic scenario (Figure 2a) represents stationary condition
of rain and potential evapotranspiration during the year. This is an ideal situation in which the variance
of meteoclimatic variables is zero, being the less realistic seasonal pattern of the five proposed in this
work. The second case (Figure 2b) is typical of oceanic areas with almost constant precipitation during
the hydrological year, while potential evapotranspiration has a peak. Climatic scenario 3 (Figure 2c)
is the opposite of the last ones, namely potential evapotranspiration is almost constant and major
precipitation values are observed during a specific rain season. This climatic scenario is attributable
to a tropical climate with high constant temperatures along the year and a monsoon season with a
precipitation peak. The feature of climatic scenario 4 (Figure 2d) is in-phase climatic forcing: this is a
classic case of humid subtropical climates, where the precipitation peak occurs simultaneously with
the temperature one. The last case is the opposite of the climatic scenario 4 (Figure 2e), that is rainfall
and potential evapotranspiration are in counter-phase during the hydrological year. Mediterranean
climate is well represented by this climatic scenario, because it is well known that rainfall mostly
occurs during the winter, while temperature peaks occur in the summer.

In this work the synthetic time series P(t) and ETP(t) referring to climatic scenarios were created
by the weather generator proposed by Viola, Hellies, and Deidda [37], whose parameters have been
calibrated according to main climatic features observed in 10,000 observational sites worldwide.
The rain series are intended as daily precipitation arising from a non-stationary and cyclic Poisson
point process, characterized by a frequency 1/λ(t) (rate of the Poisson process occurrences, (1/days)).
The λ(t) parameter was modeled as a sinusoidal function of time t (days), with amplitude λ, the
average interarrival time (days) between two rain events and one-year period, as described in in the
following equation:

λ(t) = λ
(
1 + δλ sin

(2πt
365

+ωλ

))
, (2)

where δλ characterizes the ratio of the semi-amplitude of the annual harmonics of λ(t) to the annual
average, while ωλ is the initial phase of the sinusoidal function. Every day with precipitation different
to a zero event P(ti) (mm/day), where i subscript indicates rain days in the P(t) series, is simulated as
a random process extracted from an exponential distribution with mean daily value α(t) (mm/day),
modeled as follows:

α(t) = α
(
1 + δα sin

(2πt
365

+ωα

))
, (3)

where α is the average amount of rainfall (mm/day), δα represents the ratio of the semi-amplitudes of
the annual harmonics of α(t) to the annual average, and ωα is the value of phase when t = 0. Therefore,
Equations (1) and (2) allow us to calculate mean interarrival times and mean daily precipitation along
the year, which in turns allow us to randomly obtain rain time series.

Similarly, the daily potential evapotranspiration series ETP(t) (mm/day) are defined as a sinusoidal
function with a similar structure to the previous one:

ETP(t) = ETP

(
1 + δE sin

(2πt
365

+ωE

))
, (4)

where ETP is the daily mean evapotranspiration (mm/day), δE the ratio of the semi-amplitude of the
annual harmonics of ETP(t) to the annual average, and ωE is the initial phase.
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Table 1. Parameters of the sinusoidal Equations (2)–(4) that define the particular pattern of precipitation
and potential evapotranspiration, related to the considered climatic scenario. δλ, δα and δE represent
the ratio of the semi-amplitude of the sinusoidal equations to their mean value, whereas ωλ, ωα, and ωE

are the initial phase. λ, α, and ETP are respectively the average interarrival time, the average amount of
daily precipitation, and the average daily potential evapotranspiration.

Climate λ (days) δλ (-) ωλ
(rad)

α
(mm/day) δα (-) ωα

(rad)
ETP

(mm/day)
δE (-) ωE

(rad)

Climatic scenario 1 4.35 0 0 Variable 0 0 Variable 0 0
Climatic scenario 2 4.35 0 0 Variable 0 0 Variable 0.3 −π/2
Climatic scenario 3 4.35 0.45 −π/2 Variable 0.35 π/2 Variable 0 0
Climatic scenario 4 4.35 0.45 −π/2 Variable 0.35 π/2 Variable 0.3 π/2
Climatic scenario 5 4.35 0.45 −π/2 Variable 0.35 π/2 Variable 0.3 −π/2Water 2019, 11, x FOR PEER REVIEW 5 of 19 

 

 
Figure 2. Schematic representation of seasonal time patterns of precipitation and potential 
evapotranspiration. Lines represent the daily mean of stochastic time series, as generated by 
Equations. 2 and 3 for 𝑃(𝑡) and by Equation. 4 as regard to 𝐸𝑇௉(𝑡). Parameters are given in Table 1. 
Following Viola, Hellies, and Deidda [37].  

Figure 2. Schematic representation of seasonal time patterns of precipitation and potential
evapotranspiration. Lines represent the daily mean of stochastic time series, as generated by Equations (2)
and (3) for P(t) and by Equation (4) as regard to ETP(t). Parameters are given in Table 1. Following
Viola, Hellies, and Deidda [37].

Each climate is defined by a phase between rain and potential evapotranspiration (as described by
ωλ,ωα andωE) and by a specific seasonal variability of rainfall (as described by δα and δλ) and potential
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evapotranspiration (modeled by δE). The values of the semi-amplitude δλ, δα, and δE have been
assessed by Viola, Hellies, and Deidda [37] as the median of their empirical distributions, as observed
in 10,000 worldwide stations. For the five climate scenarios, the parameters of the Equations (2)–(4) are
reported in Table 1.

The climate definition, as given above, may embed wide geographic areas where the seasonal
patterns of rainfall and potential evapotranspiration are homogeneous, and are described by the six
aforementioned parameters. At the same time, annual precipitation and potential evapotranspiration
may vary within a climatic area, for instance following topographic gradients. This kind of variability
is reflected in the weather generator by allowing us to obtain different aridity indices (AI). Numerically,
this is achieved by generating synthetic series with different values of α and ETP; we suppose that α
varies between 3.5–24 (mm/day) and ETP between 0.3–5.5 (mm/day). These ranges have been selected
considering a realistic range of annual precipitation and potential evapotranspiration. For sake of
simplicity, λ was assumed to be constant, and equal to 4.35 (days) (Table 1) in all the considered
climates. This numerical value has been obtained as the mean of the global interarrival times between
rainfall events; indeed, the assumption of a unique value restricts the generality of this approach
because it hampers the ability to investigate the influence of this parameter on the annual rainfall
partitioning, but it is indeed a common and reasonable assumption [20]. Under these conditions, the
mean annual amount of precipitation P generated and used in this work can vary between 300 and
2000 mm; similarly, ETP ranges from 100 to 2000 mm.

2.2. EHSM Model

The precipitation P(t) and the potential evapotranspiration ETP(t) time series have been then
used as an input into a conceptual hydrological model, namely a slight simplified version of the
Ecohydrological Streamflow Model (EHSM) [38]. The way the model is used to describe hydrological
responses is to represent a basin with two linear reservoirs describing surface and baseflow runoff, and
one soil bucket split into two compartments representing the impervious area c0 and the permeable
area (1 −c0). The daily precipitation P(ti) that falls in the soil bucket is divided in two parts: c0P(ti)

flows directly in the surface linear reservoir and (1 − c0)P(ti) infiltrates in the permeable soil bucket
portion (1 − c0) and is accumulated into the soil bucket. Water infiltration and leakage in and from the
soil bucket are regulated by 3 parameters: the active soil depth nZr (mm), which is the product of the
soil porosity n (-), the root zone thickness Zr (mm), the hygroscopic point sh (-), and the soil moisture
at field capacity s f c (-). In order to have only a variable that expresses hydrological soil properties,
we condensed nZr, sh, and s f c with the following expression:

ζ = nZr
(
s f c − sh

)
, (5)

where ζ (mm) is maximum water holding capacity, representative of maximum amount of water that
could be stored in the soil.

The soil moisture of soil bucket regulates the partition of (1 − c0)P(ti) in runoff that flows into
surface and baseflow linear reservoir. If the soil moisture content exceeds the field capacity, this water
volume becomes leakage pulses that feed the linear reservoir which is responsible for baseflow
conceptual description. The mean residence time of water within this bucket has been defined as
1/ksub (1/day), which from a physical point of view is related to groundwater dynamics. When soil
moisture overpasses saturation, the excess feeds the surface linear reservoir related to surface runoff

production. From the union of the outputs of the two linear reservoirs, the model generated the daily
runoff series Q(t).

The model allows us to simulate soil moisture dynamics and the influence of vegetation in drying
the soil during two consecutive rain events. In order to quantify the evapotranspiration process,
we assumed a limitation induced by the soil moisture that is equal to the maximum value calculated as
the product between reference evapotranspiration and the coltural coefficient Kc (-).
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The model parameters describing the watershed are only four, summarizing the key processes
producing, limiting, and delaying runoff at long time scales. Namely, the selected descriptors are: ζ
maximum water holding capacity, ksub subsurface bucket parameter, c0 impermeable area, and Kc

coltural coefficient. For all experiments and demonstrations conducted in this work, the model
parameters can vary between physically reasonable ranges, reported in Table 2. It is worth mentioning
that c0 range (less than 5%) is reasonable because Budyko’s framework applies to large watersheds,
in which impervious surfaces are often spread over the basin. This physically implies that impervious
surfaces away from outlet, still contribute to runoff, because the routing drives water volumes
to pervious areas, where infiltration occur; this physical process is not accounted in the model.
Then, impervious areas in EHSM should be considered as the ones close to the outlet, therefore,
we limited the range of c0.

Table 2. The ranges for the morphological and vegetation parameters used in this work: minimum
and maximum supposed values. In the last column, it is stated the value assumed referring to the
test-watershed, used for leading our in-silico experiment.

Name Acronym Minimum Value Maximum Value Test-Watershed

Maximum water holding capacity ζ (mm) 18 230 50
Subsurface bucket parameter ksub (1/day) 0.0017 0.1 0.05

Impervious area c0 (-) 0 0.05 0.025
Coltural coefficient Kc (-) 0.5 1.5 1

3. Results and Discussions

The simulation outputs are presented in three parts, supporting each of our assumptions: (i) in the
first part we show how ω is unique for a given climate and watershed morphological and vegetation
characteristics; (ii) in the second we indicate the effect of climate in water partitioning and (iii) in the
last part we quantify the role of basin morphology and vegetation in driving water partitioning for
different climate, providing a practical expression of ω.

3.1. Fixed Climate, Fixed Morphology and Vegeatation (FC-FMV)

Under a climate scenario and for a given watershed, the first assumption that we aim to prove
is the univocity of Fu’s parameter over a wide range of aridity indices (see Figure 1a). Following
the method described in Section 2, we generated 50 series of daily precipitation and potential
evapotranspiration from a given climatic scenario with a duration equal to 100 years. Every couple
of these climatic forcings identified an AI’s value. These time series have been used as meteoclimatic
input to a test-watershed, in which morphological and vegetation properties are summarized by model
parameters reported in the last column in Table 2. Using the model described in Section 2.2 that
represented the hydrological response of the test-watershed, we obtained 50 daily time series of runoff

Q(t) and then evapotranspiration series ET(t), which in turn has been summed at a yearly time scale
and then averaged and divided by the related yearly averaged P to obtain 50 values of evaporative
index, EI. The 50 AI-EI’s couples may be interpreted as several hydrological responses of the same
basin under different aridity index conditions, but under the same climate. The 50 AI-EI’s couples
were plotted and the Fu’s equation has been fit to data maximizing the coefficient of determination R2

(Figure 3). After the optimization process, the coefficient of determination R2 obtained was very high
for the test-watershed (namely 0.93) meaning that Fu’s equation is a good estimator of water partitioning
processes and that the Fu’s parameter could be seen as the hydrological signature of a given basin
over different aridity indices within a certain climate. Only few points, with high values of the aridity
index, depart from Fu’s curve in Figure 3. This is due to the conceptual model used for describing
hydrological processes that allocates a constant percentage of rainfall to surface runoff regardless of
the soil and vegetation dynamics under dry conditions (high aridity index values).
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Figure 3. AI-EI’s couples into the Budyko’s domain generated by the combination of weather generator
and conceptual model EHSM, the optimised Fu’s curve, and the related coefficient of determination
value R2 for the climatic scenario 5 and the test-watershed (see Table 2).

In order to generalize this result, starting from the test-watershed configuration, we tuned
morphological and vegetation parameters, once at time, at the minimum/mean/maximum values
(reported in Table 2). The number of test-watersheds became nine, for which has been conducted the
previous experiment (i.e., the climatic scenario is fixed), in order to demonstrate what has been said in
all morphological and vegetation parameter domains. The results are shown in Figure 4, where AI-EI’s
couples fit very well to the optimized Fu’s curves, highlighting the generality of the proposed method
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and perturbating one parameter at time (one for each panel), testing their minimum (red line, Table 2
second column) and maximum values (green line, Table 2 third column). R2 has been reported for the
associated curves.
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Furthermore and finally, 50,000 combinations of random morphological and vegetation
characteristics, extracted from Table 2, and climatic scenarios, were tested to verify that the coefficient
of determination is high in every case, regardless of the watershed properties and climate. The number
of combination was set to 50,000 for a robust demonstration and in order to limit computational time.
Results are presented as the probability distribution of R2, shown in Figure 5. It is easy to note that
almost all the examined cases exhibit a high correlation of determination, giving further proof that
Fu’s law and ω are good descriptors of the water partitioning process.
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Generally, we can say that, once climate and basin morphological and vegetation properties have
been defined, then the hydrological behavior is a function of the aridity index and the long term water
partitioning rules can be described with low uncertainties by the Fu’s curve.

3.2. Varying Climate, Fixed Morphology and Vegetation (VC-FMV)

In Section 3.1 we showed that, for a given watershed and climate, only the aridity index
drives the rainfall partitioning. Now we explore the influence of climate in water partitioning
processes (see Figure 1b). As in the last section, we applied the same methodology recursively
involving the test-watershed for the five different climatic scenarios, and we compared the different
Fu’s parameters obtained. We basically intended to transpose the test-watershed in different geographic
areas (with different climate) and observe the long-time hydrological responses. The five analytical
Fu’s curves associated with the five-climatic scenarios and ω are reported in Figure 6.

In line with what has already been seen in the previous section, for each climate scenario R2 has
a value close to one, demonstrating that the univocal hydrological response is a condition independent
of the climate scenario considered.

Observing the five curves, we can state that climate is an important driver in runoff

(and evapotranspiration) generation. The climate seems to define different hydrological behavior
for the same watershed, as already pointed out by Budyko [10], Potter, Zhang, Milly, McMahon,
and Jakeman [17]. Under climate scenarios 1, 2, and 4, the test-watershed results show less mean
annual runoff Q (higher ω values) than in the 3 and 5 cases. The physical explanation lies in the
potential evapotranspiration seasonal pattern: indeed, high evapotranspitative demand during the
rain season prevents soil saturation and consequently disadvantages subsurface and surface runoff

generation. The climatic scenarios 3 and 5 induce the opposite hydrological behavior due to the
aforementioned mechanism. Under these climate conditions, the soil moisture is often equal to the
maximum water holding capacity, which implies frequent surface and subsurface runoff production
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and then higher mean annual runoff Q. This happens because in the wettest periods of the year,
potential evapotranspiration assumes its minimum value.

Fu’s parameter is strictly correlated to the rain and evapotranspiration seasonal patterns,
as demonstrated by Feng et al. [39]. Particularly in climatic scenario 5, characterized by out-of-phase
rain and potential evapotranspiration, the ω value is lower (1.67) while in case 4 involving in-phase
rain and potential evapotranspiration, ω is almost equal to 1.88.
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3.3. Varying Climate, Varying Morphology, and Vegetation (VC-VMV)

In this section, we show how basin morphological and vegetation properties are significant in
the water partition process (see Figure 1c). To describe such a relation, we proceeded as follows:
for all climatic scenarios, we considered 10,000 random watersheds, creating 10,000 independent
morphological and vegetation parameter sets, each chosen within the ranges reported in Table 2.
By using the procedure described in Section 2 and already used in Section 3, for each morphological
and vegetation parameter set, we evaluated the relative Fu’s parameter. The intermediate results are
five databases, composed by 10,000 parameter sets and the associated ω values. To investigate the
relationship between hydrological response (represented by ω) and morphological and vegetation
descriptors (ζ, ksub, c0, Kc), we applied stepwise linear regression to mathematically investigate the
possible links.

Results of linear regression are reported in Table 3 for all considered climates, where we reported
the ai coefficient associated with morphological and vegetation parameters, as well as intercept β
and R2, whereas colors refer to p-values. More precisely, white cells represent a p-value equal to 0, light
grey cells represent p-values higher than 0 and lower than 0.25, and dark grey cells indicate p-values
bigger than 0.25.

Generally, there is a good correlation between ω and basin morphological and vegetation
descriptors for every climate, which is demonstrated by elevated values of R2. The best result is
obtained for climatic scenario 5, where R2 is equal to 0.901. The most significative parameter is Kc,
the coltural factor (p-values = 0, for all climates). This means that the vegetation plays a significate role
in water partitioning processes. In line with the positive sign of the related coefficient/weight (Table 3),
Kc is the most important contributor to evapotranspiration. ksub, by contrast, does not have a critical
role in water partition processes as stated by the related p-value. The subsurface bucket parameter
does not appear as a key descriptor of long-term water balance dynamics.
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Table 3. Results of the linear regression between morphological and vegetation parameters and Fu’s
parameter for all the considered climates. The ai, β, and R2 respectively represent the coefficients related
to each morphological and vegetation parameter, the constant term, and the coefficient of determination
of the linear equations that allow obtaining an empirical estimate of ω. All terms of the equation
are obtained by stepwise regression, linking the random generated morphological and vegetation
parameters’ sets (which value’s range are reported in Table 2) and the associated ω. The colors of the
cells are related to the p-value: white cells represent the p-value equal to 0, light grey cells represent
p-values higher than 0 and lower than 0.25, and the dark grey cells indicate p-values bigger than 0.25.

Climate
ai β

R2 (-)
ζ ksub c0 KC Intercept

Climatic scenario 1 0.008699 1.207 −5.532 2.623 −0.576 0.784
Climatic scenario 2 0.008379 0.044 −5.853 2.484 −0.385 0.809
Climatic scenario 3 0.005831 −0.179 −5.697 1.979 −0.035 0.867
Climatic scenario 4 0.007851 0.214 −5.939 2.405 −0.393 0.837
Climatic scenario 5 0.003725 0.177 −3.475 1.287 0.516 0.901

In order to determine the role of each morphological and vegetation descriptor in determining ω,
we performed a simple sensitivity analysis (Figure 7). Of course, since the regression equations are
linear, results were immediately obtained. Our aim was to represent how the variation of morphometric
and vegetation variables affects by the water partitioning process. This analysis is an attempt to
represent the influence of the EHSM parameters on ω. Fu’s parameter is particularly sensitive to the
coltural coefficient Kc: assuming an increasing (decreasing) from the value of the test-watershed to
the related extreme, both defined for the coltural coefficient in Table 2, the parameter influences ω
in +26%–+51% (−26%–−51%). Effects on ω due to an increase (or decrease) of ζ have the same sign
of the latter, but this parameter seems to be less sensitive, as shown by lower slopes of the related
sensitivity curves in Figure 7. The effect of vegetation and hydraulic soil capacity is fundamental in
the water partitioning processes, and the change of type and quantity can particularly modify the
runoff and evapotranspiration’s relative magnitude [6,30,32,40]. The influence of impervious areas c0

is less pronounced than the last two variables, but it plays an important role in hydrological response.
The influence of ksub is negligible because subsurface runoff timing has not a fundamental role in
long term hydrological processes. In our work we supposed a maximum delay for transformation
of subsurface flow in runoff of the order of 600 days (ksub = 1/600 = 0.017). This means that most of
the water becomes runoff Q in about two years; this does not influence the water balance during
a long-term period and thus it could be considered a constant background noise that does not affect
the rules of water partitioning.

Known the effect of different parameters and in order to demonstrate how morphological and
vegetation parameters influence runoff, we used the latter results in an additional analysis. We perturbed
morphological and vegetation parameters one at the time from the same test-watershed reported in
Table 2; then we evaluatedω using the regression equations previously obtained and we evaluated the
mean annual runoff alteration ∆Q due to morphological and vegetation parameter variation for all
climatic scenarios. In Figure 8, we represent the influence of parameters on mean annual runoff Q for
10, 20, and 30 per cent positive and negative variations. As each of the considered variables increases
or decreases, the figure shows how runoff is modified from the reference condition, as a function of the
aridity index. We report results of climatic scenario 5 (the Mediterranean climate) but similar results
have been obtained for the other ones considered. For all morphological and vegetation parameters,
the pattern of curves is the same and related to the magnitude ofω’s variation. Clearly, moving from low
to high AI’s values, the magnitude of runoff variation ∆Q is always raising. This means that, in climate
change conditions, as annual rainfall is decreasing and potential evapotranspiration is increasing [41],
non-negligible runoff changes are foreseen, leading to important economic and environmental impacts.
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Figure 8. Runoff alteration, under different AI, referring to the climatic scenario 5 and supposing an
increment/decrement of 10, 20, or 30 per cent of the four morphological and vegetation descriptors from
the test-watershed configuration. The curves associated with positive alteration of the morphology and
vegetation parameters are reported in green and the ones associated with negative variation are in red.

The coltural coefficient Kc has a tremendous effect on ∆Q: remarkably, positive or negative
variations have not experienced the same impacts. For instance, deforestation or afforestation on the
same area induces different runoff changes. Negative alteration of Kc (i.e., deforestation) induces
annual runoff to increase more, as a percentage, than the values obtained with positive Kc variations
(i.e., afforestation).
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4. Case Study Basins

In order to demonstrate the ability of the obtained regression equations to reproduce ω in different
climate in the real world, we used four case study catchments, associated with the last four climatic
scenarios considered. The first climatic scenario has been neglected since it is an ideal condition.
We compared the values collected from regression equations (in this work called “assessed ω”) with
the ones calculated by fitting the Fu’s curve to hydrological data (called “hydrological ω”).

The first case study is Saline River Basin at Rye, Arkansas (USA) and it is a sub-catchment of
Ouachita River with an extension of 2102 km2. The climate is Atlantic-oceanic with constant precipitation
during the year and potential evaporation that has a peak in the summer months (June–August).
We observed that its climatic condition is associable with climate scenario 2. Mean annual precipitation
P is 1314 mm with a runoff coefficient of 0.33, while mean annual potential evapotranspiration ETP is
945 mm, close to real evapotranspiration ET (883.6 mm). Evergreen forest is the most prevalent land
use coverage (96%) and the remaining part is urban and built-up areas.

The second case is the Parana River at Guaira, which is in South America and passes through
Brazil, with an approximate area of 830,000 km2. The climate is tropical with a constant value of
potential evapotranspiration and a precipitation peaks in December, following seasonal pattern of
climatic scenario 3. The mean annual precipitation is pretty high (1469.7 mm), as is the mean annual
potential evapotranspiration (1368.15 mm); the runoff coefficient is about 0.22, also due to high mean
annual evapotranspiration (1144.15 mm). The largest part of the basin is covered by pasture (44%),
while annual crop and sugar cane occupy the 27% and 9% of the watershed, respectively; finally,
forest is only the 9% of the total of Parana basin.

The third case study is a tributary of the Missouri River and its basin covers three USA states:
Montana, North Dakota and South Dakota with a catchment area of 1970 km2. to the climate in this
area satisfies climate condition 4, with the most important precipitations in the summer months and
a mean annual value of 394.2 mm. Precipitation is in-phase with the potential evapotranspiration that
has a maximum in the middle of the year, with a mean annual value of 1022 mm. Runoff coefficient is
0.06 and mean annual evapotranspiration is 372.3 mm. The vegetation consists of permanent wetland
(61%) and woody savannah (37%).

The latter case study refers to a watershed in California, namely the Santa Ysabel Creek,
with a typical Mediterranean climate, characterized by wet winter/autumn and dry summers,
attributable to climatic scenario 5. Santa Ysabel Creek has an extension of 112 km2, P is 521.95 mm;
only a small fraction of rainfall, namely 6%, is transformed into discharge. The mean potential annual
evapotranspiration ETP is 1405.25 mm due to high temperature and only 489.1 mm becomes real
evapotranspiration ET because of soil moisture limitation. Forest and shrubland are the prevalent land
cover type (51% and 46%), with a small amount of savannas.

Monthly rainfall and temperature in the four considered case study are represented in Figure 9.
Climatic data are provided by different sources: for the three US watersheds (Saline River Basin
at Rye, the tributary of the Missouri River and Santa Ysabel Creek) we used the Model Parameter
Estimation Experiment (MOPEX) [35], while for the Parana at Guaira basin we employed CRU TS
version 4.00 [42], the CGIAR-CSI Global Aridity Index (Global-Aridity), and the Global Potential
Evapo-Transpiration (Global-PET) Climate Database [43,44]. In order to give a morphological and
vegetation characterization of the study cases, different sources of data have been used: for the three
US watersheds, the MOPEX [35] database was used, and for Parana at Guaira basin, the info reported
by Melo et al. [45] and soil maps were utilized.

Starting from the basin morphological and vegetation characteristics, we calculated the four
aforementioned model parameters (ζ, ksub, c0, and Kc). The maximum water holding capacity ζ was
calculated using different soil parameters, according to Equation (5). n, s f c and sh were obtained
from soil type information, while Zr was related to the vegetation type within the considered basin
following Yang et al. [46]. The evaluation of the subsurface parameter ksub was done using the global
maps provided by Beck et al. [47]. The percentage of impervious area c0 was obtained from soil use
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information reported within the mentioned database. The coltural coefficient Kc was presumed to be
related to vegetation type; we set a value of 1.5 for forest, 1.25 for shrubland and savannahs, 1 for
cropland and grassland, and 0.5 for bare soil. Then, a weighted average provided a unique value over
the considered basins.
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Figure 9. Seasonal patterns of monthly rainfall and potential evapotranspiration in the four considered
case study basins. The red line represents the mean monthly potential evapotranspiration, whereas
the blue bar represents the mean monthly precipitations from MOPEX database [35]. For the case
study with an asterisk: the precipitation and potential evapotranspiration datasets respectively come
from CRU TS version 4.00 [42], the CGIAR-CSI Global Aridity Index (Global-Aridity), and the Global
Potential Evapo-Transpiration (Global-PET) Climate Database [43,44].

Once we had calculated the model parameters, we then calculated ω through the regression
equations of Section 3.3 and reported values in the column “Assessed ω” in Table 4. On the other hand,
climatic and hydrological data also allowed us to define AI and EI for each case study, and consequently
ω could be assessed by making the Fu’s curve pass through those points. A simple comparison has
been carried out between the “hydrological” and “assessed” ω values, while the relative percentual
difference ∆ω was assessed and reported in Table 4. For the considered case study, errors are indeed
limited, with only 3% for the Santa Ysabel Creek near Ramona.

The results are encouraging, but it is necessary to underline some limitations of the proposed
method. First, the definition of a climatic pattern may be too simplistic in representing seasonal behavior
of rainfall and potential evapotranspiration worldwide. In addition, the daily rainfall representation as
a Poissonian process, with a constant interarrival time, could result in errors in streamflow estimation.
In fact low values of λ imply elevate soil moisture and more runoff production and vice versa. Thus, a
correct characterization of λ is crucial for a precise description of long-term hydrological dynamics.
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Table 4. Case study basins, their associated climatic scenario, and morphological and vegetation
parameters, evaluated by a “general database”, composed by the MOPEX database [35], Padrón, et
al. [48], Melo, Scanlon, Zhang, Wendland and Yin [45], and other mixed information. The last three
columns point out the results of comparison between “hydrologicalω” (obtained by the Fu’s expression)
and “assessed ω” (obtained by the proposed regression equations).

Case Study Climatic
Scenario ζ (mm) ksub

(1/day) c0 (-) Kc (-) Hydrologic
ω

Assessed
ω

∆ω (%)

Saline River near Rye 2 155.05 0.08 0.03 1.50 4.50 4.44 1.21%
Parana River at Guaira 3 146.95 0.08 0.02 1.13 2.96 2.92 1.25%

Little Missouri at Camp Crook 4 44.41 0.17 0.01 1.25 2.92 2.90 0.60%
Santa Ysabel Creek near Ramona 5 96.35 0.09 0.00 1.38 2.72 2.63 3.10%

5. Conclusions

In this work, we examined the complex relations between climatic, morphological, and vegetation
watershed properties and long term water partitioning processes. We provided simple equations for
calculating the Fu’s parameter ω in hydrological data poor conditions. We believe that the proposed
tool will help practitioners and hydrologists to assess mean annual runoff, even in ungauged basins.

We used five seasonal patterns of precipitation and potential evapotranspiration and chose four
basin morphological and vegetation descriptors (ζ, ksub, c0 and Kc) to summarize climate and basin
characteristics. First, given a climate and a basin, we demonstrated that water partitioning is only
related to the aridity index, which is a measure of local climatic conditions. This was based on a different
point of view about Budyko’s theory: water partitioning rules for a given basin, in a given climatic
scenario, forced by different couples of stochastic P(t) and ETP(t), are well described by a Fu’s curve,
as stated by the high values of coefficient of determination R2 (Figures 3–5).

Second, we conducted an experiment to assess the climate effect in determining ω; we simulated
hydrological behavior of the same watershed within different climatic scenarios. As expected, water
partition is heavily affected by climate: under a Mediterranean climate we observed the highest mean
annual runoff Q, while the oceanic climate was the driest among the considered climatic scenarios.
This means that seasonal patterns and the phase between precipitation and potential evapotranspiration
(temperature) play a non-negligible role in long term water partitioning.

Third, we evaluated how the morphological and vegetation properties influence water partitioning.
Then, given different climate and different watersheds, we mathematically described the effect of
morphological and vegetation descriptors in water partitioning processes. Five linear regressions
between the four model parameters and ω have been calculated, one for each climatic scenario.
We showed that the coltural coefficient Kc and the maximum soil water holding capacity ζ are
the most important factors in influencing long term hydrological processes. Finally, we tested the
linear regressions performances in four case studies in the US and South America, and obtained
encouraging results.

Obviously, the range within which regression equations have been tuned (Table 2) and the limited
number of parameters (Section 2.2) are a limitation for the presented method, which introduces further
approximation within Budyko’s theory. Nevertheless, the regression equations enlarge the feasibility
of Fu’s equation, providing a rough assessment of annual runoff in limited data conditions and with
low computational effort.
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